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Systems possessing symmetries often admit robust heteroclinic cycles that persist
under perturbations that respect the symmetry. In previous work, we began a
systematic investigation into the asymptotic stability of such cycles. In particular,
we found a sufficient condition for asymptotic stability, and we gave algebraic criteria
for deciding when this condition is also necessary. These criteria are satisfied for
cycles in R

3.
Field and Swift, and Hofbauer, considered examples in R

4 for which our
sufficient condition for stability is not optimal. They obtained necessary
and sufficient conditions for asymptotic stability using a transition-matrix
technique.

In this paper, we combine our previous methods with the transition-matrix
technique and obtain necessary and sufficient conditions for asymptotic stability
for a larger class of heteroclinic cycles. In particular, we obtain a complete theory
for ‘simple’ heteroclinic cycles in R

4 (thereby proving and extending results for
homoclinic cycles that were stated without proof by Chossat, Krupa, Melbourne
and Scheel). A partial classification of simple heteroclinic cycles in R

4 is also given.
Finally, our stability results generalize naturally to higher dimensions and many of
the higher-dimensional examples in the literature are covered by this theory.

1. Introduction

Heteroclinic cycles connecting equilibria are atypical for general vector fields. How-
ever, dos Reis [6] and Field [7] have shown that heteroclinic cycles can occur robustly
in symmetric systems (that is, the heteroclinic cycle persists under small pertur-
bation of the vector field, provided the perturbations are also symmetric). The
example of Guckenheimer and Holmes [10], based on rotating convection models
analysed by Busse and Heikes [3], gave a major impetus to the study of heteroclinic
cycles in bifurcation theory. Since this paper of [10], several authors have exploited
symmetry to compute examples of robust heteroclinic cycles (see the review arti-
cle [15] and [4, 8] for further references; see also [12] for examples in population
dynamics).

Many of the heteroclinic cycles in the above references can be asymptotically
stable. Then the cycles lead to interesting phenomena such as intermittency and
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bursting in the dynamics. In previous work [16], we gave a sufficient condition for
asymptotic stability of robust heteroclinic cycles based on the relative magnitudes
of the real parts of certain eigenvalues at each equilibrium along the cycle. The
condition takes the form

m∏
j=1

min(cj , ej − tj) >

m∏
j=1

ej , (1.1)

where the quantities cj , ej > 0, tj < 0 correspond to ‘contracting’, ‘expanding’
and ‘transverse’ eigenvalues, respectively. For a certain class of heteroclinic cycles,
including cycles in R

3, the condition (1.1) is necessary as well as sufficient [16].
Nevertheless, examples of Field and Swift [9] and Hofbauer [11] show that, even

in R
4, there are cycles for which condition (1.1) is not optimal. They studied asymp-

totic stability using a technique based on transition matrices. The necessary and
sufficient conditions for asymptotic stability that they obtained are quite different
from condition (1.1).

In this paper, we combine our previous methods with the transition-matrix tech-
nique and obtain necessary and sufficient conditions for asymptotic stability for a
larger class of heteroclinic cycles. We begin by considering simple robust cycles in
R

4 (with heteroclinic connections lying in two-dimensional planes). These cycles
can be divided into three classes. Roughly speaking, cycles of type A are those
studied in [16], whereas cycles of type B lie within a flow-invariant subspace and
reduce to a cycle of type A within this subspace. The methods in [16] suffice for
cycles of type A and B. The conditions for stability of type-C cycles are com-
plicated and non-intuitive, but are readily computable via the transition-matrix
method [9, 11,12].

The definition of type-A cycles generalizes naturally to higher dimensions. Indeed,
this is precisely the class of cycles for which condition (1.1) was shown to be opti-
mal in [16]. In this paper, we show that type-B and type-C cycles generalize to
higher dimensions in such a way that the transition-matrix method gives optimal
conditions for asymptotic stability.

The remainder of the paper is organized as follows. In § 2, we recall the set up
in [16] and the main results therein. In § 3, we consider heteroclinic cycles in R

4.
Simple cycles in R

4 are defined in § 3.1 and divided into types A, B and C. In § 3.2,
we classify the simple cycles of types B and C in R

4. As a byproduct of the classifica-
tion, we obtain in § 3.3 an alternative characterization of types A, B and C, which is
the ‘correct’ definition for theoretical purposes. In § 4, we obtain optimal conditions
for asymptotic stability of simple cycles in R

4. In § 5, we generalize our results to
higher-dimensional robust heteroclinic cycles, and to continuous symmetry groups.
In § 6, we consider examples that occur in codimension-two mode-interactions with
O(2) symmetry.

As the title of this paper suggests, this work follows up on the previous paper [16].
For the most part, this paper can be read independently. However, some of the
proofs in § 5 rely on technical results from [16]. In these situations, we sketch the
ideas but refer to the appropriate parts of [16] for details.

Some of the results derived in this paper are quoted without proof in [16, p. 143]
and [5].
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2. Robust heteroclinic cycles

In this section we recall the notion of a robust heteroclinic cycle [15]. Suppose that
Γ ⊂ O(n) is a finite Lie group acting linearly on R

n. Let f : R
n → R

n be a
Γ -equivariant vector field. That is, f(γx) = γf(x) for all γ ∈ Γ .

Suppose that f has hyperbolic saddle points ξ1, ξ2, . . . , ξm, where, to avoid redun-
dancies, we assume that the group orbits Γξj , j = 1, . . . , m, are distinct. Let W s(ξj)
and W u(ξj) denote the stable and unstable manifolds of ξj . We assume that

W u(ξj) − {ξj} ⊂
⋃

γ∈Γ

W s(γξj+1) (2.1)

for each j (where j + 1 is computed mod m). Define the heteroclinic cycle

X =
⋃

γ∈Γ

m⋃
j=1

γW u(ξj).

Condition (2.1) ensures that X is a heteroclinic cycle rather than a heteroclinic
network (see [2, 13] for results on networks).

Suppose that Σ ⊂ Γ is a subgroup and define its fixed-point subspace

FixΣ = {x ∈ R
n : σx = x for all σ ∈ Σ}.

Any Γ -equivariant vector field on R
n maps Fix Σ into itself and hence FixΣ is flow

invariant.

Definition 2.1. The cycle X is a robust heteroclinic cycle if, for each j = 1, . . . , m,
there is a fixed-point subspace Pj = FixΣj , where Σj ⊂ Γ , such that

(i) ξj+1 is a sink in Pj ; and

(ii) W u(ξj) ⊂ Pj .

Remark 2.2. Conditions (i) and (ii) were called (H1) in [16]. The jth heteroclinic
connection Xj is a structurally stable saddle-sink connection from ξj to ξj+1 inside
of Pj . It follows that the cycle X persists under Γ -equivariant perturbations of the
vector field. Note that there is no restriction on the dimension of Pj .

Remark 2.3. In [17], we considered a more general class of heteroclinic cycles. Such
cycles may have strong stability properties even when they are not asymptotically
stable. However, any cycle in [17] that is asymptotically stable necessarily satisfies
the definition given above.

