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Measures of diversity and disparity within a population are used for investigating a range of developmental
outcomes, but often by employing “off-the-shelf” indicators that may not be theoretically appropriate for the
hypotheses under investigation. In this article, we proposed a general class of social distance measures that
both enables us to see the conceptual relationship between different existing measures of heterogeneity
more clearly and is sufficiently flexible to allow for the development of tailored hypothesis-specific measures.
We show how a range of existing aggregate measures of diversity and disparity fit within the general class
and demonstrate illustratively how the measure can be used to develop more precise hypothesis-specific
measures.

1 Introduction

In this article, we develop a conceptualization of “social distance” that encompasses dimensions of
diversity (ethnicity, religion, and so forth) and disparity (income, education, asset ownership, etc.)
and develops a general class of statistical measures to capture this conceptualization of social
distance in hypothesis-specific ways. We demonstrate how a wide range of existing measures fit
within this general class, and illustratively demonstrate how it can be used to develop new measures
for hypothesis-specific testing.

Contemporary econometric analyses of political phenomena such as civil war, public good
provision, and regime change are using an increasing range of country-level summary statistics
that capture the extent to which the populations in question conform to different demographic and
economic distributional patterns (see, e.g., Cederman, Gleditsch, and Buhaug [2011]; Selway
[2011b]; and Cederman, Gleditsch, and Buhaug [2013] on civil war; and Lupu and Pontusson
[2011] and Selway [2015] on public policy). Standard measures of inequality such as the Gini
coefficient that were used in early econometric studies (see, e.g., Auvinen and Nafziger 1999)
have been supplemented by studies using measures of “horizontal” inequality—inequality
between ethnic or religious groups—and economic polarization (e.g., Dstby 2008; Brown 2009;
Baldwin and Huber 2010; Cederman, Weidmann, and Gleditsch 2011). Similarly, a relatively well-
established measure of ethnic diversity, the Ethnolinguistic Fractionalization Index (ELF)—the
default choice for econometric studies of demographic diversity since the pioneering study of
ethnic diversity and economic growth in Africa by Easterly and Levine (1997)—has been supple-
mented by alternative measures of demographic diversity, including the demographic polarization
index developed by Montalvo and Reyna-Querol (2005).

Attempts to “measure” ethnicity—whether in purely demographic terms or overlaid with other
socio-economic distributional characteristics—have, however, met with considerable resistance
from scholars who argue that ethnicity is a subjective, fluid, and essentially political phenomenon
and, as such, the attempt to reduce it to a quantitative function of categorical attributes not only
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misses the theoretical point but potentially contributes to the kind of reification of ethnic identities
that these scholars see as fundamental to the political problems of ethnicity (see, e.g., Kertzer and
Arel 2002). Chandra and Wilkinson (2008) distinguish analytically between “ethnic structure” and
“ethnic practice.” “Ethnic structure,” which they define as the “distribution of descent-based at-
tributes” within a population, can be captured by such measures as ELF, while capturing “ethnic
practice”—which, they suggest, is often more germaine to political outcomes than ethnic struc-
ture—requires the deployment of measures that capture the “act” of ethnicity, such as ethnic
voting.

An alternative approach to nuancing the measurement of ethnicity is provided by Brown and
Langer (2010), who argue for a conceptual framework in which notions of demographic diversity
and socio-economic disparity are taken as sub-concepts within a broader conceptualization of
“social distance.” Within this framework, they argue that “horizontal” cultural characteristics
like “ethnicity” and “religion,” along with “vertical” socio-economic attributes such as income,
education, and so forth, can be understood as indicators of social distance and that the kinds of
summary statistics employed in quantitative analyses—whether based on population diversity,
economic disparity, or a combination of both—should be interpreted as measures of particular
configurations of social distance. The point here is that “ethnicity” in quantitative measurement
should be taken as an indicator of social distance. Moreover, they concur with Cederman and
Girardin (2007) that overcoming the conceptual obstacles to the quantivization of “ethnicity”
requires the development of more hypothesis-specific measures, rather than the unquestioning
use of generic “off-the-shelf” indicators (see also Kalyvas 2008).

In a parallel development, Bossert, D’Ambrosia, and La Ferrara (2011) propose a
Generalized Fractionalization Index (GELF) that seeks to build upon the ELF diversity index
by allowing for the incorporation of information about individuals across multiple dimensions,
including identity aspects (e.g., ethnicity, religion) and also socio-economic and geographic dimen-
sions. They suggest that their measure effectively overcomes the problem of ethnic salience in
quantitative analysis “if one thinks that differences in income, or education, or any other measur-
able characteristic, may be the reason why ethnicity matters only in certain contexts ... [as] our
GELF index already weighs ethnic categories by their salience” (Bossert, D’Ambrosia, and La
Ferrara 2011, 3).

As we discuss further below, the GELF can be seen as a natural extension of the ELF: whereas
the ELF can be intuitively interpreted as the probability that two randomly selected individuals
from a population belong to different groups (see below), the GELF can be intuitively interpreted
as the average expected level of dissimilarity between two randomly selected individuals or, in
Brown and Langer’s terminology, the average expected social distance between two randomly
selected individuals. Although Bossert et al. provide a useful method of incorporating multiple
dimensions into a single index of similarity, their measure is limited in that it is restricted to
collapsing this information into an index of fractionalization. Yet, for a more hypothesis-specific
approach to measurement, in certain circumstances we might be interested in other constellations of
social distance.

In this article, we build upon the approaches of Brown and Langer and Bossert et al. to provide a
general class of social distance measures. We show how existing measures of vertical disparity,
horizontal diversity, and horizontal inequality can all be seen as particular instantiations of this
general class and consider how the general class can be employed to develop more hypothesis-
specific measures of social distance.

