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How flexibility affects the wake symmetry
properties of a self-propelled plunging foil
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The wake symmetry properties of a flapping-foil system are closely associated with
its propulsive performance. In the present work, the effect of the foil flexibility on
the wake symmetry properties of a self-propelled plunging foil is studied numerically.
We compare the wakes of a flexible foil and a rigid foil at a low flapping Reynolds
number of 200. The two foils are of the same dimensions, flapping frequency,
leading-edge amplitude and cruising velocity but different bending rigidities. The
results indicate that flexibility can either inhibit or trigger the symmetry breaking of
the wake. We find that there exists a threshold value of vortex circulation above which
symmetry breaking occurs. The modification of vortex circulation is found to be the
pivotal factor in the influence of the foil flexibility on the wake symmetry properties.
An increase in flexibility can result in a reduction in the vorticity production at the
leading edge because of the decrease in the effective angle of attack, but it also
enhances vorticity production at the trailing edge because of the increase in the
trailing-edge flapping velocity. The competition between these two opposing effects
eventually determines the strength of vortex circulation, which, in turn, governs
the wake symmetry properties. Further investigation indicates that the former effect
is related to the streamlined shape of the deformed foil while the latter effect is
associated with structural resonance. The results of this work provide new insights
into the functional role of passive flexibility in flapping-based biolocomotion.

Key words: flow–structure interactions, propulsion, vortex streets

1. Introduction
Flapping wings/fins are used by birds, insects and fish to generate propulsive

forces for locomotion. These appendages often undergo large deformation (passive
or active) during flapping. A vast body of work concerning the functional role
of passive flexibility in flapping wing systems can be found in the literature (see
Shyy et al. (2010) for a comprehensive review). The effects of passive flexibility
on performance enhancement and some physical mechanisms underlying these
effects have been addressed in several studies (Katz & Weihs 1978; Prempraneech,
Hover & Triantafyllou 2003; Heathcote & Gursul 2007a; Michelin & Smith 2009;
Eldredge, Toomey & Medina 2010; Spagnolie et al. 2010; Thiria & Godoy-Diana

† Email address for correspondence: zhangx@lnm.imech.ac.cn
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2010; Ramananarivo, Godoy-Diana & Thiria 2011; Kang et al. 2011; Shoele & Zhu
2012).

In flapping-based animal locomotion, the wake symmetry properties are closely
associated with the propulsive performance. First, a deflected wake (as the outcome
of symmetry breaking) is always associated with a net lift and torque. Thus, animals
may either exploit symmetry breaking when manoeuvring or avoid it when cruising.
Second, for a deflected wake, the distribution of kinetic energy in the direction
perpendicular to that of cruising can result in a reduction of propulsive efficiency.
For rigid flapping-foil systems, the symmetry breaking of the reversed Kármán vortex
street is a phenomenon that has been widely reported in the literature (Jones, Dohring
& Platzer 1998; Heathcote & Gursul 2007b; Godoy-Diana, Aider & Wesfreid 2008;
Godoy-Diana et al. 2009; Cleaver, Wang & Gursul 2012; Zheng & Wei 2012).
Despite the abundant literature concerning the effects of flexibility, studies of the
relation between flexibility and wake symmetry properties are few. In a more recent
study by Marais et al. (2012), it was reported that passive flexibility can inhibit wake
symmetry breaking. In that experiment, the wake behind a flexible pitching foil was
compared with that behind a rigid pitching foil. The two foils were of the same
geometry and dimensions but composed of different materials. It was found that
when both the flapping amplitude and chord-based Strouhal number were sufficiently
large, although a deflected propulsive jet was observed for the rigid foil under these
conditions, the jet remained symmetric in the case of the flexible foil. The stabilising
effect of flexibility (in the sense of wake symmetry preservation) was explained by
the fact that the deformation of the foil prevented the newly generated vortex at the
trailing-edge from being sufficiently close to the previously shed vortex to form a
vortex dipole. As symmetry breaking in a wake depends on the self-induced velocity
of the dipole (Godoy-Diana et al. 2009), adding flexibility to the flapping foil thus
inhibits the symmetry breaking of the wake.