Recall that, if x ∈ R
n, the isotropy subgroup of x is the subgroup Σx ⊂ Γ

defined by Σx = {γ ∈ Γ : γx = x}. Without loss of generality, we may assume
in our definition of robust heteroclinic cycle that the subgroups Σj are isotropy
subgroups.
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Eigenvalue data

Our conditions for asymptotic stability depend on the magnitudes of the real
parts of certain eigenvalues of the linearization of the vector field f at each equilib-
rium. The geometry allows us to divide the eigenvalues of (df)ξj into four classes:

eigenvalue class subspace
radial (r) Lj = Pj−1 ∩ Pj

contracting (c) Vj(c) = Pj−1 � Lj

expanding (e) Vj(e) = Pj � Lj

transverse (t) Vj(t) = (Pj−1 + Pj)⊥

Here, P � L denotes the orthogonal complement in P of the subspace L.
By construction, the radial, contracting and transverse eigenvalues have negative

real part, and there is at least one expanding eigenvalue with positive real part.
(We refer to all the eigenvalues corresponding to the subspace Vj(e) = Pj � Lj as
expanding eigenvalues, even though some of these may have negative real part.)

A basic result of [16] states that asymptotic stability of robust heteroclinic cycles
is independent of the radial eigenvalues. Associated to the remaining eigenvalues,
we define cj , ej > 0 and tj < 0 as follows. Let −cj be the maximum real part of
the contracting eigenvalues. Thus cj > 0 corresponds to the weakest contracting
eigenvalue at ξj . Let ej > 0 be the maximum real part of an eigenvalue of (df)ξj

;
the strongest expanding eigenvalue. Finally, let tj be the maximum real part of the
transverse eigenvalues; the weakest transverse eigenvalue. If R

n = Pj−1 + Pj , then
set tj = −∞.

Isotypic decomposition

Let Σ ⊂ Γ be an isotropy subgroup. Recall that R
n can be written as a direct sum

of Σ-irreducible subspaces R
n = V0⊕· · ·⊕Vp. Some of the Vi may be Σ-isomorphic,

that is, they carry isomorphic representations of Σ. Group together the isomorphic
representations to obtain the unique isotypic decomposition R

n = W0 ⊕ · · · ⊕ Wq,
where each isotypic components Wj is a direct sum of irreducible subspaces, and
two irreducible subspaces are contained in the same Wj if and only if they are
isomorphic. We may choose W0 = FixΣ.

Since distinct isotypic components carry non-isomorphic representations of Σ,
any linear map L commuting with the action of Σ satisfies L(Wj) ⊂ Wj . If
ξj ∈ FixΣ, then the linearization (df)ξj commutes with Σ. It follows that, generi-
cally, each generalized eigenspace corresponding to a non-zero eigenvalue lies in a
single isotypic component of Σ.

Previous results on asymptotic stability

We can now recall the main results in [16]. Suppose that X is a robust heteroclinic
cycle as in definition 2.1. Recall that the heteroclinic connections W u(ξj) lie in fixed-
point subspaces Pj = FixΣj of certain isotropy subgroups Σj ⊂ Γ . By construction,
the eigenspaces corresponding to ej and cj+1 lie inside FixΣj . The eigenspaces
corresponding to cj , tj , ej+1 and tj+1 lie in (FixΣj)⊥.
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Theorem 2.4 (cf. [16]). Suppose that Γ ⊂ O(n) is a finite group and that X ⊂ R
n

is a robust heteroclinic cycle.

(a) If condition (1.1) is satisfied, then X is asymptotically stable.

(b) Suppose further that, for each j � 1,

(i) dimW u(ξj) = 1; and

(ii) the eigenspaces corresponding to cj, tj, ej+1 and tj+1 lie in the same
Σj-isotypic component.

Then, generically, condition (1.1) is necessary and sufficient for asymptotic sta-
bility.

Remark 2.5. Conditions (i) and (ii) in part (b) correspond to (H3) and (H2)
in [16]. They are automatically satisfied when n = 3.

Remark 2.6. It is always the case that Pj is an isotypic component for Σj . Hence,
if each isotypic decomposition of R

n under Σj consists of two isotypic components,
then condition (ii) is valid. This is certainly the case if Σj = Z2 or Σj = Z3.

3. Simple robust heteroclinic cycles in R
4

In this section, we concentrate on a class of ‘simple’ robust cycles in R
4, where

the heteroclinic connections are assumed to lie in two-dimensional fixed-point sub-
spaces. In § 3.1, we define the class of simple cycles and divide them into three
types: A, B and C. The cycles of type B and C are enumerated in § 3.2. In § 3.3, we
give a local characterization of the three types.

3.1. Cycles of Type A, B and C

Assume that Γ ⊂ O(4) is a finite group acting on R
4 and that X ⊂ R

4 is a
robust heteroclinic cycle as defined in definition 2.1. Thus, for each j = 1, . . . , m,
the heteroclinic connection from ξj to ξj+1 is a saddle-sink connection in a fixed-
point subspace Pj = FixΣj , where Σj ⊂ Γ is an isotropy subgroup. Recall the
notation Lj = Pj−1 ∩ Pj .

We say that X is a simple robust heteroclinic cycle if X ⊂ R
4 − {0}, and

(i) dimPj = 2 for each j; and

(ii) X intersects each connected component of Lj − {0} in at most one point.

Clearly, each Lj is one dimensional. Moreover, the eigenvalues of (df)ξj are real.
Indeed, there is a unique eigenvalue of each type: radial −rj , contracting −cj ,
expanding ej and transverse tj . The corresponding eigenvectors span the subspaces
Lj , Vj(c) = Pj−1 � Lj , Vj(e) = Pj � Lj and Vj(t) = (Pj−1 + Pj)⊥, respectively.
Moreover,

R
4 = Lj ⊕ Vj(c) ⊕ Vj(e) ⊕ Vj(t) (3.1)

is the isotypic decomposition of R
4 under the isotropy subgroup Tj of points in

Lj − {0}. (Since Tj contains Σj−1 and Σj , and Lj = FixTj , Pj−1 = FixΣj−1,
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Pj = FixΣj .) Note that the orthogonality of Vj(c) and Vj(e) means that successive
planes Pj−1 and Pj intersect orthogonally (in the obvious sense).

An immediate consequence of decomposition (3.1) is that Tj ⊂ Z
3
2, where, in the

coordinates (3.1), Z
3
2 consists of diagonal matrices with entries {1,±1,±1,±1}.

Proposition 3.1. Either Tj
∼= Z

2
2 and Σj

∼= Z2 for all j or Tj
∼= Z

3
2 and Σj

∼= Z
2
2

for all j.

Proof. Fix j and write Tj ⊂ Z
3
2. It is easy to see that the only possibilities compat-

ible with the constraints dim FixTj = 1 and dim FixΣj = 2 are either Tj
∼= Z

2
2 and

Σj
∼= Z2 or Tj

∼= Z
3
2 and Σj

∼= Z
2
2. The same observation applies to the inclusion

Σj−1 ⊂ Tj , yielding the required result.

Definition 3.2 (cf. [5]). Let X ⊂ R
4 be a simple robust heteroclinic cycle.

(i) X is of type A if Σj = Z2 for all j.

(ii) X is of type B if there is a fixed-point subspace Q with dimQ = 3 such that
X ⊂ Q.

