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Abstract
Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable
example is the Sentinel-2 Earth Observation mission, developed by the European Space Agency as part of
the Copernicus Programme, which supplies images from the whole planet at high spatial resolution (up to
10m) with unprecedented revisit time (every 5 days at the equator). In this data-rich scenario, the remote
sensing community is showing a growing interest toward modern supervised machine learning techniques
(e.g., deep learning) to perform information extraction, often underestimating the need for reference data
that this framework implies. Conversely, few attention is being devoted to the use of network analysis
techniques, which can provide a set of powerful tools for unsupervised information discovery, subject to
the definition of a suitable strategy to build a network-like representation of image data. The aim of this
work is to provide clues on how Satellite Image Time Series can be profitably represented using complex
network models, by proposing a methodology to build a multilayer network from such data. This is the
first work to explore the possibility to exploit this model in the remote sensing domain. An example of
community detection over the provided network in a real-case scenario for the mapping of complex land
use systems is also presented, to assess the potential of this approach.
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1. Introduction
Nowadays, modern Earth Observation (EO) systems include several missions that, through the
use of different satellites, continuously monitor our planet by producing huge amounts of het-
erogeneous data, for example, optical, radar, atmospheric, and so on. A notable example is the
Sentinel-2 (S2) EO mission, developed by the European Space Agency (ESA) as part of the
Copernicus Programme. This mission supplies optical satellite images at high spatial resolution
(up to 10m) with high temporal revisit period (every 5 days). Thanks to the high revisiting period,
such data can be profitably organized in Satellite Image Time Series (SITS), which represent a rel-
evant source of information, expected to support a plethora of land monitoring tasks, such as
fire mapping, forest and agricultural monitoring, and climate change analysis. Moreover, since S2
SITS are publicly available, they represent an attractive source for research purposes.

The aim of this work is to show how SITS can be profitably represented using complex net-
work models, by proposing a method to extract a multilayer network from them. The goal is to
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explore the possibility to characterize spatio-temporal dynamics of large-scale landscapes by iden-
tifying fine-scale geographical objects and modeling larger scale interactions among such objects
by means of complex network graphs. The hypothesis is that such complex networkmodels would
lead to a spatial representation of satellite data that goes beyond conventional mapping, allow-
ing to model different types of relationships between objects, for example, taking into account,
together with the classical set of image properties (radiometry, textures, etc.), the contextual
information deriving from the spatial organization of the entities in a landscape.

The need for a richer spatial representation of satellite image data had already led to
the introduction, in recent years, of the GEOBIA (GEographic Object-Based Image Analysis)
paradigm (Blaschke, 2010), with the aim to encourage the coupling of multiresolution segmenta-
tion and object relation models. However, most GEOBIA-based works aim at taking advantage of
the aggregating abilities of the object-based approach, focusing on the possibility to extract better
characterized entities. Conversely, the possibility of analyzing the spatial relations that may arise
from this representation has often been neglected and still represents a challenging task (Chen
et al., 2018).

A particular scenario concerns the need to model complex agricultural landscapes by taking
into account the existing relations between land units, which often arises in several well-known
remote sensing tasks. An example in this direction is the one of land use/land cover (LULC) map-
ping from remote sensing imagery: while the design of advanced machine learning methods able
to fully exploit the expressiveness of SITS for this task is still a current problem (Kolecka et al.,
2018; Inglada et al., 2017; Zhang & Du, 2016; Zhu et al., 2017; Interdonato et al., 2019), further
complex challenges are arising, such as the “functional” mapping of land use systems (Verburg
et al., 2009). The reason for broadening the analysis to the mechanisms behind the whole agricul-
tural system is that, in practical cases, single agricultural plots cannot reflect the full complexity
of the land use system to which they belong. For instance, human–environmental relations are a
key factor in this scenario that should be effectively managed in order to preserve environmen-
tal services (DeFries & Rosenzweig, 2010) and contribute to sustainable solutions (Verburg et al.,
2013). In this regard, while LULC mapping can be obtained by classifying satellite images, map-
ping land use systems requires a broader view, in a landscape agronomy approach (Leenhardt
et al., 2010). One of the main limitations of existing remote sensing methods for mapping land
use systems (Bégué et al., 2015) is in fact the trouble in overcoming pixel-level and segmentation-
based (i.e., object level) approaches, in order to be able to consider an object in its context, that is,
the plot within its land use system.

Being able to model an SITS in a multilayer network, thus embedding, in different layers, the
different relations between the actors characterizing the complexity of land use systems would
certainly be beneficial for these kind of tasks. Furthermore, the availability of a multilayer network
model to represent SITS paves the way for the definition of unsupervised remote sensing methods
inspired from advanced network analysis techniques. In tasks such as land cover mapping, this
would represent an extremely valid support to drive data hungry supervised techniques and limit
their needs, in a context where collecting and labeling ground truth data is particularly costly,
since it can require several days of field work for each study site.

In this exploratory work, we propose a completely unsupervised methodology to extract a mul-
tilayer network from a Satellite Image Time Series. We rely on standard segmentation techniques
to build a nodeset from the SITS, while layer memberships and edge weights are inferred based on
the temporal radiometric profile of each segment. Considered the unsupervised context, wemodel
the association of nodes to the different functional classes with a certain level of uncertainty, by
producing fuzzy layer memberships (obtained by the use of fuzzy clustering techniques). Note
that, as we investigate our methodology using only Sentinel-2 SITS for sake of simplicity and eas-
iness of reproducibility, the proposed approach stands general enough to deal with any kind of
remote sensing imagery, eventually in a multisensor/multisource approach.

https://doi.org/10.1017/nws.2019.58 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2019.58


S28 R. Interdonato et al.