The novel finding reported by Marais et al. (2012) has provided some new insights
into the role of passive flexibility in propulsion. This finding is also beneficial to the
design of efficient artificial underwater vehicles. However, because of the limitations
of the experimental method, only a narrow range of parameter space (especially
in bending rigidity) was investigated by Marais et al. (2012). To fully understand
how flexibility affects the vortex dynamics governing the symmetry breaking of the
wake, a parametric sweep over a much wider range is necessary. In this regard,
computational approaches are more cost-effective than experimental ones. Motivated
by the observations of Marais et al. (2012) and the desire to better understand the role
of passive flexibility in biolocomotion, we perform a fluid–structure interaction (FSI)
simulation of the self-propulsion of a flexible plunging foil. To the best of the authors’
knowledge, this is the first numerical investigation of the effect of flexibility on wake
symmetry properties. By probing a much larger parameter space, we demonstrate that
flexibility can either inhibit or trigger wake symmetry breaking. The modification of
vortex circulation is found to be the pivotal factor in the influence of flexibility on
wake symmetry properties. An in-depth analysis indicates that the modification of
vortex circulation can be further correlated with the change in the effective angle of
attack and the change in the trailing-edge flapping velocity of the foil. In addition,
the importance of the effects associated with structural resonance in defining the
wake pattern (symmetric or asymmetric) is also studied.

The reminder of the paper is organised as follows. In § 2, we describe the model
and the immersed boundary method for the FSI simulations. Section 3 contains four
subsections. First, based on the simulations performed, we present the observational
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FIGURE 1. (Colour online) Schematic depiction of the model.

wake patterns in the parameter space. Then, a vortex dipole model is introduced to
characterise the wake symmetry properties. In the third subsection, the underlying
principle and mechanism of wake transition are discussed. In the fourth subsection,
the relation between structural resonance and wake symmetry properties is addressed.
Finally, some conclusions are drawn in § 4.

2. Computational model and methodology
Two different models exist for the hydrodynamic study of flapping-foil systems.

The first model is a tethered flapping foil immersed in a uniform oncoming flow
(or, equivalently, a flapping foil towed at a given speed through a fluid). The second
model is a flapping foil under the self-propelled (or free-swimming) condition. Here,
we underline the essential difference between these two models: in the former model,
the forward speed and flapping motion are decoupled and thus can be independently
prescribed, whereas in the latter, the forward speed is the result of the complex FSI
problem and cannot be prescribed. The former model has been used in most previous
studies because of its simplicity. It is only recently that the latter model has been
widely adopted in research efforts (Spagnolie et al. 2010; Thiria & Godoy-Diana 2010;
Zhang, Liu & Lu 2010; Ramananarivo et al. 2011; Alben et al. 2012; Lee & Lee
2013). Because the self-propelled model can better represent real-world biological and
biomimetic locomotion (Lauder et al. 2007), we adopt this model for the present
study.

A schematic representation of the model is presented in figure 1. The flapping
foil is modelled as an inextensible flexible filament that is driven at the leading
edge by a harmonically plunging motion. In the horizontal direction, the filament
is unconstrained. The flow is assumed to be two-dimensional, incompressible and
laminar.

The motions of the fluid and the filament are governed by the Navier–Stokes
equations coupled with a geometrically nonlinear structural equation (Huang, Shin &
Sung 2007):

∂u
∂t
+ (u · ∇)u=−∇ p+ 1

Ref
∇2u+ f , (2.1a)

∇ · u= 0, (2.1b)

β
∂2X
∂t2
− ∂

∂s

(
ζ (s)

∂X
∂s

)
+ ∂2

∂s2

(
γ
∂2X
∂s2

)
=−F, (2.1c)

∂X
∂s
·
∂X
∂s
= 1, (2.1d)

where u, p and X = (X(1), X(2)) are the fluid velocity, fluid pressure and displacement
of the filament, respectively, and f and F are the Eulerian and Lagrangian force
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densities, respectively, that represent the interaction between the fluid and the structure.
The nonlinearity of the structural equation stems from the tension ζ that enforces the
inextensibility condition ∂X/∂s · ∂X/∂s= 1. Here ζ is a function of the Lagrangian
coordinate s and is governed by a Poisson equation, which can be derived using
the equation of structural displacement and the inextensibility condition (Huang et al.
2007).