(iii) X is of type C if it is not of type A nor of type B.

Note that if the cycle is of type B, then the fixed-point subspace Q contains Pj

and hence corresponds to a proper subgroup of Σj , so that Σj 	= Z2. It follows that
the three types in definition 3.2 are mutually exclusive. Types B and C correspond
to the second possibility in proposition 3.1.

Remark 3.3. Condition (i) of theorem 2.4 (b) is automatically satisfied for simple
cycles in R

4. Condition (ii) corresponds to type A. In particular, condition (1.1) is
a necessary and sufficient condition for asymptotic stability for cycles of type A.

If X is of type B, then X lies in the reflection hyperplane Q and it follows
from [16, corollary 4.8] that the stability is determined by the stability within
Q. Restricting to the three-dimensional fixed-point subspace Q, the hypotheses
of theorem 2.4 (b) are automatically satisfied and (1.1) is optimal. As there are
no transverse eigenvalues in Q (tj = −∞ for all j), condition (1.1) simplifies to∏m

j=1 cj >
∏m

j=1 ej for cycles of type B.

Proposition 3.4. Let X ⊂ R
4 be a simple robust heteroclinic cycle. All one-

dimensional fixed-point subspaces in Pj are conjugate to Lj or Lj+1.

Proof. Certainly, Lj and Lj+1 are invariant lines in Pj . If Lj = Lj+1, then it follows
from the definition of simple cycle that ξj and ξj+1 lie in distinct components of
Lj−{0}. Since the jth heteroclinic connection consists of points of isotropy precisely
Σj , it follows that Lj is the only invariant line in Pj .

Similar considerations show that if Lj 	= Lj+1, then these are ‘adjacent’ lines
in Pj . Choose elements κ ∈ Tj , κ′ ∈ Tj+1 acting as reflections on Pj with fixed-
point subspace Lj and Lj+1, respectively. Their action on Pj generates a dihedral
group Dn ⊂ O(2) with n equally spaced invariant lines L all conjugate to Lj and
Lj+1. Moreover, Pj − L consists of 2n connected components, each of which is a
fundamental domain for the action of Dn. It follows that each successive pair of
half-lines in L is connected by a heteroclinic connection consisting of points with
isotropy Σj , and hence there are no further invariant lines in Pj .
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Corollary 3.5. Let X ⊂ R
4 be a simple robust heteroclinic cycle. Then X is of

type A if and only if there are no elements of Γ that act as reflections on R
4.

Proof. First note that T1 is generated by reflections if X is of type B or C and
contains no reflections if X is of type A. In particular, if X is not of type A, then Γ
contains reflections.

Conversely, suppose that τ ∈ Γ is a reflection, and set E = Fix τ ∩P1. Then E is a
line or a plane. If E is a plane, then τ fixes all points in P1, and hence τ ∈ Σ1 ⊂ T1.
Otherwise, E is an invariant line in P1 and it follows from proposition 3.4 that E
is conjugate to L1 or L2. Hence we have shown that T1 or T2 contains a reflection
and so X is not of type A.

Theorem 3.6. Suppose that X ⊂ R
4 is a simple robust cycle of type B or type C.

(i) If −I 	∈ Γ , then Lj = Lj+1 for all j.

(ii) If −I ∈ Γ , then Lj and Lj+1 are orthogonal lines in Pj for all j.

In particular, Lj and Lj+1 are the only one-dimensional fixed-point subspaces in Pj.

Proof. We claim that, for any fixed value of j, either Lj = Lj+1 or Lj is orthogonal
to Lj+1 in Pj . Suppose that Lj and Lj+1 are distinct lines in Pj . As in the proof of
proposition 3.4, choose elements κ ∈ Tj , κ′ ∈ Tj+1 acting as reflections on Pj with
fixed-point subspace Lj and Lj+1, respectively. Multiplying by elements in Σj = Z

2
2,

we can choose κ, κ′ to be reflections in Γ (so they act trivially on P⊥
j ). With respect

to the coordinates Pj ⊕ P⊥
j , we can write κκ′ = R ⊕ I2, where R ∈ SO(2). Since

Lj 	= Lj+1, it follows that R 	= I, and so P⊥
j = Fix(κκ′). Hence P⊥

j ∩ Pj−1 is an
invariant subspace. But P⊥

j = Vj(c) ⊕ Vj(t) in the decomposition (3.1), whereas
Pj−1 = Lj ⊕ Vj(c), so P⊥

j ∩ Pj−1 is a line in Pj−1. Combining these facts, we have
shown that P⊥

j ∩ Pj−1 is an invariant line in Pj−1 and hence, by proposition 3.4,
conjugate to either Lj−1 or Lj . Moreover, κκ′ fixes points in P⊥

j ∩ Pj−1, and so is
conjugate to an element of Tj−1 or Tj . But these are isomorphic to Z

3
2 and it follows

that κκ′ has order two; that is, κκ′ = (−I2) ⊕ I2. This means (as in the proof of
proposition 3.4) that there are two invariant lines in Pj , completing the proof of
the claim.

The proof of the claim shows also that if Lj 	= Lj+1, then −I ∈ Γ (since κκ′ =
(−I2) ⊕ I2 and Σj contains I2 ⊕ (−I2)). The converse is also true (otherwise, the
components of Lj − {0} cannot be adjacent), so that the two possibilities in the
claim are distinguished by whether or not −I ∈ Γ . It is immediate that the situation
is identical for all j.

Let R denote the normal subgroup of Γ generated by reflections. We have already
seen (corollary 3.5) that R = 1 if and only if X is of type A.

Corollary 3.7. Suppose that X ⊂ R
4 is a simple robust cycle of type B or type C.

Then either R = Z
3
2 (−I 	∈ Γ ) or R = Z

4
2 (−I ∈ Γ ).

Proof. The proof of corollary 3.5 shows that reflections in Γ lie in the isotropy
subgroups of invariant lines in P1. By theorem 3.6, L1 and L2 are the only invariant
lines in P1. Hence R is contained in the subgroup generated by T1 and T2. Moreover,
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each Tj is generated by reflections, so R is the group generated by T1 and T2. If
L1 = L2, we have R = T1 = Z

3
2. Otherwise, L1 is orthogonal to L2 and we have

R = Z
4
2.

3.2. Enumeration of simple cycles of types B and C

We now have sufficient information to list the possible cycles of types B and C.
It turns out that there are seven such cycles, denoted by B±

m and C±
m, where the

first letter denotes the type of the cycle and the superscript ± indicates whether
−I ∈ Γ (−) or −I 	∈ Γ (+). The subscript m indicates, as usual, the order of the
cycle.

In this notation, there are four cycles of type B and three cycles of type C:

B+
1 , B+

2 , B−
1 , B−

3 ,

C−
1 , C−

2 , C−
4 .

}
(3.2)

First, we show that these are the only possible cycles of type B and C. Without
loss of generality, we may suppose that

P1 = {(x1, x2, 0, 0)} and P2 = {(0, x2, x3, 0)}.