As a first example of a practical use of the proposed multilayer network model, we also present
an experimental case study concerning an unsupervised landscape stratification task viamultilayer
community detection. The case study will be centered on the Koumbia area in Burkina Faso, an
agricultural zone in the west of the country which is particularly challenging for our methodology
due to its fragmented and continuously changing landscape.

The rest of the work is structured as follows: Section 2 discusses related work, Section 3
describes in detail the proposed approach, Section 4 introduces an experimental case study, and
Section 5 concludes the work.

2. Related work
As we already pointed out, the use of network models in the remote sensing domain has often
been neglected. Nevertheless, we can identify two main lines of research regarding the use of such
models in relation with remote sensing, and more generally geospatial data analysis: models based
on interaction graphs (i.e., focusing on human–environment relationship) and models relying on
object-based image analysis (OBIA) (i.e., aimed at improving image-based landscape analysis). In
the following, we will elaborate more on these two topics.

2.1 Interaction graphs
Generally speaking, landscape changes that can be observed in SITS result from many interact-
ing processes. These processes are often dynamic, spatially distributed, operating at several time
and space scales and can involve human activities (Schmidt-Laine & Pave, 2002). Modeling is a
preferred approach to study these complex processes of human–environmental interaction, and
research is conducted according to three main approaches, each with a large scientific community:
systems dynamics (e.g., STELLA (Costanza, 1987)), cellular automata (e.g., SLEUTH (Clarke et al.,
1997)), and multiagent systems (e.g., CORMAS (Bousquet et al., 1998)). While these approaches
allow to model the main mechanisms occurring in a landscape, modeling the dynamic spatial
structures that influence such mechanisms remains challenging. In fact, most of these approaches
both do not account for the spatial dimension or limit its representation to points on a fixed-
scale grid, limiting the potential in coupling the resulting models with Geographic Information
Systems (GIS). With the aim to overcome these limitations, an approach based on the concept of
interaction graphs has been developed, namely, Ocelet (Degenne et al., 2009, 2010; Degenne &
Lo Seen, 2016). A system represented by interaction graphs can thus evolve when the interaction
functions (i.e., edges) are activated and modify the connected entities (i.e., nodes). The entities
located in a geographical space can be represented by geometries (points, polygon lines) and/or
cells (square, hexagon, or triangle). Between these entities, spatial, functional, hierarchical, and
even social relationships can be defined, in the generic form of an interaction graph. Moreover,
using this approach, it is possible to associate the time profiles extracted from SITS with objects
extracted from very high-resolution (VHR) satellite images and to discriminate among them by
taking into account a priori knowledge from different domains (Jahel et al., 2017, 2018).

2.2 Object-based image analysis
Regarding OBIA approaches, Guttler et al. (2017) investigate the possibility of representing
LANDSAT SITS in graph form, proposing a newmethod to automate the process of detecting and
extracting spatio-temporal information. This approach uses traditional OBIA image processing to
identify separate sets of objects for each timestamp. Then, a graph-based approach is used to detect
coherent areas in space and connect objects belonging to different timestamps. For each detected
entity, this method constructs a representation in the form of an evolution graph that summarizes
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the evolution of the spatio-temporal phenomenon. The same evolution graph structure is used
in Khiali et al. (2018), in order to perform a clustering task on LANDSAT SITS. Although these
works have the merit to propose a first combination between network analysis and remote sens-
ing, the proposed techniques are tailored on a specific fine-scale task, namely, the identification
of landscape elements based on their “local” spatial dynamics, and can hardly be generalized to
model larger scale interactions among lands units. This also concerns the possibility to handle a
more heterogeneous set of data (multisensor, multisource). In this sense, a more relevant work
is presented in Gaetano et al. (2009). It proposes an application of the theoretical model devel-
oped in Scarpa et al. (2009) for the unsupervised land cover classification of complex landscapes
from very high-resolution (VHR) remote sensing imagery. The rationale of this methodology is
to gather information on heterogeneous land cover classes through the identification of “groups”
of geographic objects that share both individual and contextual properties (e.g., trees in a forest
vs. trees in urban areas). Eventually, this approach allows for the reconstruction of complex areas
through the merging of spatially entangled, statistically coherent clusters of landscape elements.
Although its underlying modeling strategy is solely based on spatial dynamics through the use of a
single VHR image, the described methodology is prone to the integration of SITS data to account
for the temporal dimension, as we will show in the following.

2.3 Targeted contribution
The goal of this work is to investigate a flexible and general approach for the construction of a
complex multilayer network starting from a possibly heterogeneous set of geospatial data. Our
proposal explicitly builds upon the work carried out in Gaetano et al. (2009). To provide a first
insight, we rely on the basic idea to exploit two disjoint datasets to, on one hand, provide a spatial
delimitation of individual landscape elements and, on the other hand, characterize each of these
elements by means of some functional properties. Eventually, a network of geographic objects
will be derived using both spatial adjacencies among image objects and suitable links between
disjoint, possibly distant elements sharing a well-defined “role” in the landscape (e.g., exhibiting
a close behavior in time). The descriptive potential of the provided network will be assessed by
trying to identify compact areas corresponding to some semantically coherent land subsystem by
means of a multilayer community detection technique. Without loss of generality and to limit
the complexity of this exercise, both datasets will be derived by a unique Sentinel-2 time series,
tailored on a specific case study that will be described in Section 5.