2 Social Distance

The abstract notion of “social distance” has been employed in a range of social scientific settings
that vary subtly but importantly in their focus and interpretation. Within the economics literature,
social distance has largely been expressed as a function of the quantity and, to a lesser extent,
quality of interactions between individuals. Social distance in this interpretation is primarily im-
portant in the emergence of social norms and helps explain suboptimal (from a rational individual
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perspective) decision-making (see, e.g., Hoffman, McCabe, and Smith 1996; Akerlof 1997). Social
distance from this perspective is understood as a characteristic either of individuals—in which case
it is often used coterminously with the terminology of “social isolation”—or of dyadic relationship
between individuals, albeit with macroscopic consequences. Social distance is hence strongly related
to notions of trust, reciprocity, and “bounded” rationality. Broadly speaking, social distance from
this perspective helps explain the obdurate refusal of real individuals to behave according to
rational predictions (Ortmann and Gigerenzer 2000). In the most stylized but illuminating
context, increased social distance is routinely found to correlate negatively with offers in both
“laboratory” and real-world experimental dictator games (e.g., Branas-Garza et al. 2010; Ligon
and Schechter 2012; Binzel and Fehr 2013).

An alternative, more sociological, approach to “social distance” interprets it as a characteristic
of populations as a whole and seeks to capture at the most abstract level the more intangible
elements of heterogeneity in a population than relatively straightforwardly measurable phenomena
such as income and education levels. Although often drawing on the individualist scale of social
distance pioneered by Bogardus (1925), such studies are concerned with the society-level impacts of
intermarriage, occupational mobility, and so forth (see, ¢.g., Pagnini and Morgan 1990). Studies
such as this, however, are still primarily concerned with describing and evaluating social distance
within a particular population.

If we are concerned with comparing the impact of aggregate social distance on develop-
mental outcomes, it is useful to have an aggregate measure of social distance, but for different
types of outcome (or different hypotheses about the same outcome), we might be interested in
different configurations of aggregate social distance. It is here that Brown and Langer (2010)
make a useful contribution. They argue that the range of measures that exist to capture dimen-
sions of inequality, polarization, and fractionalization can be conceptualized as particular con-
figurations of broader concepts of “diversity” and “disparity,” which themselves can be
interpreted within a broader notion of “social distance.” Their conceptualization is schematic-
ally mapped in Fig. 1. This conceptualization “cuts” ethnicity in a slightly different way from
Chandra and Wilkinson. Broadly speaking, Brown and Langer’s concept of “horizontal diver-
sity” maps onto Chandra and Wilkinson’s notion of “ethnic structure.” This concept of social
distance does not, however, capture the “ethnic practice” dimension of Chandra and Wilkinson’s
framework, but it does allow for a more nuanced and sophisticated disaggregation of “descent-
based” structures with socio-economic distribution. Indeed, the approach we take here, which
our general class is designed to exploit, is that various forms of “ethnic action” might be the
consequences of different configurations of social distance along both the diversity and disparity
axes.

Although Fig. 1 provides a useful conceptual map of social distance, for analytical purposes we
can cut the concept of aggregate social distance in a slightly different way. Any aggregate indicator
of social distance needs to do two things. First, it needs to provide a metric for the dyadic pairwise
comparison of different groups within a given society. Second, it needs to provide a way to aggre-
gate these pairwise comparisons meaningfully into a single society-wide metric. For instance, the
well-known Gini coefficient of income inequality, discussed further below, can be interpreted as
the mean absolute relative difference in incomes between all the pairwise comparisons in a society.
The metric for pairwise comparison here is absolute difference in incomes between each pair of
individuals (relative to the overall mean), and because the “groups” in the Gini coefficient are
individuals, the aggregation is the simple mean across all those pairings. This is a straightforward
example, in part because the income differential in the comparison is so intuitive, and in part
because the definition of groups on the individual level makes aggregation straightforward.
Where we are interested in groups that constitute varying but significant proportions of the popu-
lation, aggregation can be more problematic because of the need to weight for group size in the
aggregation. And where we are interested in hypotheses that relate to more sophisticated relation-
ship than simple income differentials, the population comparison dimension can be likewise more
problematic. The general class we propose provides a systematic but flexible way to build such
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Fig. 1 Conceptual map of social distance.

hypothesis-specific measures based on this analytical decomposition of social distance into pairwise
comparison and population aggregation.

3 The General Class

The general class of social distance measures we propose, which we term DIST, is a function of two
pairwise matrices that correspond to the analytical distinction above:

e a dissimilarity matrix D, which is populated as the pairwise comparison of all groups within
society on an dissimilarity function where d;; is the extent of dissimilarity between groups i
and j; and

e a population comparison matrix Q, which constitutes the aggregation calculus where ¢;; is
an function of the population proportions in groups i and j.