If −I 	∈ Γ , then L = {(0, x2, 0, 0)} is the only invariant line in P1 and in P2.
The definition of simple cycle implies that there is a single equilibrium in each
component of L − {0}. Label these equilibria ξ1, ξ2. There are connections from ξ1
to ξ2 in P1 and from ξ2 to ξ1 in P2. In particular, the cycle closes up after precisely
two connections. Clearly, the cycle lies in the reflection hyperplane {x4 = 0} and
hence is of type B. The cycle is either 1-heteroclinic or 2-heteroclinic, depending
on whether or not ξ1 is conjugate to ξ2. These are the cycles B+

1 and B+
2 .

If −I ∈ Γ , then it follows from corollary 3.7 that we may choose coordinates
so that each Lj is a coordinate axis and each Pj is a coordinate plane. Without
loss of generality, Lj is the xj-axis for j = 1, 2, 3. There are now two possibilities:
either (i) L4 is the x1-axis; or (ii) L4 is the x4-axis. In case (i), the cycle closes
up after three connections (so the cycle is either 1-heteroclinic or 3-heteroclinic)
and connects equilibria in the x1-, x2- and x3-axes. These cycles lie in the reflection
hyperplane {x4 = 0} and have the form B−

1 and B−
3 . In case (ii), the cycle closes up

after four connections (so the cycle is either 1-, 2- or 4-heteroclinic) and connects
equilibria in the x1-, x2-, x3- and x4-axes. Clearly, the cycle does not lie in a
coordinate hyperplane. By corollary 3.7, there are no other reflection hyperplanes,
so we deduce that the cycle is of type C and has the form C−

1 , C−
2 and C−

4 . It
follows that the list (3.2) is complete.

Next, we show that each of the cycles can be realized for a finite group Γ ⊂ O(4).

The cycle B+
2

Take Γ = Z
3
2 consisting of the diagonal matrices with entries {1,±1,±1,±1}. The

fixed-point subspaces consist of the x1-axis, the planes {(x1, x2, 0, 0)}, {x1, 0, x3, 0},
{x1, 0, 0, x4} and the reflection hyperplanes {x2 = 0}, {x3 = 0}, {x4 = 0}. We can
arrange that there is a simple robust cycle connecting equilibria ξ1 = (1, 0, 0, 0)
and ξ2 = (−1, 0, 0, 0) with P1 = {x1, x2, 0, 0} and P2 = {x1, 0, x3, 0}, say. (We can
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choose P1 and P2 to be any pair of two-dimensional fixed-point subspaces.) Clearly,
the cycle is of type B and −I 	∈ Γ . Since the isotropy subgroup of ξ1 and ξ2 is the
whole of Γ , there are no symmetries mapping ξ1 to ξ2, and so m = 2.

The cycle B+
1

Take Γ = Z2 � Z
3
2, where Z

3
2 is as before and Z2 is generated by

(x1, x2, x3, x4) 
→ (−x1, x3, x2, x4). (3.3)

It is easily verified that the B+
2 cycle is present as before, with the exception that

the symmetry (3.3) interchanges ξ1 and ξ2 so that m = 1. This cycle is similar
to [1].

The cycles B−
3 and C−

4

Take Γ = Z
4
2 consisting of the diagonal matrices with entries {±1,±1,±1,±1}.

The fixed-point subspaces are precisely the coordinates subspaces. There are a
number of cycles of type B connecting equilibria in any three coordinate axes,
and of type C connecting equilibria in all four coordinate axes (in any order).
These examples arise in quadruple Hopf bifurcation in systems without symmetry
(generalizing the triple Hopf bifurcation studied in [18]).

The cycle B−
1

Take Γ = Z3 � Z
4
2, where Z3 is generated by (x1, x2, x3, x4) 
→ (x2, x3, x1, x4).

Let ξ1 = (1, 0, 0, 0), ξ2 = (0, 1, 0, 0), ξ3 = (0, 0, 1, 0). This cycle is similar to [10].

The cycle C−
4

Take Γ = Z4 � Z
4
2, where Z4 is generated by (x1, x2, x3, x4) 
→ (x2, x3, x4, x1).

Let ξ1 = (1, 0, 0, 0), ξ2 = (0, 1, 0, 0), ξ3 = (0, 0, 1, 0), ξ4 = (0, 0, 0, 1) (see [9]).

The cycle C−
2

Take Γ = Z2 � Z
4
2, where Z2 is generated by (x1, x2, x3, x4) 
→ (x3, x4, x1, x2).

Let ξ1 = (1, 0, 0, 0), ξ2 = (0, 1, 0, 0), ξ3 = (0, 0, 1, 0), ξ4 = (0, 0, 0, 1).

Remark 3.8. In the appendix, we show that there are no finite groups Γ ⊂ O(4)
that admit simple cycles of types B and C other than the six groups listed above.
So we have a complete classification of the seven simple cycles of types B and C
and also a complete classification of the six group actions that admit these cycles.

Remark 3.9. The enumeration of type-A cycles is considerably more complicated,
although we have some partial results. However, recently a complete and efficient
classification of homoclinic cycles of type A (with m = 1) has been obtained by
Sottocornola [21,22] using Galois-theoretic techniques. It is anticipated that, jointly
with Sottocornola and using the new techniques in [21–23], it will be possible also
to completely classify the type-A heteroclinic cycles in R

4.
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3.3. Local characterization of types A, B and C

The classification of simple cycles X ⊂ R
4 into the types A, B and C needs

to be reformulated to obtain results on asymptotic stability. It turns out to be
important to focus attention on certain local objects—the individual heteroclinic
connections—rather than on the global cycle X. It is purely an artefact of the
geometry of four-dimensional Lie group actions that the global characterization
was possible.

Define the three-dimensional subspace Qj = Pj−1 + Pj . There is the question as
to whether or not Qj is a reflection hyperplane, that is, whether or not Qj = Fix τj

for some reflection τj ∈ Γ .

Definition 3.10. Let X ⊂ R
4 be a simple robust heteroclinic cycle with hetero-

clinic connections Xj = W u(ξj), j = 1, . . . , m.

(i) The connection Xj is of type A if Qj is not a reflection hyperplane.

(ii) The connection Xj is of type B if Qj is a reflection hyperplane and Pj+1 ⊂ Qj .

(iii) The connection Xj is of type C if Qj is a reflection hyperplane and Pj+1 	⊂ Qj .

Theorem 3.11. Let X ⊂ R
4 be a simple robust heteroclinic cycle.

(i) The cycle is of type A if and only if each connection is of type A.

(ii) The cycle is of type B if and only if each connection is of type B.

(iii) The cycle is of type C if and only if each connection is of type C.

Proof. If X is of type A, then there are no reflection hyperplanes by corollary 3.5,
so each connection is of type A. On the other hand, if X is of type B or type C,
then Σj−1 ∩Σj = Z2 and Qj = Fix(Σj−1 ∩Σj), and so each connection is of type B
or type C.

The type-A statement follows immediately. The remaining statements follow from
the classification of cycles of types B and C in § 3.2.

When X is of type B or C, the isotropy subgroup Σj
∼= Z

2
2 is generated by

reflections. Hence there are two reflection hyperplanes containing Pj : the subspace
Qj and a second subspace, which we denote by Rj . When X is of type B, Qj contains
the directions cj and ej+1 (in fact, X ⊂ Qj) and Rj contains the directions tj and
tj+1. When X is of type C, Qj contains the directions cj and tj+1 and Rj contains
the directions tj and ej+1.