3. Proposed approach
In this section, we will describe in detail the proposed methodology to extract a multilayer net-
work from an SITS. In the following problem formulation, an SITSmay be regarded as a collection
of remote sensing images, possibly at multiple modes (optical, radar, etc.) and spatial resolutions,
acquired multiple times over the same area and within a fixed temporal range. Even if this formu-
lation is intended to be generic, to fix the ideas, from now on the readermay refer to a specific SITS
configuration, composed by a single time series of Sentinel-2 images. Each image of the time series
includes only bands at 10-m spatial resolutions, in the visible (red, green, blue) and near-infrared
wavelenghts.

Concerning the multilayer network model, we refer here to the one described in Kivela et al.
(2014):

Definition 1 (Multilayer network model). Let L = {L1, . . . , L�} be a set of layers. Each layer cor-
responds to a given type of entity relation or edge label. Consider a set V of entities (e.g., users), then
for each choice of entity in V and layer in L , we need to indicate whether the entity is present in
that layer. We denote with VL ⊆ V × L the set containing the entity–layer combinations in which
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Figure 1. Visual representation of the main steps of the proposedmethodology.

an entity is present in the corresponding layer. The set EL ⊆VL ×VL contains the undirected
links between such entity–layer pairs. We hence denote with GL = (VL , EL , V ,L ) the multilayer
network graph with set of nodes V .

For every layer Li ∈ L , let VLi = {v ∈ V | (v, Li) ∈VL } ⊆ V be the set of nodes in the graph of
Li, and ELi ⊆VLi ×VLi be the set of edges in Li. To simplify notations, we will also refer to VLi and
ELi as Vi and Ei, respectively.

Given these assumptions, our problem statement can be formalized as follows:

Definition 2 (SITS toMultilayer-Network Problem). Given an SITS containing a set S= {s1, ..., sn}
of n satellite images, obtain a multilayer network G= (V , E, L,w), where V is a set of nodes, L is a
set of layers, E⊆ (V × L)× (V × L) is a set of edges, and w : E⇒R is an edge weighting function.

We will now describe in detail the main steps of the proposed methodology, structured as
solutions to four different subproblems: Nodeset building, Layers identification, Intralayer edges
insertion, and Interlayer edges insertion. A visual representation of these main steps is given in
Figure 1.

3.1 Nodeset building
The first step of our procedure consists in the identification of a set of nodes for the multilayer
network, which corresponds to specific portions of the scene:

Definition 3 (Nodeset Building Problem). Given an SITS S= {s0, ..., sn}, select a subset of images
S∗ ⊆ S, operate a suitable transform to obtain a composite image I∗ = f (S∗), and then obtain a par-
tition seg(I∗) consisting in m distinct segments. Each segment will then correspond to a node in G,
such that m= |V|.

In summary, the above definition simply provides a formalization of a generic image segmen-
tation workflow as advocated in the OBIA framework (Blaschke, 2010). Upstream, the transform
f (·) represents the selection and preprocessing of the pertinent sources (for spatial resolution,
acquisition times and sensor modes) aimed at producing a suitable final input for the image seg-
mentation process (e.g., band selection, multitemporal cloud-free composites, image fusion, etc.).
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The segmentation operator seg(·) can be seen as the process providing, for a given input image, a
partition into multiple nonoverlapping sets of adjacent pixels (objects, or segments) covering the
whole scene, each one being homogeneous with respect to a given, suitably defined homogeneity
criterion. In our proposal, segments resulting from this step will constitute the complete nodeset
of the multilayer network. For this reason, hereinafter, we will use the terms nodes and segments
interchangeably where the context is clear. Please note that in this work we will identify a single
nodeset for all the SITS, under the hypothesis that the land units that characterize a given scene
do not change significantly in the time interval covered by the SITS.

An intuitive criterion for selecting S∗, which will be followed in this work, is to pick a single
image at a given date in which landscape elements at the finest scale can be identified with better
precision. As an example, for the characterization of agricultural systems, one typically expects
the object layer to fit the crop scale, and an acquisition at the peak of the growing season is typi-
cally selected (Lebourgeois et al., 2017), that is, when landscape heterogeneity is at its maximum.
However, even using less ad hoc criteria (e.g., selecting an image at random) may have a minor
impact on the number and the shape of segments if suitable segmentation techniques are used
that allow to control the scale and shape of the segmentation, like in Baatz & Schäpe (2000).

While is certainly possible to define different solutions to the Nodeset Building Problem (e.g.,
by performing a different segmentation for each image in the SITS), we believe that relying on
nodes that correspond to the result of a single segmentation is a more robust choice: indeed,
image segmentation is a ill-posed, error prone task in image processing, and the joint use of mul-
tiple segmentations is likely to increase the uncertainty on the spatial delineation of landscape
elements, which must be unique and nonoverlapping to fit our network model. In general cases,
the number of segments cannot be known a priori (i.e., it depends on the characteristics of a
specific image/scene), but it is always possible to tune the parameters to obtain segmentations
at different granularities that will correspond to different orders of magnitude for the obtained
segment/node set. For typical cases, we believe that a set of nodes with cardinality in an order
ranging from 103 to 105 represents the ideal trade-off between expressiveness and computational
tractability of the network (cf. Section 4).