With two normalizing constants k and « (discussed further below), DIST is given by

DIST(k, @, Q, D) = |:k2 q,,-di,] :
- i=1

i=1 j=

The DIST measure can be seen in some ways as an extension of the GELF developed by Bossert,
D’Ambrosia, and La Ferrara (2011), and it is hence useful to begin with an analysis of that measure
to see how DIST operates. The GELF measure is based on the construction of a similarity matrix S
that compares all possible pairs of individuals for their degree of similarity. The characteristics that
are used to measure similarity are not predetermined by the measure, nor is the way that they are
computed into a similarity function, subject only to the condition that the similarity score ranges
from a minimum of 0 to a maximum of 1. Maximum similarity can be intuitively restricted to
situations where the two individuals are identical across all the observed characteristics. Minimum
similarity is more problematic where non-categorical characteristics are to be incorporated. In a
population of individuals with incomes ranging between 0 and 10 units, we might attribute
minimum similarity to comparisons between 0 and 10, but what happens if the population is
augmented by another individual with an income of 11? Alternatively, we might think in terms


Deleted Text: general class
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  etal.
Deleted Text: up
https://doi.org/10.1093/pan/mpw002

https://doi.org/10.1093/pan/mpw002 Published online by Cambridge University Press

General Class of Social Distance Measures 215

of proportions and attribute minimum similarity to a comparison between an individual who has
all of the income in the population against other individuals who have none. But comparing across
populations, this implies the same degree of similarity when the individual who has all the income
has an income of 10 as when that individual has an income of 100. This is clearly also problematic.
Bossert, D’Ambrosia, and La Ferrara (2011) discuss various methods of normalizing to ensure a
similarity score within the range 0—1, which need not detain us here.

Where each pairwise similarity comparison between individual i and individual j yields a simi-
larity score s;;, the GELF measure is then defined as

1
GELF =1-—, > sy

i=1 j=1

To give an empirical illustration, let us take a hypothetical population of six individuals with
observable characteristics of years of education (YoE) and gender as follows:

1. Male, 12 YoE.
2. Male, 12 YoE.
3. Male, 6 YoE.
4. Female, 7 YoE.
5. Female, 12 YoE.
6. Female, 14 YoE.

It will be observed that individuals 1 and 2 are identical across both our observed characteristics;
this will be important for what follows. We now need to determine the construction of the similarity
function. In their own example, Bossert, D’Ambrosia, and La Ferrara (2011) use principal com-
ponent analysis, but for illustration purposes here, we can take a simpler approach and additively
attribute half of the similarity score to gender (same gender = 0.5; different gender =0) and half to
the absolute difference in YoE, assuming a minimum of 0 and a maximum of 14, that is,
0.5 — (IYoE; — YoE;|/28). This creates a similarity matrix S thus:

[1.00 1.00 0.79 0.32 0.50 0.43
1.00 1.00 0.79 0.32 0.50 0.43
0.79 0.79 1.00 0.46 0.29 0.21
032 032 046 1.00 0.82 0.75
0.50 0.50 0.29 0.82 1.00 0.93

1 043 043 021 0.75 093 1.00

It can be observed that the leading diagonal is constituted entirely by 1s; every individual is entirely
similar to themselves. Likewise, the 2 x 2 sub-matrix in the top-left corner is constituted entirely by
Is because individuals 1 and 2 are entirely similar to each other (across our observed characteris-
tics). To derive the GELF index from this matrix, we simply take one minus the average cell score
within the matrix, which in this case gives us a GELF of 0.36.

The GELF measure is premised on the comparison of individuals, each of whom weighs the
same in the process of collapsing the matrix; hence, double summation term in the GELF equation
is simply normalized by 1/N?. But where, as in this case, we have an internally homogeneous group,
it is useful to be able to rewrite the GELF as a group-based measure, which then necessitates taking
into account group size. We can do this by defining a group similarity matrix S in which internally
homogeneous groups rather than individuals are compared pairwise and defining a second “popu-
lation comparison” matrix Q that determines the weight to be given to each groupwise comparison
in collapsing the similarity matrix. In a total population of N individuals clustered into m entirely
homogeneous groups of n; individuals (k = 1, 2, ..., m), each pair of which constitutes proportions
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pr = ng/N and p; = n;/N of the population, g;; = prp;. Hence, we can redescribe our population
above thus:

1/9 1/18 1/18 1718 1/187] [1.00 079 032 0.50 0.437]
1/18 1736 1736 1/36 1/36 0.79 1.00 0.46 0.29 0.1
o=|1/18 1/36 1/36 1/36 1/36 [S9=]0.32 046 1.00 0.82 0.75
1/18 1736 1736 1/36 1/36 0.50 0.29 0.82 1.00 0.93
| 1718 1736 1/36 1/36 1/36 | | 0.43 021 075 093 1.00 |

It is important to note here that the matrices Q and S are functions of exactly the same set of
population characteristics, but whereas S is defined as any function (within axiomatic restrictions)
of the values that those characteristics take, Q is a specific function of the prevalence of those values
within the population. For what follows, it is also useful to change the (group) similarity matrix to
create a dissimilarity matrix D, whereby dj; = 1 — s}, We can now rewrite the GELF index as

m m

GELFY = Z Z Gridy-
=1 =1

The groupwise form of the GELF we have derived here is useful because it forms the basis of the
general class of social distance measures we propose. For our general class, however, we loosen
three of the restrictions on the GELF index. First, for the GELF“ index, the computation of the
elements ¢, in the population comparison matrix Q is restricted to the formula ¢, = prp;. For our
general class of social distance measures, we tolerate other forms of population comparison which,
as we shall see, allows for the incorporation of alternative distributional patterns such as polariza-
tion. Second, for the GELF index, the population characteristics used to construct the matrices Q
and D must be exactly the same. For a general measure of social distance, we may wish to examine
the extent of dissimilarity in certain characteristics across groups constituted by other characteris-
tics, for instance “horizontal” income inequality between ethnic groups; in order to do so, we need
to allow for Q and D to be functions of different attributes, in this case ethnicity and income,
respectively. Finally, we remove the restriction that s; and, hence, d;; are bound by the range 0 to 1;
instead, we impose the restriction dj; > 0, that is to say we stipulate a minimum level of dissimilarity
(two groups identical across all characteristics) but no maximum level of dissimilarity. This allows
for the possibility that the final value of the measure in particular instantiations is not bounded by 0
and 1, as GELF is, but there is no a priori reason to impose such a restriction and, as we have seen,
defining “minimum” similarity or “maximum” dissimilarity is problematic. Indeed, one of the
advantages of basing our measure on dissimilarity rather than similarity is that it is mathematically
neater to have a range with a single bound at the minimum (by 0) rather than at the maximum. As
we shall see, however, certain instantiations of our general class do impose a maximum bound as
well.