Equation (2.1) is written in a dimensionless form, which is obtained by scaling
space and time with the filament length L and with L/Uref , respectively (Uref =πAf is
the maximum flapping velocity, where A and f are the peak-to-peak flapping amplitude
and the flapping frequency, respectively). The dimensionless numbers that appear
in (2.1) are as follows: Ref = (πρf AfL)/µ, γ = B/(ρf U2

ref L
3), ζ (s) = T(s)/(ρf U2

ref L),
β=ρs/(ρf L) and Ā=A/L, which are the flapping Reynolds number, the dimensionless
bending rigidity, the dimensionless tension, the mass ratio and the relative amplitude,
respectively. Here ρf is the area density of the fluid, ρs is the linear density of the
filament and µ is the dynamic viscosity of the fluid. Here B and T are the dimensional
bending rigidity and tension, respectively. The dimensionless form of the prescribed
plunging motion at the leading edge is found to be y(t) = (Ā/2) cos[(2/Ā) · t] by
following the same scaling procedure.

For the structure, the boundary condition that combines the vertically forced
oscillation, the clamped condition and the horizontally unconstrained condition,
i.e. X(2) = y(t), ∂X/∂s = (1, 0)T, ∂3X(1)/∂s3 = 0 is enforced at s = 0 (the leading
edge). A free-end condition, i.e. ∂2X/∂s2 = (0, 0)T, ∂3X/∂s3 = (0, 0)T is imposed at
s = 1 (the trailing edge). For the fluid, a no-slip condition is enforced at the outer
boundaries. Here X(s, 0)= (s, Ā/2)T, Ẋ(s, 0)= (0, 0)T is the initial condition for the
structure and u(x, 0)= 0 is the initial condition for the fluid.

The simulations were performed using the immersed boundary method for the
fluid flow and the finite-difference method for the motion of the structure. In the
immersed boundary method, the motions of the fluid and the structure are coupled at
their interface by the no-slip condition

∫
V u(x, t)δ(x− X) dx= Ẋ and by the relation

between the Lagrangian and Eulerian forces, f (x, t) = ∫s F(X(s), t)δ(x − X(s)) ds,
where δ is the discrete delta function. Extensive validations of the immersed boundary
solver have been performed by Wang & Zhang (2011) (for flows past rigid objects)
and Zhu, He & Zhang (2014) (for FSI problems).

A large rectangular computational domain of 58L × 12L in size is used in the
simulations performed in this study, with a grid width of 0.02L. The time steps
are chosen such that the CFL number is fixed to 0.5. Grid-convergence tests were
conducted to ensure that the results obtained are independent of the mesh resolution.
Figure 2 presents the swimming velocity and the resultant horizontal and vertical
forces as functions of time for three different grid widths (the other control parameters
in the tests are as follows: Ref =200, Ā=1.0, β=0.2 and γ =4.0). For the swimming
velocity, some deviation among the results can be observed when the mesh width is
halved from 0.04L to 0.02L. However, when the grid width is further halved (from
0.02L to 0.01L), no significant additional change in the result is observed. For the
horizontal force, a similar trend of mesh convergence is apparent from the figure.
For the vertical force, the results obtained using all of the three meshes are nearly
indistinguishable.

Some important physical quantities used to characterise the propulsive performance
and vortex shedding are defined as follows. The effective amplitude Aeff is defined as
the peak-to-peak amplitude measured at the trailing edge, and the amplitude ratio is
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FIGURE 2. Tests of mesh independence: the time histories of (a) the swimming velocity
(U(1)(0, t) = ∂tX(1)(0, t)) and the resultant (b) horizontal and (c) vertical forces for grid
widths of 0.04L (dash-dotted line), 0.02L (dashed line) and 0.01L (solid line). Here
T = πĀ is the dimensionless oscillation period. An average horizontal force of zero is
obtained by integrating the curve in (b), thus confirming that a periodically steady state
has been achieved.

defined as Aeff /A. The (dimensionless) cruising velocity Uc is defined as the average
horizontal velocity evaluated at the leading edge when periodicity is reached,

Uc = 1/(πĀ)
∫ πĀ

0

∣∣∂tX(1)(0, t)
∣∣ dt. (2.2)

The Strouhal number based on the filament length is defined as

StL = (fL)/Ũc = 1/(πĀUc), (2.3)

where Ũc is the dimensional cruising velocity. Similarly, the Strouhal number based
on the trailing-edge amplitude is defined as
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StA = (f Aeff )/Ũc = StL · Ā · (Aeff /A). (2.4)

It should be noted that for a self-propelled foil, Aeff /A, StL and StA are also the results
of the FSI problem and cannot be prescribed.