3.2 Layers identification
Once obtained a nodeset for our multilayer network, the next step of the process is to identify a
proper set of layers and, consequently, node memberships to these layers:

Definition 4 (Layers identification problem). Given a set of nodes V, obtain a nonexclusive
clustering of V in k subsets V1, ...,Vk, which will correspond to the nodesets of k different layers
L1, ..., Lk.

In our approach, the identification of the different layers of the network basically consists in
grouping landscape elements into subsets each corresponding to a unique “functional” class, in
an appropriate land use sense. To clarify this concept, let us leverage a simple landscape model
in which, at a given spatial scale, objects have a certain semantically precise identity. Referring
to the SITS time span, these may be static (building, roads, rocks, permanent vegetation, etc.)
as well as dynamic elements (agricultural crops, water basins, temporary meadows, deciduous
forests, etc.), each with a given role in the landscape. If elements in the first group might ideally
be identified using a single acquisition, in general, one need to recur to information about how
landscape elements evolve in time, in other words, about how surfaces work, to provide a reliable
grouping (e.g., crops vs. temporary meadows, agricultural water tanks vs. natural basins, buildings
vs. greenhouses, etc.).

This justifies our choice of relying on SITS to provide a deeper insight on landscape spatio-
temporal dynamics. Therefore, in order to identify the different layers of our network, our choice
is to gather information on some temporal profiles that can reliably characterize each segment.
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More precisely, the idea is to cluster the segments in subsets containing entities that exhibit a sim-
ilar temporal behavior according to the SITS (e.g., some radiometric features evolve in a similar
way through time), even though they may be belong to different, spatially distant land subsystems
in the scene. Note that, in general, once the objects of the scene are identified, such characteriza-
tion could be obtained using any kind of geospatial data collection (images, maps, GIS) providing
a full spatio-temporal coverage of the area under analysis.

Practically speaking, we decide to derive a single radiometric index from each image of the
time series S, resorting to a multitemporal pixel-level descriptor that can be spatially averaged
over each segment. In this work, we will use the Normalized Difference Vegetation Index (NDVI)
as a proper radiometric index (Rouse et al., 1974), a measure widely used to estimate the presence
of live green vegetation over the land surface, which can also indirectly provide information about
the presence of water or concrete surfaces. While the methodology is designed to be flexible in
terms of descriptors, in this case, we preferred to opt for a descriptor based on a standard index,
which is also compatible with our case study referring to a tropical agricultural landscape (cf.
Section 4). Summarizing, the behavioral descriptor of each segment vi ∈V will be an array of
n= |S| elements, containing at position j the average NDVI of vi at the timestamp sj.

Once obtained the NDVI array of each segment, the aim is to obtain k subsets V1, ...,Vk, which
will correspond to the nodesets of k different layers L1, ..., Lk. Given the unsupervised context, we
prefer to model the association of nodes to the different functional classes (i.e., clusters) with a
certain level of uncertainty. For this reason, we resort to fuzzy clustering, which allows to model
the probability 0≤ prob(vi, Lj)≤ 1 of each segment/node vi ∈V to belong to layer/functional class
Lj. Following this approach, a node vi ∈V will belong to the subset Vj (i.e., it will be present in
a layer Lj) if prob(vi, Lj)> 1

k , that is, if its probability to be in that cluster is higher than the one
inferred by a uniform random distribution of nodes into the k clusters. Note that, according to this
rule, the subsets V1, ...,Vk are likely to be overlapping, since each node/segment may in general be
associated to multiple clusters with sufficiently high probability, resorting to a multilayer network
compatible with the model introduced in Definition 1. While any clustering algorithm can be
applied at this step, in this work, we resort to fuzzy c-means clustering (Ross, 2009), which is
known to be particularly suitable for time series data.

3.3 Intralayer edges insertion
Next step to solve the SITS to Multilayer-Network Problem is how to define the connectivity
between nodes in each layer. We can formally define this problem as follows:

Definition 5 (Intralayer edges insertion problem). Given a set of nodes V and a set of layers L,
identify and weight a proper set of intralayer edges Eintra ∈ E, connecting nodes belonging to the
same layer, that is, i= j ∀ (u, Li, v, Lj) ∈ Eintra.

Since segments belonging to a specific cluster may not be adjacent, a straightforward solution
to link nodes in a single layer would be to resort to the fully connected graph, since all nodes con-
ceptually belong to the same functional class. However, the objective is here to identify connected
areas corresponding to uniform land subsystems, so we here chose to create links only among
“close” objects in each layer, leaving the description of wide-range spatial interactions to indirect
connections in the intralayer graphs. By the way, this choice is directly inspired to the fundamental
principle known as Tobler’s first law of geography, stating that “everything is related to everything
else, but near things are more related than distant things” (Tobler, 1970).

To this aim, the basic idea is to recur to the strategy developed in Gaetano et al. (2010) in a hard
clustering framework, in which for each nonoverlapping subset Vi ∈V , nodes belonging to the
same layer are connected by undirected edges based on the spatial position of the corresponding
segments in the original scene, according to the pseudo-nearest neighbor scheme. More in details,
for each cluster, segments are projected on the lattice of the segmentation image I∗ and labelled
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independently according to the original segmentation, then all labels are propagated through the
background (i.e., the space covered from segments in the other clusters) with a uniform speed law
until all the lattice is filled. Links are then set by computing the Region Adjacency Graph (RAG)
over the propagated label image, a RAG being the graph built by placing an edge between each
couple of adjacent segments.