Let us turn now, then, to define our general class of social distance measures. Our population is
composed of N individuals characterized by a vector of v observed characteristics
¢=(cy, ¢, ...,¢,). Components of ¢ can be categorical variables—for example, gender, or
census-style ethnic categories; discrete variables—for example, YoE or age in years; or continu-
ous—for example, income. We do not place any limitation on the number or nature of these
characteristics although, as will become clear, certain subclasses and instantiations of the social
distance measure are characterized by such limitations.

The N individuals in the population are clustered into m groups, each of which constitutes
proportion p; of the total population; groups may consist of a single individual. The clustering
of individuals into groups is defined according to at least one, though not necessarily all, of the
population characteristics. Hence, for instance, if a population is characterized by two attributes,
age and gender, we could divide it into groups according to age, according to gender, or according
to age and gender. Formally, the vector of characteristics g that determines the groups within the
population is a subset of ¢. Groups are entirely homogeneous across those characteristics in the
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subset g—indeed, this constitutes our definition of a “group”—but may vary internally across other
characteristics {c¢ g}. As above, we do not place further limitations upon the way in which indi-
viduals are clustered into groups, except to define particular subclasses of social distance.

The number of groups within our population m is now determinable as the total number of
observed combinations of values of the components of g. For each observed combination of
characteristic values where c,; is the characteristic value of component c,, {cw € g} for the ith
observed combination, we define a group i whereby the size of the group is given by

1 i : 1 if{CW € g|C\¢_'j = cwi}

0 otherwise

Similarly, we define a vector of individual characteristics h as a subset of ¢ that constitute those
components of ¢ that are to be used to calculate the social distance between pairs of groups. In order
to do so, we need to collapse the individual-level vector h into a group-level equivalent h®. For any
characteristics in the union ¢ € g U h, this is straightforward, as by definition these characteristics
will be unvarying within each group, hence h® = h. For other characteristics, however, we will need
to stipulate how within-group individual-level variation in the characteristics in h will be collapsed
into the group level h®. An obvious contender function is the within-group mean, but we might also
want to consider the within-group median, or even a more complex function that allows for the
construction of hypothesis-specific social distance measures. We hence place no initial restraints
upon this function.

We now define a population comparison matrix Q such that g;; is a function of the proportion of
the total population in group p; and the proportion of the population in group p; This matrix
defines the way in which population sizes are weighted in the comparison of dissimilarity. Thus, for
instance, if a population is divided into two groups which constitute one-third and two-thirds of the
population, respectively, and we apply the GELFY function qij = pipj, we would derive the follow-

ing population comparison matrix:
/9 2/9
Q= .
2/9 4/9

In contrast to GELF, however, we allow for alternative formulae. For instance, with the same
population we might choose a function g; = p?pj, deriving the population comparison matrix:

127 2/27
Q= .
4/27 8/27
We then define a dissimilarity matrix D where d; is a function of some of the group attributes in hé.
Note that Q and D may be functions of the same population attributes or of different population
attributes, but Q is a function of the prevalence of the attributes within the population, whereas D

is a function of the value of the attribute in different groups.
Our generalized class of diversity measures DIST can now be given simply by

DIST(k, @, Q, D) = [kzzq,jdij} ,
i=1 j=1

where k& and « are normalizing constants. In what follows, we show how many of the existing
measures of social distance can be expressed in this general format and, moreover, can be viewed as
logical extensions of each other according to progressive loosening of restrictions upon Q and D.

4 Existing Measures of Diversity and Disparity in the Generalized Form

In this section, we show how a range of existing measures of diversity and disparity can be
formulated as particular instantiations of the generalized social distance measure DIST.
Moreover, we show that within this form there is an important symmetry between the specific
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measures. As mentioned above, within the political economy literature on ethnicity, there are two
principal measures used to capture demographic ethnic structure: fractionalization and (demo-
graphic) polarization. In the Chandra and Wilkinson (2008) framework, these are both unidimen-
sional measures of ethnic structure. The fractionalization index, which we term here FRAC, is given
by the formula

FRAC=1-Y p,

n

i=1

where each group i=1,2,...,n constitutes proportion p; of the population. Effectively a
Herfindahl concentration index, FRAC gives the probability that two randomly selected individ-
uals belong to different groups. Although the FRAC index has been subject to heavy criticism
within as well as beyond the econometric literature, this has largely related to the data initially used
by most scholars to compute the index, a heavily outdated and problematic atlas of linguistic
diversity compiled by Soviet ethnologists in the 1960s. Attempts at improving the FRAC index
have focused on collating more appropriate data (see, e.g., Alesina et al. 2002; Baldwin and Huber
2010) and estimating longitudinal changes in ethnic diversity over time and excluding “politically
irrelevant” groups (Posner 2004). But these improvements retain the basic formula of FRAC; they
simply improve the data input into the formula.