The input power required to produce the oscillation of the foil can be defined as

Ps = 1
πĀ

∫ πĀ

0

(∫ 1

0

(
F ·

∂X
∂t

)
ds
)

dt. (2.5)

Further explanation is needed regarding the definition of propulsive efficiency in
a self-propelled (free-swimming) foil. For a tethered flapping foil immersed in an
oncoming flow, the propulsive efficiency is usually defined as the ratio of the useful
power over the input power, where the useful power can be simply calculated as the
average thrust force times the forward velocity (Anderson et al. 1998). However, in
a self-propelled foil, this definition is not appropriate for quantifying the propulsive
efficiency (Schultz & Webb 2002) because the foil experiences a zero average net
thrust in the periodically steady state (see figure 2b). Under such circumstances,
no consensus has been reached among researchers concerning the correct way to
quantify the propulsive efficiency. At present, three different definitions of this
‘efficiency’ can be found in the literature. Some researchers continue to use the
definition for a tethered foil and attempt to isolate the ‘thrust’ from the horizontal
force (Borazjani & Sotiropoulos 2008). Because ‘thrust’ and ‘drag’ are inseparably
related under the self-propulsion condition (Schultz & Webb 2002), this type of force
‘decomposition’ is necessarily somewhat arbitrary. Alternatively, other researchers have
measured the ‘thrust’ by conducting another independent experiment (in addition to
the free-swimming one) with the flapping foil held in a fixed position (Thiria &
Godoy-Diana 2010; Ramananarivo et al. 2011). The third type of ‘efficiency’ used by
some researchers is the ratio of the ‘kinetic energy’ that is eventually gained in the
forward motion over the average ‘input work’ during one period of flapping (Kern &
Koumoutsakos 2006; Zhang et al. 2010). We prefer to use this last definition because
of the clear physical meaning it conveys. In fact, this definition of efficiency for a
self-propelled flapping foil is closely associated with the conventional definition for a
tethered flapping foil, in the sense that the ‘kinetic energy’ that is eventually gained in
a self-propelled foil can be related to the amount of ‘useful power’ delivered during
the initial period before the periodically steady state is achieved. As a mathematical
formula, this type of efficiency is defined as

η=
1
2βU2

c

πĀPs
. (2.6)

3. Results and discussion

There are four control parameters in this problem: Ref , Ā, β and γ . The values of
the control parameters used in the simulations are listed in table 1. The Reynolds
number used in the simulations is 200, which is comparable with the values used in
some previous works, such as Godoy-Diana et al. (2008) and Marais et al. (2012).

3.1. Wake patterns in parameter space
Figure 3 summarises the observed wake patterns in the parameter space. The wake
patterns in the two-dimensional parameter space (Aeff /A, StL) are presented for Ā= 1.6
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Series Ref Ā β γ Symbol

1 200 1.6 0.4 10−1–104 	
2 200 1.6 0.8 10−1–104 ⊗
3 200 1.6 1.6 10−1–104 ⊕
4 200 1.6 2.0 10−1–104 �
5 200 1.0 0.1 10−3–104 H
6 200 1.0 0.2 10−3–104 N
7 200 1.0 0.7 10−1–104 J
8 200 1.0 1.0 10−1–104 �
9 200 1.0 2.0 10−1–104 I

10 200 0.4 0.2 10−3–104 +
11 200 0.4 0.6 10−1–104 ∗
12 200 0.4 2.0 10−1–104 �
13 200 0.5–0.9 0.2 104 •

TABLE 1. Values of the control parameters used in the simulations.