4. Asymptotic stability of simple cycles in R
4

In this section, we complete the analysis of asymptotic stability for simple cycles
X ⊂ R

4. By remark 3.3, it remains to compute asymptotic stability only for cycles
of type C. This is done in § 4.3 below. First, in §§ 4.1 and 4.2, we recall material on
Poincaré maps [16] and transition matrices [9, 11,12].
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4.1. Poincaré maps

General material on Poincaré maps for heteroclinic cycles can be found in [16].
For convenience, we recall this material in the specific setting of simple cycles in R

4.
Let X ⊂ R

4 be a simple robust heteroclinic cycle for the equivariant vector field
f : R

4 → R
4. We begin by linearizing f in a neighbourhood of each equilibrium

ξ1, . . . , ξm. In § 2, we used the geometry of the heteroclinic cycle to define the radial,
contracting, expanding and transverse eigenvalues of the linearizations (df)ξj

. Since
the cycle is simple, there is a unique eigenvalue of each type. In the region of
linearized flow, we introduce local coordinates (u, v, w, z) around ξj corresponding
to these four directions.

We may assume that the unit cube {|u|, |v|, |w|, |z| � 1} lies within the region of
linearized flow. The connection leaving ξj lies in the subspace {u = v = z = 0},
and so we define the cross-section

H
(out)
j = {(u, v, w, z) : |u|, |v|, |z| � 1, w = 1}.

The connection approaching ξj lies in the subspace Pj−1, which is coordinatized
locally by u and v. We define the cross-section

H
(in)
j = {(u, v, w, z) : |u|2 + |v|2 = 1, |w|, |z| � 1}.

Now define the first hit maps φj : H
(in)
j → H

(out)
j , and the connecting diffeomor-

phisms ψj : H
(out)
j → H

(in)
j+1. Then define

gj = ψj ◦ φj : H
(in)
j → H

(in)
j+1.

Finally, define the Poincaré map

g = gm ◦ · · · ◦ g1 : H
(in)
1 → H

(in)
1 .

As shown in [16], it is only the w and z components of each map gj that are
significant. We recall the computation. The first hit map φj has the form

φj(u, v, w, z) = (uwrj/ej , vwcj/ej , 1, zw−tj/ej ).

The cycle intersects H
(in)
i at some point (u0, v0, 0, 0), where u2

0+v2
0 = 1. Generically,

u0, v0 	= 0 and, at lowest order, φj(u, v, w, z) = (u0w
rj/ej , v0w

cj/ej , 1, zw−tj/ej ). It
follows that, when computing ψj−1, it is only the w and z components that are
significant.

Next, we consider the connecting diffeomorphisms ψj . Recall that ψj is Σj-
equivariant, and hence

ψj(Pj ∩ H
(out)
j ) ⊂ Pj ∩ H

(in)
j+1.

In other words, the u and w coordinates near H
(out)
j are mapped onto the u and

v coordinates near H
(in)
j . It follows that ψw

j (u, 0, w, 0) = ψz
j (u, 0, w, 0) = 0. Hence,

at lowest order,

ψw
j (u, v, w, z) = αj1v + αj2z, ψz

j (u, v, w, z) = αj3v + αj4z,
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where αjk ∈ R. Incorporating v0 into the constants αjk, the w and z components
of gj have, at lowest order, the form

gw
j (u, v, w, z) = αj1w

cj/ej + αj2zw−tj/ej ,

gz
j (u, v, w, z) = αj3w

cj/ej + αj4zw−tj/ej .

These expressions are independent of u and v. Hence we often view gj as a map
gj : R

2 → R
2 and write

gj(w, z) = (αj1w
cj/ej + αj2zw−tj/ej , αj3w

cj/ej + αj4zw−tj/ej ). (4.1)

Since ψj is a diffeomorphism, αj1αj4 − αj2αj3 	= 0. By [16, § 4.4], ψj can be con-
sidered as a general diffeomorphism that commutes with the action of Σj .

Proposition 4.1.

(i) If ξj is of type A, there are no further restrictions on the αjk. For example,
generically, αjk 	= 0.

(ii) If ξj is of type B, then αj2 = αj3 = 0 (and αj1, αj4 	= 0). Moreover,

gj(w, z) = (αj1w
cj/ej + o(wcj/ej ), αj4zw−tj/ej + o(zw−tj/ej )).

(iii) If ξj is of type C, then αj1 = αj4 = 0 (and αj2, αj3 	= 0). Moreover,

gj(w, z) = (αj2zw−tj/ej + o(zw−tj/ej ), αj3w
cj/ej + o(wcj/ej )).

Proof. When ξj is of type A, the subspace P⊥
j is an isotypic component for the

action of Σj and hence any matrix commutes with Σj . Thus there are no restrictions
on the linearization of ψj (except for invertibility), proving part (i).

For cycles of types B and C, P⊥
j breaks up into two one-dimensional isotypic

components; hence there are additional restrictions on ψj at linear order. In fact,
there are restrictions at all orders due to the presence of the two three-dimensional
invariant subspaces Qj and Rj . If X is of type B, the v coordinate near H

(out)
j is

mapped to the w coordinate near H
(in)
j+1. Similarly, ψj maps z to z. It follows that

ψw
j (0, 0, 0, z) = ψz

j (0, v, 0, 0) = 0. In particular, αj2 = αj3 = 0. If ξj is of type C,
then ψ maps v to z and z to w so that αj1 = αj4 = 0.

4.2. Transition matrices

Next we introduce the transition matrices of [9, 11, 12] and obtain a compact
notation for the maps gj : H

(in)
j → H

(in)
j+1 whenever X is of type B or type C. Let Y

denote the set of mappings h : R
2 → R

2 that have at lowest order the form h(w, z) =
(Ewazb, Fwczd) for some constants a, b, c, d � 0 and non-zero constants E, F .
Observe that Y is closed under composition of maps. We define the transition
matrix of h to be the 2 × 2 matrix with non-negative entries

M(h) =
(

a b

c d

)
.

It is easily verified that if h1, h2 ∈ Y , then M(h2 ◦ h1) = M(h2)M(h1). We have
the following corollary to proposition 4.1.
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Corollary 4.2. If X is of type B, then the transition matrix Mj = Mj(gj) is
given by

Mj =
(

cj/ej 0
−tj/ej 1

)
.

If X is of type C, then

Mj =
(

−tj/ej 1
cj/ej 0

)
.

If X is of type B or type C, then gj ∈ Y for each j. Moreover, g ∈ Y and we
can compute the transition matrix M = M(g) = Mm · · ·M2M1 for g. In particular,
at lowest order, g(w, z) = (Ewazb, Fwczd), where E and F are non-zero constants
and the exponents a, b, c, d are the entries of the matrix M(g).

When X is of type B,

M =
(

ρ 0
∗ 1

)
,

where ρ =
∏m

j=1 cj/ej and ∗ is some positive number. The form of M is less clear
for a cycle X of type C, but it is evident that the entries are non-negative and
strictly positive, with the possible exception of the bottom-right entry (which is
zero when m = 1). The determinant of M is given by (−1)mρ.