Montalvo and Reynal-Querol (2005), however, have argued that for certain socio-economic and
political outcomes, the patterns of demographic structure picked up by FRAC may not be the most
appropriate, theoretically or empirically. They propose an alternative measure of demographic
polarization that captures the extent to which a population is divided into two equally sized
groups. The formula for their measure, which we term here MRQ, is given by

n 0.5 — ; 2 n
MRQzl_Z( 05p> =4y " pi(1 = py).
: i=1

i=1

How do these two measures fit within the general class DIST? We can begin with the simplest
description of a population within this schema—a population characterized by a single exhaustive
and mutually exclusive horizontal characteristic, such as census ethnicity category. This corres-
ponds, broadly, to the “structure” dimension of ethnicity in Chandra and Wilkinson (2008).
Clearly, with such a population, Q and D will be functions of the same characteristic. Moreover,
we can initially place the following intuitively reasonable limitations on D given the categorical
nature of the population attribute:

e Each group is entirely similar to itself: ;=0 if i=}; and
e Each group is entirely dissimilar to all other groups: d;=1 if i # j.

This produces a dissimilarity matrix composed entirely of 1s, except with Os along the leading
diagonal; we refer to this for convenience as D*. (Note that if we defined a similarity matrix
rather than dissimilarity, as per Bossert, D’Ambrosia, and La Ferrara [2011], we could equivalently
derive for S the identity matrix I.) FRAC and MRQ fit within the DIST class thus:

e FRAC = DIST(1, 1, p;p;. D*).
e MRQ = DIST(4, 1, p>p;, D*).

These simple measures of horizontal diversity or ethnic “structure” make use of one population
characteristic that is assumed to be a mutually exclusive and entire dissimilar categorical attribute.
But this is not particularly representative of sophisticated theories of ethnicity and identity politics
more generally (Chandra and Wilkinson 2008; Brown and Langer 2010). Even if we define groups
as categorical attributes, it is plausible to assert that some pairwise group comparisons are more
similar to each other in cultural terms than other comparisons. Within the DIST, this can be
achieved by loosening the stipulation that D =D* and allowing d; to vary between 0 and 1
based on the degree of cultural dissimilarity. When applied to FRAC, this approach results in a
measure that was originally proposed by Greenberg (1956) for developing a measure of linguistic
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diversity, but has more recently been resuscitated for use in political science. Using the trees of
language similarity that linguists have developed, Greenberg (1956) designates the linguistic “re-
semblance” between two languages as p; and gives the formula for linguistic diversity as
1=V, ZJL pipjpy. Fearon (2003) and Baldwin and Huber (2010) use linguistic resemblance
as a proxy for cultural distance, and use Greenberg’s formula for a measure of “cultural fraction-
alization” (CF). CF fits within the DIST class as CF = DIST(1, 1, pip;, 1 — p;).

This demonstrates one of the analytical advantages of the DIST class. We have shifted from
FRAC to CF by replacing the categorical dissimilarity matrix D* with a gradated dissimilarity
matrix where dj; = 1 — p;. Within the context of DIST, there is no reason to limit the population
comparison matrix to the form p;p;; we may wish to calculate a resemblance-based index of “cul-
tural polarization” (CP). By performing the same substitution of the dissimilarity matrix on MRQ
as expressed in the DIST format, we can derive this easily as CP = DIST(4, 1, pip;, | — 0if)-

Thus far, then, we have seen that three existing measures of demographic “horizontal diversity”
or “ethnic structure”—FRAC, MRQ, and CF—can be expressed within the DIST class and, by
extension, have derived a fourth measure of ethnic structure, “cultural polarization.” We now turn
to measures of vertical disparity. For simple measures of vertical disparity, we are also interested in
populations characterized by one characteristic, but this is a discrete or continuous characteristic,
such as income or YoE. Q and D will hence still be functions of the same attribute, but one that
allows for greater variation in the distance matrix D than D*. Because these measures do not
incorporate any cultural or ethnic indicators, they fall outside the Chandra and Wilkinson
(2008) schema entirely.

Consider the most common measure of vertical inequality, the Gini coefficient. There are various
ways of representing and interpreting the Gini coefficient, but the most useful for our purposes here
is as the “relative mean difference”—the average difference in income (education, etc.) between
every possible pair of individuals, divided by the overall mean income. This fits within the
generalized form as GINI = DIST(1/2, 1, p;p;, |r; — rj|), where r; designates the income (education,
etc.) level of group i relative to the overall average.” It is worth noting here that in our generalized
format, the definition of the population comparison matrix Q in the Gini coefficient GINI and in
the demographic fractionalization index FRAC is the same: p;p;. Whereas the dissimilarity matrix
D in FRAC is restricted to the binary values in D*, in GINI it varies according to absolute relative
difference. The constant & is halved.

This parallel between the two measures can be given an intuitive as well as mathematical form.
One interpretation of the FRAC index is the probability that two randomly selected individuals
from a population belong to different groups. In the same way, the relative mean difference inter-
pretation of the Gini coefficient can be restated as the average expected difference between two
randomly selected individuals from the population along a continuous attribute. In the sense, the
“vertical” GINI can be thought of as a logical extension of the “horizontal” FRAC across a
population characterized by one attribute that is continuous rather than categorical.

Given this, is it possible to find an equivalent vertical extension of the horizontal polarization
measure MRQ? Unsurprisingly, the answer is yes; and perhaps even more unsurprisingly, that
extension is an instance of the economic polarization measure first proposed by Esteban and
Ray (1994, 1999; Duclos, Esteban, and Ray 2004), which we term here ER. Derived axiomatically,
the ER index is a measure of how far distribution within a population “is grouped into significantly
sized clusters such that each group is very similar in terms of the attributes of its members, but
different clusters have members with very dissimilar attributes.” Their measure is given by the
formula