(series 1–4 in table 1), Ā= 1.0 (series 5–9 in table 1) and Ā= 0.4 (series 10–12 in
table 1) in figures 3(a), 3(b), and 3(c), respectively. For Ā = 1.6 and Ā = 1.0, the
symmetric and asymmetric wake regions are separated by both a lower border and
an upper border, whereas for Ā= 0.4, there is only one wake-transition border. In all
scenarios, the amplitude ratio is found to be crucial in dictating the wake symmetry
properties. The wake patterns in the three-dimensional parameter space (Aeff /A, Ā, StL)
are presented in figure 3(d). Figure 3(a–c) can be regarded as three parallel slices of
this diagram with constant Ā. It is apparent that the symmetric wake region (region
I) lies between the two borders s1 and s2, whereas the two asymmetric wake regions
lie below s1 (region II) or above s2 (region III). This diagram is a natural extension
of the (Ā, StL) map that is used for the study of wake transitions in a rigid flapping-
foil system (Godoy-Diana et al. 2008). The transition from a symmetric wake to an
asymmetric wake for a rigid flapping foil occurs by crossing curve c1 on the plane of
Aeff /A=1.0 in figure 3(d). For a flexible foil, the transition from region II (asymmetric
wake) to region I (symmetric wake) by crossing surface s1 corresponds to the finding
presented by Marais et al. (2012) that, flexibility inhibits symmetry breaking. In this
study, we have discovered a new asymmetric wake region (region III). The transition
from region I to region III by crossing surface s2 corresponds to the novel finding
that flexibility can also trigger symmetry breaking. Note that the separation borders
depicted in figure 3 were crudely estimated based on the available simulated cases.
As the purpose of plotting these diagrams is to qualitatively explain the two opposing
effects of flexibility on wake symmetry properties, no further effort has been made to
determine the precise locations of the transitional borders.

3.2. A vortex dipole model for characterising wake symmetry properties
To demonstrate that adding flexibility can either inhibit or trigger symmetry breaking,
we consider foils of the same Reynolds number, relative amplitude and mass ratio
but different bending rigidities (one flexible and the other rigid) and examine the
symmetry properties of their wakes. Two pairs of such analogous cases are labelled
as (A1, A2) and (B1, B2) in figures 3(b) and 3(c), respectively. The values of certain
important parameters for these four cases are listed in table 2. It is evident that for
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FIGURE 3. (Colour online) Wake patterns in parameter space: (a) two-dimensional
parameter space at Ā = 1.6; (b) two-dimensional parameter space at Ā = 1.0; (c)
two-dimensional parameter space at Ā = 0.4; and (d) three-dimensional parameter space.
The symbols used to present the data in (a–c) are defined in table 1.

each pair of cases, the Strouhal numbers StL achieved by the rigid and flexible foils
are the same. The two opposing effects of flexibility on symmetry breaking can be
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Ā β γ Uc StL η

A1 1.0 0.2 104 0.83 0.38 0.11
A2 1.0 0.2 0.1 0.83 0.38 0.31
B1 0.4 2.0 104 1.17 0.68 0.33
B2 0.4 2.0 3.6 1.17 0.68 0.11

TABLE 2. Values of selected physical quantities in cases A1, A2, B1 and B2.

(a) (b)

A1

I
II

III

A2

B1

B2

FIGURE 4. (Colour online) Vorticity contours in the wakes for (a) pair (A1, A2) and
(b) pair (B1, B2).

clearly observed from the wake structures depicted in figure 4. When the flexibility
of the foil is increased, wake symmetry breaking is inhibited in pair (A1, A2) but
triggered in pair (B1, B2). Another notable observation is that for the cases with
asymmetric wakes, the propulsive efficiency is much lower compared with the cases
with symmetric wakes (see table 2).

In the two asymmetric cases (A1 and B2), both wakes deflect downwards.
After further investigation, we find that the preferred direction of wake deflection
depends on the initial conditions. When the initial position of the filament is set to
X(s, 0)= (s,−Ā/2)T, upward deflection is observed in both cases. Another interesting
finding is that although the tilting direction of the wake depends on the initial
conditions, the wake symmetry properties are not similarly affected. To confirm this,
we carefully examine two quantitative indicators of the wake-deflection trend, namely,
the symmetry-breaking effective phase velocity and the symmetry-preserving effective
phase velocity (their definitions are provided below), and we find that the magnitudes
of these two velocities remain the same under various initial conditions.

In the vortex dipole model proposed by Godoy-Diana et al. (2009), the effective
phase velocity of a dipole is used to quantify the trend of wake deflection. The
definition of the effective phase velocity is

U∗p =Udipole −Uphase cos α, (3.1)

where Uphase is the average streamwise velocity of the two vortex centres of a dipole
(the centre of a vortex is defined as the location of maximum vorticity), α is the
orientation angle between the streamwise direction and the direction of the dipole (see
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I

II

III

FIGURE 5. (Colour online) A schematic illustration of two consecutive dipoles in the very
near wake.

figure 5), and Udipole is the velocity induced by a dipole. This last quantity can be
defined as

Udipole = Γ/(2πξ), (3.2)

where Γ is the circulation of the dipole and ξ is the distance between the two
vortex centres of the dipole. Here Γ is calculated by integrating the vorticity over a
rectangular area, as shown in figure 5. The size of the integration area is determined
by performing Gaussian fits, e(−x2

i /σ
2
i ), along the vertical and horizontal axes centred

on the positions of maximum vorticity. The sizes of the vortex along the x and y
directions are then defined as 2σi. The circulation that appears in (3.2) is the average
value for the two vortices in the dipole.