4.3. Asymptotic stability of simple cycles of type C

In this section we obtain necessary and sufficient conditions for cycles of type C
to be asymptotically stable.

Theorem 4.3. Suppose that X ⊂ R
4 is a simple robust heteroclinic cycle of type C.

Then, generically, X is asymptotically stable if and only if

trM > min(2, 1 + det M), (4.2)

where M = Mm · · ·M2M1 and

Mj =
(

−tj/ej 1
cj/ej 0

)
.

Proof (cf. remark 5.4 of [9]). Let ak, bk, ck, dk � 0 denote the entries of Mk. Then,
at lowest order, gk(w, z) = (Ekwakzbk , Fkwckzdk), where Ek, Fk 	= 0 are constants.
It follows that if the row sums ak + bk and ck +dk both diverge to infinity, then the
cycle is asymptotically stable. Conversely, if the row sums converge to zero, then
the cycle is unstable.

Note that the off-diagonal entries of M are non-zero. It follows from the Perron–
Frobenius theory of irreducible non-negative matrices that M has real eigenvalues
λ± with λ+ > |λ−| and that the eigenvector v+ corresponding to λ+ has strictly
positive entries.

If λ+ < 1, then M is a contraction and Mk → 0 as k → ∞. It follows that the
cycle is unstable. Conversely, if λ+ > 1, then |Mkv+| → ∞. Since both components
of v+ are non-zero, it follows that both row sums ak + bk, ck +dk diverge to infinity
and the cycle is asymptotically stable.

https://doi.org/10.1017/S0308210500003693 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003693


1190 M. Krupa and I. Melbourne

The eigenvalues of the M are given by

λ± = 1
2{trM ±

√
(trM)2 − 4 det M}.

It is easily verified that the condition λ+ > 1 is equivalent to condition (4.2).

In the case of homoclinic cycles (m = 1), condition (4.2) simplifies to c1−t1 > e1.
This is the condition Field and Swift [9] derived for the cycle C−

1 .
Next, consider the cycle C−

2 , so m = 2. Define Cj = cj/ej and Tj = tj/ej . Then
det M = C1C2 and trM = C1 + C2 + T1T1. Hence the condition for stability is

C1 + C2 + T1T1 > min{2, 1 + C1C2}.

Similarly, the condition for stability of the cycle C−
4 is

C1C3 + C2C4 + T1T2C3 + T2T3C4 + T3T4C1 + T4T1C2 + T1T2T3T4

> min{2, 1 + C1C2C3C4}.

5. Higher-dimensional robust heteroclinic cycles

In this section, the aim is to define a large class of higher-dimensional robust het-
eroclinic cycles for which optimal asymptotic stability results are available. One
result in this direction was already obtained in [16] (see theorem 2.4 (b)). Indeed,
the isotypic decomposition condition in theorem 2.4 (b) serves as a definition of
type-A cycle in higher dimensions. Here, we are concerned with higher-dimensional
analogues for cycles of type B and type C. A major difference from § 3.3 is that
the heteroclinic connections need not all be of the same type. Roughly speaking, a
cycle is type B if all connections are of type B, and a cycle is of type C if at least
one connection is of type C and the remaining connections are of type B.

Technical difficulties arise due to the fact that the contracting, expanding and
transverse eigenvalues are not necessarily unique (or real) in higher dimensions. In
addition, we now allow the symmetry group Γ to be any compact Lie group, and
generalize from equilibria ξj to relative equilibria. These technical difficulties are
dealt with just as they were in [16], but they complicate the definitions.

Background on continuous symmetry groups

Let Γ ⊂ O(n) be a compact Lie group and suppose that f : R
n → R

n is a
smooth Γ -equivariant vector field. Let X ⊂ R

n be a robust heteroclinic cycle con-
necting hyperbolic relative equilibria ξj with connections in fixed-point subspaces
Pj = FixΣj . Using results of [7, 14], we can speak of the real parts of eigenvalues
at each ξj (see [16, § 3]). The eigenvalues are again divided into radial, contracting,
expanding and transverse eigenvalues, and we define cj , ej > 0, tj < 0 (possibly
tj = −∞) in exactly the same way as we did in § 2. With these definitions, the-
orem 2.4 holds for continuous symmetry groups. Moreover, condition (i) can be
weakened to dim W u(ξj) = dimN(Σj)/Σj + 1, where N(Σj) is the normalizer of
Σj in Γ (see [16, theorem 3.1]).
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5.1. Generalization of cycles of type B to higher dimensions

There are two natural and distinct ways to generalize the definition of type-B
cycles. The first, adopted in [16], is to require that X lies in a proper fixed-point
subspace Q ⊂ R

n and to relate the stability of X in R
n to the stability of X in Q.

The second method is to adopt a local approach along the lines of § 3.3. This is
what we do now.

Recall that Vj(t) = (Pj−1 ⊕ Pj)⊥ denotes the sum of the generalized eigenspaces
corresponding to transverse eigenvalues at ξj .

Definition 5.1. Suppose that X ⊂ R
n is a robust heteroclinic cycle. The cycle is

of type B if, for each j, there is a fixed-point subspace Rj such that

Rj = Pj ⊕ Vj(t) = Pj ⊕ Vj+1(t).

Theorem 5.2. A sufficient condition for asymptotic stability of the type-B cycle
X ⊂ R

n is that
m∏

j=1

cj >

m∏
j=1

ej . (5.1)

Proof. For simplicity, we assume that the linearizations at each relative equilibrium
are semisimple. Then, by a standard argument (cf. [16, p. 135]), there is a constant
K > 0 such that, at lowest order, gj = ψj ◦ φj satisfies

|gw
j (y)| � K(|w|cj/ej + |w|−tj/ej |z|), |gz

j (y)| � K(|w|cj/ej + |w|−tj/ej |z|)

for all y = (u, v, w, z) ∈ H
(in)
j near the heteroclinic cycle. (If the linearizations are

not semisimple, then an ε > 0 is introduced into these estimates, but, as in [16,
p. 135], ε can be chosen sufficiently small that the results are not affected.)

Restricting to the subspace Rj , we find that ψw
j (u, 0, w, z) = 0, so that

ψw
j (u, v, w, z) = A(y)v + o(v).

Hence, at lowest order, |gw
j (y)| � Kj |w|cj/ej . So the Poincaré map g = gm ◦ · · · ◦ g1

satisfies |gw(y)| � K|w|ρ, where ρ =
∏m

j=1 cj/
∏m

j=1 ej > 1. Asymptotic stability
follows easily from the contraction of the w coordinates (see [16, theorem 4.7] for
details).

Theorem 5.3. Let X ⊂ R
n be a robust heteroclinic cycle of type B, with sub-

spaces Rj as in definition 5.1. Suppose that, for each j,

(i) dimW u(ξj) = dimN(Σj)/Σj + 1; and

(ii) there exists a Σj-isotypic component Q̃j such that the eigenvectors correspond-
ing to cj and ej+1 lie in Q̃j.

Then, generically, condition (5.1) is necessary and sufficient for asymptotic stabil-
ity.