n n
ER =kY > " pi*pilyi = yjl,
i1 =1

'Greenberg uses r to designate resemblance; we use p here, as we use r for an alternative purpose below.
2See the Online Supplementary Appendix for full derivation.
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for k>0 and a € (0, a*] where a*~ 1.6. The value of a in the equation gives the degree of “polar-
ization sensitivity”, while k is a normalizing constant. (Note that in their formulation, the
polarization sensitivity constant is given by «; here, we use a to avoid confusion with the « in
our DIST equation.) Clearly, as Esteban and Ray (1994) themselves note, this equation is very
similar to the Gini coefficient. Like the Gini coefficient, the measure is invariant to overall
population means if the normalizing constant k takes the form k- 1/u. For our purposes, it is
hence useful to assume that k takes this form and replace the y;s in the equation with their value
relative to the mean, r;. This form of the ER measure fits as a sub class of DIST where
ER(k, a) = DIST(k, l,p}+”pj, |r; — ;). From this, it is clear that finding a vertical “extension” of
MRQ in an analogous way to the extension of FRAC to find GINI results in ER(k =2,a = 1).
MRQ, it will be remembered, is equivalent to DIST(4, 1, p7p;, D*). Extending MRQ in an analo-
gous way to the FRAC-GINI link—replacing D* with |r; — r;| and halving the constant k—gives us
ER(k =2,a=1) = DIST(2, 1, p?p;, Ir; — rj]). Note that halving the constant k from 4 to 2 in ex-
tending MRQ, as we did in extending FRAC to GINI, also provides exactly the value of k& which
normalizes ER(¢ = 1) into the range 0-1, reaching the maximum 1 where income is perfectly
polarized into two evenly sized groups, one with zero income and the other with all the income
(or other attribute).

Within our general class of social distance measures DIST(k, o, Q, D), then, we have defined the
following subclasses of measures:

e categorical horizontal diversity measures: Measures in which the population is characterized
by a single categorical attribute that is mutually exclusive and entirely dissimilar;

e gradated horizontal diversity measures: Measures in which the population is characterized
by a single categorical attribute that is mutually exclusive but characterized by gradated
dissimilarity; and

e simple vertical disparity measures: Measures in which the population is characterized by a
single continuous or discrete attribute, of which both Q and D are functions.

We have used two definitions of Q:

e g; = p;p;, which we can take as a function of population dispersion or fractionalization; and
° g = p,?pj, which we can take as a function of population polarization;

and three definitions of D:

e a binary categorical definition D*;

e a gradiated categorical dissimilarity d;; = 1 — p;; and

e a variable definition based on absolute difference relative to the population mean
d,’j = I}’,‘ — rj-l.

Each of these six measures corresponds to a different combination of these definitions with appro-
priate values for the normalizing constants k; « has been set to 1 in all cases.

We have seen, then, that four common measures of horizontal diversity and vertical disparity
can be written as particular instantiations of the generalized class of social distance measures DIST
and that we can define two broader subclasses of distance to measure simple horizontal diversity,
and simple vertical disparity depending upon restrictions placed on the population attributes from
which Q and D are constructed. Increasingly, however, scholars are becoming interested in the
political dynamics of group-based inequalities, what Stewart (2000) terms “horizontal inequalities.”
Within our broader conceptualization of social distance, we are interested here in the subclass of
simple measures that we can term “horizontal disparity”: those measures that compare the per-
formance of horizontally determined groups across a vertical attribute, such as income or educa-
tion. This would include both measures of “horizontal inequality” and also other horizontal
distributional patterns. Such measures, we should note, fall at the cusp of the Chandra and
Wilkinson (2008) distinction between ethnic structure and ethnic action insofar as differences in
socio-economic resource among ethnic groups is a good predictor of political outcomes, including
ethnic violence.
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The subclass of simple measures of “horizontal” diversity can now be easily defined in a similar
manner as instantiations of DIST in which a population is characterized by two attributes, one
categorical, of which Q is a function; and one continuous or discrete, of which D is a function.
Hence, for instance, we might define a population according to ethnic group and income attributes;
simple horizontal inequality measures on this population would be the subclass of measures in
which Q is a function of the ethnic attribute and D a function of the income attribute. Alternative
horizontal distributions from horizontal inequality that we might wish to map include, for instance,
the notion of horizontal economic polarization.

Mancini, Stewart, and Brown (2008); Baldwin and Huber (2010); and Jayadev and Reddy (2011)
discuss a range of possible measures of inter-group inequality. It is trivial to see that two of the
common measures of horizontal inequality discussed in this literature fall within the DIST class
because their equations are identical to instantiations already discussed. The Gini coefficient can be
extended to measure inequality between groups—Mancini, Stewart, and Brown (2008) term this the
“Group Gini” (GINI®); Baldwin and Huber (2010) term the same measure “Between-Group
Inequality” (BGI). Likewise, the vertical polarization index ER can be extended to a horizontal,
group-based polarization index, ER®. What is different here is the definition of the population
attributes entered into Q and D rather than the manipulation of the matrices themselves. In the
previous vertical examples GINI and ER, we were dealing with a single individual-level continuous
variable that determined both the group size and the value to used to calculate d;;, that is to say the
vector of individual attributes determining group size and dissimilarity were identical g = h = {c}.
We hence did not have to concern ourselves with collapsing h into h®. For these horizontal diversity
measures, however, we now face a situation where individuals are characterized by two attributes:
¢g, Which determines their group and is hence used to define Q; and ¢;, which will be used to
determine the level of dissimilarity in D. Thus, we need to define the function h® = f{c,). For GINI®
and ERY, as well as for the Group Coefficient of Variation (GCOV) measure discussed below,
Mancini, Stewart, and Brown (2008) use the relative group mean, that is to say the mean income
(etc.) of each group relative to the overall population mean. We define this here as 7;. Hence, we can
write

GINI® = DIST(1/2, 1, pip;, [Fi — Fil)
and
ERC = DIST(2, I,P?Pja i — ?j|)'