In our novel fuzzy clustering framework, this solution would also be viable, since it is still possi-
ble to consider, for each layer, the whole set of nodes belonging to it and apply the aforementioned
method to set intralayer edges. However, if links are created based on the sole spatial proximity of
the corresponding segment, such a solution could prevent the direct connection between nodes
belonging to the layer with high probability because of the presence of low-probability segments
in-between, hence losing a major structural information. In the case of a highly uncertain clus-
tering, one may even resort to per-layer graphs very similar to the full-image RAG, making the
network heavily redundant.

For this reason, in order to create edges by giving priority to nodes with stronger cluster mem-
berships, we opt for an iterative application of the basic method, based on the following two steps:

• Given a layer i, for each segment v ∈Vi , compute its membership rank Ri(v) to the
corresponding cluster (i.e., Ri(v)= r if Vi is the rth most probable cluster);

• For each r ∈ 1, . . . , k, select only the nodes/segments having Ri(v)≤ r, and apply the label
propagation strategy to this subset to create edges, skipping already existing connections.

As regards edge weighting, recall that our strategy is to leverage spatial interactions among
landscape elements of different functional classes to identify coherent subsystems. To this aim,
we refer again to the solution proposed in Gaetano et al. (2009), which basically tends to reinforce
connections among objects of a single cluster sharing a similar spatial context. Even if the reference
work had a more fundamental macro-textural approach, this choice remains appropriate here
since in our case the spatial context identifies the local environment in which each element evolves.
Matter of facts, this is a key information when aiming at the emergence of object communities
related to a unique subsystem.

Therefore, borrowing the definition of spatial context of a segment proposed in Gaetano et al.
(2009), we will define a spatial context for each node/segment based on its adjacencies (at pixel
level) with segments belonging to other layers, taking into account the membership probabilities
obtained at clustering time by the fuzzy c-means.

In order to obtain such spatial context, we perform a pixel-wise analysis of adjacencies for
each segment. Given the set of directions d ∈ {N;NE; E; SE; S; SW;W;NW} (i.e., the possible eight
pixels adjacent to a given one), for each node u ∈V , we first define pixd(u) as the set of pixels that
are adjacent to pixels of u in the direction d, including pixels in u itself. Then, we compute the
transition probabilities toward each subset Vi as:

pd(u,Vi)= adjd(u,Vi)
|u| , (1)

where |u| is the number of pixels in the segment corresponding to node u, and adjd(u,Vi) is the
weighted count of pixels in pixd(u), with weights equal to the probability of each pixel’s reference
segment to belong to the subset Vi :

adjd(u,Vi)=
∑

q∈pixd(u)
prob(vq, Li), (2)

Summarizing, we can say that pd(u,Vi) is a “transition probability” representing the likelihood of
finding a pixel belonging to a node v ∈Vi when moving from a location belonging to node u in
the direction d.
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Following this methodology, which basically generalizes the formulation proposed in Gaetano
et al. (2010) to the case where a fuzzy clustering strategy is used, for each v ∈V , its spatial context
will be described by a matrix P of size k× 8, containing a row for each layer, and a column for each
direction d. Once obtained the spatial context P for each node/segment, edges between two nodes
in the same layer (u, v) ∈Vi are obtained based on the cosine similarity between the transition
probability array obtained by flattening the Pmatrices:

w(u, v)= 1− cos(Pflat(u), Pflat(v)), (3)

where Pflat(u) and Pflat(v) are the arrays of length k · 8 obtained by flattening the respective P
matrices (i.e., horizontally concatenating its rows), and cos() is the cosine distance between such
arrays. The weight w(u, v) can thus be interpreted as the likelihood of two segments to belong to
the same land subsystem.

3.4 Interlayer edges insertion
As the last step of our procedure, we need to identify a proper set of interlayer edges, that is, edges
connecting nodes belonging to different layers:

Definition 6 (Interlayer edges insertion). Given a set of nodes V and a set of layers L, identify and
weight a proper set of intralayer edges Einter ∈ E, connecting nodes belonging to different layers, that
is, i �= j ∀ (u, Li, v, Lj) ∈ Einter.

In our network modeling strategy, the interest of interlayer edges is evidently to densify con-
nections among nodes belonging to different functional classes that simultaneously appear on
the same portion of land, eventually prioritizing small-scale interactions. To this aim, resorting
to the RAG of the original segmentation is a quite straightforward choice, provided that only
the links between nodes belonging to different clusters are retained. Therefore, once defined
R= RAG(seg(I∗)) as the RAG built upon the same segmentation used to build the nodeset V
(cf. Section 3.1), we import to the multilayer network all the edges from R connecting segments
that correspond to nodes belonging to different layers, that is

∀(u, v) ∈ R⇒ (u, Li, v, Lj) ∈ Einter s.t. u ∈Vi, v ∈Vj, i �= j (4)

As regards interlayer edge weighting, we define two alternative weighting schemes:

• Fixed weights, that is, all interlayer edges will have the same weight winter . For this scheme,
the idea is to retain control on the impact of spatial proximity in the community detection
step. Reserving a deeper insight on this aspect to future research, here, we identified a good
heuristic for winter as half the average of intralayer weights, that is

winter =
∑

∀e∈Eintra w(e)
2|Eintra| (5)

• Context-based weights, that is, the weight between two layers will be weighted based on the
cosine similarity between their global contexts, as done for intralayer ones (cf. Equations 1–
3). The global context of a layer is computed as the one of a segment, but considering all the
pixels of all the segments in that layer. This strategy is more appropriate under the hypothesis
that a significant number of functional classes belong exclusively to one subsystem.