Proof. It suffices to show that the lowest-order term wρ (now expanding, as ρ < 1)
in the proof of theorem 5.2 is present in the w component of the Poincaré map—at
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least most of the time. Condition (ii) guarantees that there is no algebraic obstruc-
tion to the presence of such terms, and the remainder of the proof is similar to (and
slightly simpler than) the proof in [16, § 5.3].

5.2. Generalization of cycles of type C to higher dimensions

Recall that Vj(c), Vj(e) and Vj(t) denote the sums of the generalized eigenspaces
corresponding to contracting, expanding and transverse eigenvalues at ξj .

Definition 5.4. Suppose that X ⊂ R
n is a robust heteroclinic cycle.

The jth connection is of type B if there are fixed-point subspaces Qj , Rj such
that

Qj = Pj ⊕ Vj(c) = Pj ⊕ Vj+1(e) and Rj = Pj ⊕ Vj(t) = Pj ⊕ Vj+1(t).

The jth connection is of type C if there are fixed-point subspaces Qj , Rj such
that

Qj = Pj ⊕ Vj(c) = Pj ⊕ Vj+1(t) and Rj = Pj ⊕ Vj(t) = Pj ⊕ Vj+1(e).

Definition 5.5. A robust heteroclinic cycle X ⊂ R
n is of type C if each connection

is of type B or type C, and at least one connection is of type C.

Remark 5.6. Clearly, if each connection is of type B, then the cycle is of type B,
but our definition of type B cycle is less restrictive.

Suppose that X ⊂ R
n is a robust heteroclinic cycle of type C. Depending on

whether the jth connection is of type B or C, we define the transition matrix Mj

to be

Mj =
(

cj/ej 0
−tj/ej 1

)
or Mj =

(
−tj/ej 1
cj/ej 0

)
,

respectively. Form the product M = Mm · · ·M2M1.

Theorem 5.7. A sufficient condition for asymptotic stability of the type-C cycle
X ⊂ R

n is that

trM > min(2, 1 + det M). (5.2)

Proof. We begin as in the proof of theorem 5.2. Suppose that the jth connection is
of type B. Restricting to the subspace Rj as before, we find that ψw

j (u, 0, w, z) = 0,
so that ψw

j (u, v, w, z) = A(y)v + o(v). Restricting to the subspace Qj , we have that
ψz

j (u, v, w, z) = D(y)z + o(z). Hence, at lowest order,

|gw
j (y)| � K|w|cj/ej , |gz

j (y)| � K|w|−tj/ej |z|.

It follows that gj is dominated by a map with transition matrix

Mj =
(

cj/ej 0
−tj/ej 1

)
.

Similarly, if the jth connection is of type C, then

|gw
j (y)| � K|w|−tj/ej |z|, |gz

j (y)| � K|w|cj/ej ,
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so that gj is dominated by a map with transition matrix

Mj =
(

−tj/ej 1
cj/ej 0

)
.

The Poincaré map g = gm ◦ · · · ◦g1 is dominated by a map with transition matrix
M = Mm · · ·M2M1. Since at least one connection is of type C, the off-diagonal
entries of M are non-zero, so the proof of theorem 4.3 applies.

Theorem 5.8. Let X ⊂ R
n be a robust heteroclinic cycle of type C, with subspaces

Qj, Rj as in definition 5.4. Suppose that, for each j,

(i) dimW u(ξj) = dimN(Σj)/Σj + 1; and

(ii) there exist Σj-isotypic components Q̃j ⊂ Qj and R̃j ⊂ Rj such that either
(type-B connection) the eigenvectors for cj, ej+1 lie in Q̃j and those for tj,
tj+1 lie in R̃j, or (type-C connection) the eigenvectors for cj, tj+1 lie in Q̃j

and those for tj, ej+1 lie in R̃j.

Then, generically, condition (5.2) is necessary and sufficient for asymptotic stabil-
ity.

Proof. In the proof of theorem 5.7, we showed that the Poincaré map g is dominated
by a map g̃ ∈ Y with transition matrix M . It follows from the proof of theorem 4.3
that, generically, condition (5.2) is necessary and sufficient for asymptotic stability
of the origin for the map g̃. Hence it remains to show that the terms in g̃ are present
in g—at least most of the time. Condition (ii) guarantees that there is no algebraic
obstruction to the presence of such terms, and the remainder of the proof is again
similar to, and slightly simpler than, the proof in [16, § 5.3].

6. Mode interactions with O(2) symmetry

Codimension-two mode interactions in systems with O(2) symmetry provide a rich
supply of robust heteroclinic cycles between equilibria and/or periodic solutions [1,
19, 20]. As shown in [16], many of these turn out to be ‘type-A cycles’ for which
the condition (1.1) is optimal by theorem 2.4 (b). However, certain cycles that
occur in the Hopf/Hopf mode-interaction [19] do not fall into this category, and we
investigate their stability in the section. It turns out that all but one of these cycles
is of type C.

Recall that codimension-two Hopf/Hopf bifurcation occurs when a steady-state
loses stability by having two pairs of complex eigenvalues of the linearized equation
simultaneously pass through the imaginary axis, at ±ω1i,±ω2i, where ω1/ω2 is
irrational. Irreducible representations of O(2) are either one or two dimensional,
and the eigenvalues of the linearized equation generically have multiplicity one or
two. It follows that the centre manifold for the Hopf/Hopf mode interaction is
generically of dimension four, six or eight.

It turns out that robust heteroclinic cycles occur only when all eigenvalues are
double, and there is an eight-dimensional centre manifold R

8 ∼= C
4 with the sym-

metry group O(2)×T 2. The T 2-symmetry is a normal form symmetry, arising from
the simultaneous Hopf bifurcations and is present through arbitrarily high order.
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We can choose coordinates z = (z1, z2, z3, z4) so that the action of O(2) × T 2 is as
follows,

φ · z = (ei�φz1, e−i�φz2, eimφz3, e−imφz4), φ ∈ SO(2),

(ψ1, ψ2) · z = (eiψ1z1, eiψ1z2, eiψ2z3, eiψ2z4), (ψ1, ψ2) ∈ T 2,

κ · z = (z2, z1, z4, z3),

where � and m are positive coprime integers and � � m. The robust heteroclinic
cycles that arise when � = m = 1 all satisfy the hypotheses of theorem 2.4 (b), so
that condition (1.1) is optimal (see [16]). Hence we concentrate on the case � < m.

Following [19], we define the subgroups

S(k, �, m) = {(kθ, �θ, mθ) ∈ SO(2) × T 2 : θ ∈ S1}.

There is a robust heteroclinic cycle connecting rotating waves with isotropy sub-
groups (1) and (4). The relevant isotropy subgroups together with their fixed-point
subspaces are

isotropy subgroup fixed-point subspace
(1) S(0, 0, 1) × S(1,−�, 0) (z1, 0, 0, 0)
(4) S(0, 1, 0) × S(1, 0, m) (0, 0, 0, z4)
(7) S(1, �, m) (0, z2, 0, z4)
(8) S(1, �,−m) (0, z2, z3, 0)

Each of the rotating wave solutions has a single zero eigenvalue (due to the continu-
ous symmetry) and one radial eigenvalue. The remaining eigenvalues (contracting,
expanding and transverse) are of multiplicity two due to continuous symmetries
that preserve the relevant fixed-point subspaces. It is immediate that condition (i)
in theorem 5.8 is satisfied.