Mangcini, Stewart, and Brown (2008), however, prefer a measure based on the population-weighted
coefficient of variation in relative group incomes, which they term GCOV. This measure was ori-
ginally proposed by Williamson (1965) as a measure of regional inequality, and can be expressed in
the DIST class as®

GCOV = DIST(1/2, 1/2, pipj, (Fi — 7))

Two observations are worth making of this measure. First, it is the first instantiation of DIST we
have encountered with a value of o other than 1. Second, it is also the first instantiation of DIST we
have encountered that does not have a maximum bound, although it retains the minimum bound of
0 where all groups have identical mean income. The two observations are to an extent linked.
Although both the vertical and horizontal Gini indexes and the economic polarization index ER
make use of the same distance attribute 7,—group mean income (YoE, etc.) relative to the overall
mean—it is the absolute distance between 7; and 7; that is taken, and the measure hence effectively
bounds itself below 1 because all relative mean incomes above the overall mean will be necessarily
exactly matched (proportionate to population size) by other groups with relative mean incomes
below the overall mean. Taking the square of the difference in D, as GCOV does, violates this;
larger distances contribute proportionately more to the measure than smaller distances, and while

3See the Online Appendix for the full, fun, algebraic derivation of this equivalence.
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Table 1 Relationship between measures of horizontal diversity, vertical disparity, and horizontal

disparity
Population comparison matrix Q
Fractionalization: Polarization:
qij = PiPj i = 1ip;
Dissimilarity Binary categorical:
matrix D Co=Cp! k=1ad=1-FRAC k=4, =1->MRQ

dyj = D"
Gradiated categorical:
dij=1—py k=1a=1-CF k=4 a=1->CP
Variable characteristic,
Co=Cp! k=1/2,a = 1->GINI k=2,a=1-ER
dij = |ri =1}l
Variable characteristic, k=1/2,a = 1—GINI¢ k=2,a=1—>ERY
Co F Ot
dij = r; =7

Variable characteristic,
Cg 7 O k=1/2,a =1/2—-GCOV
dy = (7 = 7))

taking the overall root (hence o = 1/2) reduces this effect somewhat, it does not impose a
mathematical upper bound.

The remarkable parallelism between the ways the measures discussed are realized in DIST is
demonstrated in Table 1. By disaggregating a broad notion of “social distance” into two sets of
pairwise comparison—group size in Q and group dissimilarity in D—the mathematical and logical
relationship between these different measures is clarified. At this point, however, it is worth noting
that these are not the only permissible definitions of Q and D, although they are particularly useful
in the ease of their intuitive interpretations. The general ER formula, for instance, allows for the
varying power a in the equation (distinct from the « in our generalized equation). As Esteban and
Ray (1994) note in describing their measure, ER(k = 0.5, a = 0) is equivalent to the Gini coefficient.
But the ER index allows for values of a such that 0 <« < 1.6. Values of a in the ER formula
different from 0 or 1 would also fit into the generalized diversity class DIST through simple redef-
initions of the power term in Q, with D remaining the same. Moreover, the power of this approach
is that it makes it easy to derive new measures for hypothesis-specific testing. We have already
derived one such novel measure CP by combining the “polarization” configuration of Q with the
gradiated categorical comparison of CF in D. In the following section, we develop, illustratively,
two additional measures based on DIST.

5 Extending the Approach

Thus, we have shown how the DIST measure provides a useful framework for examining and
understanding the arithmetic relationship between different measures of social distance. The prin-
cipal advantage of the DIST class, however, is that it allows us to tailor our measures to test specific
hypotheses. By way of conclusion, we discuss illustratively some such ways in which it might be
utilized.

5.1 Cross-Cutting Cleavages

A common auxiliary hypothesis about ethnic diversity and conflict potential is that conflict is less
likely where groups have “cross-cutting” cleavages, for instance shared religious affiliation. Selway
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(2011a) suggests a general measure of the “cross-cuttingness” (CC) of cleavages within a society
based on the x? statistics such that

CC=1 —\/[Z@]/nm,

where O and E are, respectively, the observed and expected prevalence of one characteristic (e.g.,
religion) among another (e.g., ethnic group) and nm is a normalizing factor for comparison of
different structures. We have not been able to find an exact mathematical equivalent for CC in
DIST, but the advantage of DIST is that we can easily derive a similar measure tailored to a specific
hypothesis.* Let us assume, as above, that we are interested in ethnic diversity mediated by the
degree of religious overlap between ethnic groups. We can begin from FRAC, our simplest measure
of ethnic diversity. In FRAC, the pairwise comparison in the dissimilarity matrix D takes the Dx
form d;; = 1if i # j. How might we adjust dj; to incorporate the degree of religious overlap between i
and ;? In order to populate the matrix D, we need a dyadic measure that captures the degree of
religious overlap between each pair of ethnic groups. Brown (2009) proposes one such measure for
examining the degree of ethnic overlap between geographical regions, which he terms the Ethnic
Difference Measure; as we are interested in religious overlap between pairs of ethnic groups, we
term it here the Religious Difference Measure (RDM). Where two ethnic groups 7 and j are divided
into m religious groups (k =1,2,...,m), which constitute proportion m; of group i and m; of
group j, the measure can be given as

1 m
RDM;; = EZ [T — Tk .
=1

Intuitively, the measure gives the proportion of one (either) ethnic group that would have to
convert religious affiliation in order for the overall affiliation of both groups to match. We can
now define an modified instantiation of the demographic fractionalization index with the dissimi-
larity matrix D populated by the equation d;=RDM,;, giving us DIST (1,1,p,p;, RDM,;).
Intuitively, this is a measure of ethnic demographic fractionalization mediated by religious
overlap. Where a group is compared against itself (i=j), RDM; will be, by definition, 0. In
other pairwise comparisons (i # j), RDM;; will tend toward 1 the less religious overlap there is
between the two groups. Hence, in the extreme case where no pairwise comparison has any degree
of religious overlap, this measure will collapse into FRAC with RDM;=1 for all i # j. The power
of the DIST measure is that we need not stop there, however. It would be possible to follow the
same logic of religious overlap to “mediate” the ethnic polarization index MRQ with
DIST(4, 1, p?p;, RDMj)). This instantiation reaches its maximum value 1 in contexts where a popu-
lation is split into two evenly sized ethnic groups professing entirely different religions and tends
toward zero both in ethnic distributions that tend toward zero in the MRQ index (one numerically
dominant group; or many small groups); and in more ethnically polarized contexts that have high
levels of shared religious affiliation.