In the following, we will consider fixed interlayer weights as the default option where not
explicitly indicated.
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4. Case study: Unsupervised agricultural landscape atratification via multilayer
community detection

In order to show a practical use of the SITS-based multilayer network introduced in Section 3, in
this section we present an experimental case study concerning the stratification of an agricultural
landscape into different subsystems.

The case study is centered on an agricultural landscape around the commune of Koumbia,
Province of Tuy, Burkina Faso, located in the west of the country. This area is particularly chal-
lenging for our methodology due to its fragmented landscape, characterized by the small size of
the agricultural plots, the diversity of their spatial arrangements, their entanglement with areas
not belonging to the annual cropland such as pastures and fallows, and the continuous changes
that may happen both during the growing season (e.g., different growth stages) and from one
season to another (e.g., rotation, plot redistribution).

Our specific objective is to leverage the proposed multilayer network model to automatically
provide a stratification of the landscape into different subsystems, focusing in particular on the
identification of areas dominated by cropping practices. As hinted in Section 1, our goal here
is to show in what measure modeling an SITS into a multilayer network enables the definition
of unsupervised network analysis techniques that allow to partition the landscape into function-
ally homogeneous land use subsystems. As pointed out in Bellón et al. (2017), this kind of maps
is gaining importance in support of agricultural land use system monitoring, to both optimize
field data collection strategies for land use/land cover mapping and enable and support more
qualitative analyses (e.g., socioeconomic, demographic, etc.). Moreover, with our network-based
approach, the identification of a certain land subsystem will eventually be accompanied to a suit-
able structural description in terms of components of the system (landscape elements), along with
a representation of their functional properties and spatial interactions. For this exploratory work,
the objective is to highlight the potential of the approach, so the analysis will be limited to mea-
surements on the structure of the network and communities, as well as to visual inspection of the
provided stratification maps.

4.1 Experimental setting
The multilayer network for the case study was obtained using a time series of 23 Sentinel-2 images
acquired between January 2016 and December 2016. The sole cloud-free image from August 3,
2016 (Figure 2(a)) was selected as S∗. Preprocessing has been limited to the extraction of the vis-
ible (red, green, blue) and near-infrared bands (all at 10-m spatial resolution) to perform image
segmentation (cf. Section 3.1). Each segment is therefore attributed using the average NDVI per
timestamp as described in Section 3.3. In the following, we will consider a value of k= 10 for the
layer identification process as the default option where not explicitly indicated. This choice is not
arbitrary but is related to the expected number of different temporal vegetation dynamics expected
to be observed in the area during the selected time span (cropping season), which was estimated
using expert knowledge on the study site. Looking at the Sentinel-2 image in Figure 2(a), it can be
seen how a vast and diversified cropland area lies along the main diagonal of the scene, while two
natural areas covered with mostly forest and shrubland occupy the rest of the scene (i.e., top-right
and bottom-left corners).

For the purpose of community detection over the Koumbia multilayer network, we here use
the multilayer version of the state-of-the-art Infomap algorithm (De Domenico et al., 2015; Edler
et al., 2017) . We chose Infomap among other alternatives for several reasons: (i) it is fully compat-
ible with our multilayer network model (i.e., categorical/unordered layers, presence of interlayer
edges, weighted undirected edges), (ii) it allows to easily take into account edge weights (i.e.,
through the use of weighted random walks on the network), and (iii) it is extremely efficient (i.e.,
being able to run in a few seconds even on large networks).
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Table 1. Structural characteristics of the multilayer network obtained on the Koumbia area for varying k, using fixed
interlayer weights (cf. Equation 5). The value of k is equivalent to the number of layers |L|.

V Eintra Einter

|L| tot mean ± sd E tot w deg tot w deg Dintra Dglob AL

2 2, 246 1123± 179.0 9, 799 6, 011 0.97 5.35 3, 788 0.48 3.37 0.005 0.007 1


5 2, 246 755.2± 218.7 35, 788 12, 870 0.88 11.46 22, 918 0.44 20.41 0.008 0.023 1.7


10 2, 246 719.1± 242.9 126, 517 27, 433 0.84 24.43 99, 084 0.42 88.23 0.009 0.043 3.2


15 2, 246 706.06± 239.4 268, 825 43, 285 0.82 38.54 225, 540 0.41 200.84 0.01 0.064 4.7


20 2, 246 703.45± 273.1 466, 222 59, 968 0.81 53.4 406, 254 0.41 361.76 0.01 0.082 6.3

The python code of the proposed methodology is publicly available online1. As regards the
c-means clustering phase, we used the python implementation provided by Scikit-Fuzzy2.

4.2 Structure of the multilayer network
Even though we believe that, in practical cases, a value of k= 10 is the most appropriate one for
the Koumbia study site (cf. Section 4.1), we extracted multilayer networks for varying values of
k in order to study the impact of this parameter (which controls the number of clusters in the
fuzzy clustering phase and, consequently, the number of layers in the network) on the process.
Table 1 reports on the structural characteristics of multilayer networks obtained on Koumbia for
k= 2, 5, 10, 15, 20. In the table, w refers to average (intralayer or interlayer) edge weight, deg to
the (intralayer or interlayer) average degree, Dintra and Dglob report the density of the network
(calculated, respectively, as the average intralayer density and as the global multilayer one), and
AL is the average number of layers per node (i.e., the average number of layers in which a node is
present).