The case 1 < � < m

We show that, generically, the cycle is asymptotically stable if and only if

C1 + C2 + T1T2 > min(2, 1 + C1C2), (6.1)

where Cj = cj/ej and Tj = tj/ej . (This is the same condition as for the cycle
C−

2 in R
4.)

The isotropy subgroup (7) = S(1, l, m) acts as θ · z = (e2ilθz1, z2, e2imθz3, z4),
with four-dimensional fixed-point subspace {(0, z2, 0, z4)}. The remaining isotypic
components are two dimensional, and we obtain the isotypic decomposition

R
4 = {(0, z2, 0, z4)} ⊕ {(z1, 0, 0, 0)} ⊕ {(0, 0, z3, 0)}.

The isotypic decomposition under (8) is similar.
Taking θ = 2π/� and θ = 2π/m, we find that the six-dimensional subspaces

{(z1, z2, 0, z4)} and {(0, z2, z3, z4)} are fixed-point subspaces. Similarly, we have
that {(z1, 0, z3, z4)} and {(z1, z2, z3, 0)} are fixed-point subspaces.

We now verify the stability condition (6.1). Since the action of κ interchanges z1
with z2 and z3 with z4, it is clear that rotating wave (1) has representatives in the
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z1- and z2-axes, and rotating wave (4) has representatives in the z3- and z4-axes.
We may suppose that

Pm = {(z1, 0, 0, z4)},

P1 = {(z1, 0, z3, 0)},

P2 = {(0, z2, z3, 0)},

P3 = {(0, z2, 0, z4)},

respectively. We claim that the connections in P1 and P2 are of type C and that
condition (ii) in theorem 5.8 is satisfied (we have already checked condition (i)).
The result follows.

We give the details for the connection in P1. We have the following identifications:

ξ1 c1 z4 t1 z2

ξ2 e2 z2 t2 z4

The fixed-point subspaces Q1 = {(z1, 0, z3, z4)} and R1 = {(z1, z2, z3, 0)} sat-
isfy the criteria in definition 5.4 for the connection to be of type C. Moreover,
Q̃1 = {(0, 0, 0, z4)} and R̃1 = {(0, z2, 0, 0)} are isotypic components for Σ1 (which
is conjugate to (7)) and contain c1, t2 and t1, e2, respectively, so that condition (ii)
in theorem 5.8 is satisfied. This completes the proof.

The case � = 1, m > 1

When � = 1, the subspaces {z1, z2, z3, 0}, {z1, z2, 0, z4} are not fixed-point sub-
spaces. (The other subspaces {(z1, 0, z3, z4)} and {(0, z2, z3, z4)} are fixed-point sub-
spaces since m � 2.) This means that certain restrictions in the lowest-order terms
of the Poincaré map g = g2 ◦ g1 are not present to all orders and certain ‘nonlinear’
terms must be included.

Due to the flow-invariant subspaces Q1 and R2, ψv
1 has a factor of z and ψz

2 has
a factor of v. There are no flow-invariant subspaces Q2 and R1, but the isotypic
decomposition of Σj (which is unchanged from the case 1 < � < m) means that the
restrictions on the linear terms are still present. Hence there is no z term in ψz

1 and
no v term in ψv

2 . Nevertheless, terms of the form zm and vm appear at high order
and the connecting diffeomorphisms are given by

ψ1(v, z) = (α12z + o(z), α13v + α14z
m + o(v, zm)),

ψ2(v, z) = (α21v
m + α22z + o(vm, z), α23v + o(v)),

where, generically, αij 	= 0. Hence the maps gj = ψj ◦ φj are given at lowest order
by

g1(w, z) = (β12w
−T1z, β13w

C1 + β14w
−T1mzm),

g2(w, z) = (β21w
C2m + β22w

−T2z, β23w
C2),

where Cj = cj/ej , Tj = tj/ej and, generically, βij 	= 0.
We conclude that the Poincaré map g = g2 ◦ g1 is given at lowest order by

g(w, z) = (γ1w
−T1C2mzC2m+γ2w

T1T2+C1z−T2+γ3w
T1T2−T1mz−T2+m, δw−T1C2zC2),

where, generically, γj , δ 	= 0.

https://doi.org/10.1017/S0308210500003693 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003693


1196 M. Krupa and I. Melbourne

The stability results described in this paper do not apply to a Poincaré map of
this form. Hence we postpone discussions of stability of this heteroclinic cycle, and
related classes of cycles, to future work currently in progress.

Appendix A. Groups that admit simple cycles of type B and C in R
4

In this appendix, we verify that the finite subgroups of O(4) listed in § 3.2 are the
only ones that admit simple robust heteroclinic cycles of types B and C.

Theorem A.1. Suppose that R = Z
3
2. Then Γ = Z

3
2 or Γ = Z2 � Z

3
2.

Proof. Represent R = T1 as the set of matrices with diagonal elements {1,±1,±1,
±1}. We search for finite groups Γ ⊂ O(4) such that R is a normal subgroup of Γ
and is the isotropy subgroup of the point (1, 0, 0, 0).

The signature of elements of Z
3
2 is preserved under conjugation by orthogonal

matrices. Hence the normality condition implies that every element of Γ commutes
with the diagonal matrix with entries {1,−1,−1,−1}. Such elements have the form

{±1, A} =
(

±1 0
0 A

)
,

where A ∈ O(3). Moreover, A lies in the normalizer NO(3)(Z3
2) = S3 � Z

3
2 of Z

3
2

inside of O(3). Hence NO(4)(R) ∼= (Z2 ⊕ S3) � Z
3
2. It follows that Γ = ∆ � Z

3
2,

where ∆ ⊂ Z2 ⊕ S3.
Since R = Z

3
2 ⊂ Γ is the isotropy subgroup of (1, 0, 0, 0), it follows that ∆∩S3 = 1.

Hence ∆ = 1 or ∆ ∼= Z2. In the latter case, the non-trivial element of ∆ is {−1, A},
where A ⊂ S3 is a transposition. The three possible order 16 subgroups Γ = O(4)
obtained in this manner are conjugate inside of O(4).

Theorem A.2. Suppose that R = Z
4
2. Then Γ = Zp � Z

4
2, where p = 1, 2, 3, 4.

Proof. We have Z
4
2 ⊂ Γ ⊂ N(Z4

2) = S4 � Z
4
2. Let ∆ = Γ ∩ S4 so that Γ = ∆ � Z

4
2.

We have the possibilities ∆ = S4, A4, D4, D3, D2, Z4, Z3, Z2, 1. We claim that ∆
contains at most one element of order two. This rules out all but the cyclic subgroups
of S4 as required.

First note that ∆ contains no reflections, and hence no transpositions. The only
remaining elements of order two in S4 are (12)(34), (13)(24) and (14)(23).

Since −I ∈ Γ , each of the coordinate axes are invariant in the plane P1 =
{(x1, x2, 0, 0)}. Moreover, by proposition 3.4, these are the only invariant lines in
P1. It follows that (12)(34) 	∈ Γ . Finally, (12)(34) is the product of (13)(24) and
(14)(23), proving the claim.
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