5.2 Within-Group Distribution

A second way that DIST could be employed for more sophisticated hypotheses is to build on the
“horizontal inequality” measures discussed above to incorporate within-group distributional char-
acteristics. As already mentioned, a range of studies have examined the impact of “horizontal
inequality” on ethnic conflict, and have found it a significant predictor of violent conflict utilizing
a variety of different measures, including a “shortfall” measure of regional performance (Gates and
Murshed 2005); the absolute income ratio between the largest two groups (Dstby 2008); and the

“Because the CC measure is normalized around 1/mm, it does not easily fit within the DIST structure. Selway (2011a)
also discusses an earlier measure proposed by Taylor and Rae (1969). This measure would potentially fit within the
DIST scheme.


Deleted Text: `
Deleted Text: '
Deleted Text:  
Deleted Text: a
Deleted Text: .
Deleted Text: .
Deleted Text: .
Deleted Text: 
Deleted Text: (),
Deleted Text:  
Deleted Text:  = 
Deleted Text: .
Deleted Text:  = 
Deleted Text: (),
Deleted Text: s
Deleted Text:  = 
Deleted Text: .
Deleted Text: `
Deleted Text: '
Deleted Text: .
Deleted Text: s
Deleted Text: s
Deleted Text: -
Deleted Text:  
Deleted Text: group distribution
Deleted Text: `
Deleted Text: '
Deleted Text: `
Deleted Text: '
Deleted Text: `
Deleted Text: '
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: 
Deleted Text: 
Deleted Text:  
https://doi.org/10.1093/pan/mpw002

https://doi.org/10.1093/pan/mpw002 Published online by Cambridge University Press

224 Graham K. Brown and Arnim Langer

GCOV measure discussed above (Mancini 2008). Each of these measures, however, only compares
the average socio-economic performance of each group, whether against the national average
(Gates and Murshed 2005); one other large group (Dstby 2008); a logarithmized pairwise compari-
son (Cederman, Weidmann, and Gleditsch 2011); or a weighted comparison of all groups (Mancini
2008). This tells us nothing about within-group distribution beyond the simple mean.

Plausibly, however, the aggregate social distance between groups will be affected by the disparity
within those groups. Horowitz (1985), for instance, is not concerned with mean difference between
groups per se, but with how far a society is ethnically “ranked.” One quantitative interpretation of
this would be to measure the degree of overlap between the income distribution curves of the
different groups. The logic here is that the less overlap there is between income distributions
across groups, the more “ranked” that society is. The Bhattacharyya Coefficient (BC) provides a
good approximation of overlapping distributions. Dividing the overall distribution into n quantiles,
the coefficient is given by BC = ZZ:I \/@, where i, and j, are, respectively, the proportion of
groups i and j in the gth quantile. The range of BC is 0, where there is no overlap between the two
distributions, to 1, where there is complete overlap in distributions.

As with the religious overlap measure used above, we can now use this measure to “mediate”
measures of demographic polarization and fractionalization with the extent of income overlap
(rather than mean difference) between each pair of groups. Because BC increases with the degree
of similarity, we need to invert it for the dissimilarity matrix D such that dj; = 1 — BC;;. Once again,
however, the flexibility of DIST allows us to compile this with different population comparison
matrices Q. Hence, for instance, if we take the population comparison format for demographic
fractionalization g; = p;p;, then we get DIST(1, 1, p;p;, 1 — BC). Because BC is bounded by 0 and 1
and is by definition equal to 0 where i =}, it can be seen that the maximum value this instantiation
of DIST takes is the equivalent demographic fractionalization index for the same population (i.c.,
DIST(1, 1, pip;, D*)) and that it will approach this value the less overlap there is in income distri-
bution (or other characteristic) between groups, that is, as BC approaches 0. Hence, we have
derived a measure of demographic fractionalization “mediated” by income overlap. By extension,
however, it would also be possible to generate an equivalent measure of demographic polarization
mediated by income overlap as DIST(4, 1, p?p;, 1 — BC).

6 Conclusion

Measures of diversity and disparity within a population are used for investigating a range of
developmental outcomes, but often by employing “off-the-shelf” indicators that may not be the-
oretically appropriate for the hypotheses under investigation. In this article, we have suggested that
a broad concept of aggregate social distance provides a useful frame for relating these different
aspects of population heterogeneity both conceptually and algebraically. We proposed a general
class of measures DIST that both enables us to see the conceptual relationship between different
existing measures of heterogeneity more clearly and is sufficiently flexible to allow for the devel-
opment of tailored hypothesis-specific measures. Clearly, hypothesis-specific measures are likely to
be “data-hungry” and the usefulness of DIST may, in that sense, be restricted by the level and
nature of data availability. As data availability continues to improve, however, DIST provides a
powerful way to explore the developmental impacts of heterogeneity with greater precision and
flexibility.

Conflict of interest statement. None declared.
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