It can be noted how the value of AL is directly proportional to k but, for k> 2, the average
number of nodes in each layer remains rather stable, with an average value always around 700
nodes per layer. This also implies that the density of the networks also increases with k, with the
increase being more evident when taking into account only the intralayer edges (i.e.,Dintra for k>

10 is one order of magnitude higher than the one for k≤ 10). Another characteristic that remains
rather stable is the average weight of intralayer edges (with an exception represented by the average
weight of Eintra for k= 2, which is close to 1). This implies that the fuzzy clustering solutions are
coherent when varying the value of k, that is, even if the number and population of the clusters
varies, the similarity between the spatial context of two given node/segments remains stable. By
consequence, the average weight of interlayer edges will be stable too, since it is calculated based on
the intralayer ones using the heuristic in Equation 5. As a last remark, it can be observed how the
average interlayer degree is always higher than the intralayer one: this is indeed largely expected,
since the segments adjacent to a given one in the RAG (cf. Section 3.4) may be present in different
layers, thus resulting in more than one interlayer edge for each couple of adjacent segments (i.e.,
since the corresponding nodes are likely to be present in several layers).

4.3 Experimental results
In this section, we present the results of the experiments regarding our unsupervised agricultural
landscape stratification task via multilayer community detection.

Figure 2(a) and (b) report the reference image of the Koumbia study site used for segmenta-
tion (in RGB composition, acquired on August 3, 2016 over the study site) along with a reference
mapping of the cultivated surfaces. This cropland map has been obtained using a supervised clas-
sification algorithm using the methodology presented in Lebourgeois et al. (2017) starting from a

https://doi.org/10.1017/nws.2019.58 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2019.58


Network Science S37

(a) (b)

(c) (d)

(e) (f)

Figure 2. Landscape stratification maps
on Koumbia (cf. Sentinel-2 image (a) and
the corresponding cropland map in (b)),
by running Infomap on the network with
k= 10with fixed (c) and contextual (d) inter-
layer weights, k= 20 with fixed interlayer
weights (e) and on the flattened network
(f). Different colors correspond to different
communities.

larger remote sensing dataset including very high spatial resolution imagery (SPOT6/7) and deca-
metric optical image time series (Sentinel-2 and Landsat 8) and has an estimated overall accuracy
of 95%. For this area, noncrop class only contains natural vegetation.

In order to provide a quantitative evaluation of the obtained community solutions, we will use
an overlap measure O, aimed at quantifying which percentage of each community lays on a sin-
gle subsystem (i.e., natural areas or cropland) when considering the cropland map in Figure 2(b).
More precisely, for each community, once calculated the percentage (i.e., number of segments
over the total ones in the community) which lay on each subsystem, the value of O for that com-
munity is given by the maximum percentage. Table 2 reports on the results of the multilayer
community detection on the Koumbia study site, by running Infomap on multilayer networks
obtained for 5≤ k≤ 20 using fixed interlayer weights, using contextual interlayer weights (for
k= 10, ctx), and on the flattened single-layer network. For each solution, we report the number
of obtained communities, the multilayer modularity Q (calculated as proposed in Mucha et al.
(2010)), and the maximum, minimum, and mean value of O. It can be noted how the number
of communities for this set of solutions varies in a limited range, with the solution referring to
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Table 2. Results of the multilayer community detection on the Koumbia
study site by running Infomap on: multilayer networks obtained for 5≤
k≤ 20 using fixed interlayer weights, using contextual interlayer weights
(for k= 10, ctx), and on the flattened single-layer network.

Network #communities Q maxO minO meanO ± sd

k= 2 9 0.39 0.99 0.50 0.67± 0.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k= 5 6 0.38 0.80 0.55 0.67± 0.084
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k= 10 8 0.26 0.99 0.55 0.72± 0.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k= 15 8 0.20 0.99 0.56 0.70± 0.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k= 20 7 0.17 0.99 0.62 0.75± 0.13

k= 10, ctx 8 0.26 0.99 0.51 0.70± 0.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flattened 6 0.43 0.84 0.54 0.66± 0.10

k= 5 and to the flattened network producing the lowest number of communities (6), and the
solution corresponding to k= 2 producing the highest one (9). While the higher values of multi-
layer modularity are obtained by the flattened network (0.43), followed by k= 5 (0.39) and k= 2
(0.38), qualitative analysis based on overlap values and on the landscape stratification maps (cf.
Section 4.3.1) will show how such solutions do not actually correspond to the best ones for the
targeted task. Interestingly, the solutions corresponding to k= 5 and to the flattened network,
even though showing a relatively high modularity, are the only ones which are not able to pro-
duce communities that are centered on a single subsystem, that is, they are the only ones with a
maxO considerably lower than 0.99. As regards average performances, the best values of meanO
correspond to k= 10 (0.72) and k= 20 (0.75): qualitative analysis of the landscape stratification
maps will in fact confirm the solution corresponding to k= 10 as the best one. In order to get an
insight in such overlap values, Figure 3 shows the bar charts reporting the percentage of overlap
of each community on the two land subsystems (i.e., Cropland and Natural Areas) for solutions
obtained with k= 10 (a), k= 10 with contextual interlayer weights (b), k= 20 (c) and on the flat-
tened single-layer network (d). It can be observed how the solutions corresponding to k= 10 and
k= 10, ctx (Figures 3(a) and (b)) contain two communities that are almost completely centered
on the Natural areas subsystem (i.e., communities 2 and 7 for the former, and communities 6
and 7 for the latter); while the Cropland subsystem seems to be more difficult to separate, in both
cases several communities can be observed which are strongly centered on this subsystem (e.g.,
communities 0 and 4 in both charts). Similar observations can be drawn for k= 20 (Figure 3(c)),
where communities 4 and 6 are well centered onNatural areas, and community 0 has a significant
overlap with the Cropland subsystem. Conversely, the solution obtained on the flattened network
(Figure 3(d)) seems to correspond to communities that are not well separated between the two
subsystem (with an exception for community 3 which has a significant overlap withNatural areas).

4.3.1 Landscape stratification maps
Figures 2(c)–(f) show the results of the Infomap community detection over the provided multi-
layer network in different configuration settings: Figure 2(c) shows the 10-layer network with fixed
interlayer weights, Figure 2(d) shows the 10-layer network with contextual interlayer weights,
Figure 2(e) shows the 20-layer network with fixed interlayer weights, and Figure 2(f) shows the
flattened single-layer network.

The solution obtained on the 10-layer network with fixed interlayer weights (Figure 2(c))
includes eight communities (corresponding to eight random colors in the figure). It can be seen
how the natural areas subsystems (the two green communities on the top-right and bottom-left
corners) have been mostly separated from the cropland subsystem, which in turn corresponds to
six different communities. Summarizing, we can say that the identification of the three main dis-
joint subsystems has been performed with good precision, with the exception of some borderline
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Figure 3. Bar charts reporting the percentage of overlap of each community on the two land cover classes (i.e., Cropland
and Natural Areas) for solutions obtained with k= 10 (a), k= 10 with contextual interlayer weights (b), k= 20 (c) and on the
flattened single-layer network (d). Size of the bars is proportional to the spatial extent of each community.

forest areas that have been erroneously included in cropland communities (i.e., the portion of the
bottom-left forest included in the rightmost violet community). On the other hand, cropland area
has been partitioned in six different communities. Conceptually, all these communities can be seen
as belonging to a unique crop subsystem, hence in a strict land use sense this may be interpreted
as a overpartitioning. However, borders among detected communities seem to grossly follow the
transitions among slightly different landscapes, for example, in terms of type of soil (calcareous
as in the center-left community in light green), crop vegetation density (center-top community in
dark red), or the presence of dense noncrop vegetation (rightmost community in red).

As regards the results obtained on the multilayer network with contextual interlayer weights
(Figure 2(d)), the provided map is still mostly consistent with the boundaries among the two,
subs, similar in scale with respect to the result in Figure 2(c), but a larger error appears on the
orange community. Thismotivates us, for future works, to investigatemore on contextual weights,
improving the solution proposed in this work (an interlayer weight for each couple of layer, based
on a global context, cf. Section 3.4), in order to provide interlayer contextual weights based on the
comparison between portions of each couple of layers (e.g., connected components). Regarding
the result obtained starting from a 20-layer networks, here the results are the most unsatisfactory,
with five out of the six detected communities spanning over different subsystems. This is mostly
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due to the fact that, when raising the number of initial cluster, uncertainty on the definition of
layer increases, and spatial adjacencies (i.e., interlayer edges) become dominant.

In order to show the importance of using a multilayer network model, we also show the com-
munity solution obtained on the flattened single-layer network (Figure 2(f)), that is, the network
obtained merging all the k layers in a single one (which can also be seen as the original RAG
obtained on s∗, cf. Section 3.4). It is easy to see how in this case the community structure, which
includes seven communities, does not reflect at all the separation between cropland and noncrop-
land areas, confirming how the expressiveness of a multilayer model can be beneficial in this kind
of task.

Summarizing, the case study confirmed the benefits coming from the multilayer network
model with respect to the application of an unsupervised landscape stratification technique.
However, the multilayer network with context-based interlayer weights did not perform better
than the one with fixed weights as expected, which underline the need for a further investigation
on the definition of a suitable interlayer weighting strategy.

5. Conclusions
In this work, we proposed a completely unsupervised methodology to build a Multilayer Network
from an SITS. Standard segmentation techniques are used to build a nodeset from the SITS, then
layer memberships and edge weights are inferred based on the temporal radiometric profile of
each segment. To best of our knowledge, this is the first work to explore the possibility to exploit
this model in the remote sensing domain. In order to test the potential of the proposed model,
we present an experimental case study concerning an unsupervised landscape stratification task
via multilayer community detection on a tropical agricultural landscape (i.e., the Koumbia area in
Burkina Faso). The experimental results confirmed how the use of a multilayer networkmodel can
be beneficial in this domain, paving the way for the application of unsupervised network analysis
techniques.

Given the exploratory nature of this work, there is plenty of room for future work, aim-
ing at improving and extending the proposed method. A first planned improvement regards
the definition of sliding-window-based approaches that would allow for a richer representation
of the spatial context of each segment. Another improvement concerns interlayer edge weight-
ing, through the exploration of contextual weighting schemes able to take into account local
portions (e.g., connected components) of each couple of layers. As regards the unsupervised land-
scape stratification task, the definition of a multilayer community detection algorithm specifically
adapted to this task may be the object of a future work.

From a broader perspective, the expressive power of the model could be enhanced by coupling
the layers issued by spatial characteristics of the SITS described in this work, with layers based on
interaction graphs (cf. Section 2.1). This would result in a multilayer network able to represent, in
a single integrated object, spatial characteristics and dynamics of the landscape together with the
evolving dynamics of the corresponding land use system.
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