A symmetry-breaking condition U∗p < 0 was first proposed by Godoy-Diana
et al. (2009). Another condition involving two effective phase velocities of the two
consecutive dipoles (see figure 5) was later proposed by Zheng & Wei (2012). Wake
symmetry is preserved if the two effective phase velocities are identical; otherwise,
symmetry breaking occurs. In all asymmetric cases in this study, the wakes are
deflected downwards. Thus, the effective phase velocity of the dipole formed by
vortices I and II in figure 5 is called the symmetry-breaking effective phase velocity.
Similarly, the effective phase velocity of the dipole formed by vortices II and III is
called the symmetry-preserving effective phase velocity.

The time histories of the x and y positions of the three vortices in the four cases
are presented in figure 6. Here T =πĀ is the dimensionless flapping period. Tracking
begins at the moment when the direction of motion of the trailing edge reverses
(corresponding to the birth of a new vortex). In all cases, the three vortices move
with constant velocity in the streamwise direction. The streamwise velocity in case
A2 is smaller than that in case A1, whereas the streamwise velocity in case B2 is
larger than that in case B1. The vertical velocities in cases A2 and B1 are found to
be zero, whereas negative vertical velocities are observed in cases A1 and B2. It is
also apparent that the magnitude of the vertical velocity in case B2 is much larger
than that in case A1. This finding is consistent with the wake structures presented in
figure 4.

For each case, the phase velocity Uphase is computed from the time history of
the x position. The physical quantities of the dipoles in each of the four cases
are summarised in table 3. The quantities presented in table 3 are good indicators
of the wake symmetry properties and can aid in obtaining a better understanding
of the wake dynamics. It is evident that for cases A2 and B1, the two effective
phase velocities are identical. For cases A1 and B2, however, the symmetry-breaking
effective phase velocity is larger than the symmetry-preserving effective phase velocity.
The difference in these two velocities can be primarily attributed to the fact that the
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FIGURE 6. (Colour online) The time histories of the x and y positions of vortices: (a) x
positions in A1 and A2; (b) y positions in A1 and A2; (c) x positions in B1 and B2; and
(d) y positions in B1 and B2. Here T=πĀ is the dimensionless oscillation period. Squares,
triangles and inverted triangles denote the positions of vortex I, II and III, respectively.
The empty symbols denote the positions for the rigid cases (A1 and B1), whereas the
filled symbols denote the positions for the flexible cases (A2 and B2). The origins of
the x- and y-axes correspond to the leading edge of the foil and the equilibrium position,
respectively.

distance ξ1 in the symmetry-breaking dipole is smaller than the distance ξ2 in the
symmetry-preserving dipole. Thus, the validity of the criterion proposed by Zheng &
Wei (2012) is confirmed in all four cases. This finding also confirms the consistency
between the data listed in table 3 and the wake patterns presented in figure 4,
thereby increasing our confidence in the computational procedure used to obtain the
data (despite the uncertainties in the Gaussian fits, vorticity truncation, etc.). In the
present study, the criterion proposed by Zheng & Wei (2012) is also used to aid in
the identification of wake patterns.

3.3. Underlying principle and mechanism of wake transition
In a study by Marais et al. (2012), it was observed that because of the deformation
of the pitching foil, vortices were shed at a position that was horizontally nearer to
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U∗1p U∗2p Γ Uphase ξ1 ξ2 α1 (deg.) α2 (deg.)

A1 0.22 0.14 2.38 0.15 1.40 1.90 18.5 24.5
A2 0.12 0.12 1.22 0.05 1.42 1.42 16.2 16.4
B1 0.26 0.26 1.68 0.21 0.88 0.88 11.2 12.7
B2 0.33 0.10 3.01 0.55 0.66 1.94 32.1 33.7

TABLE 3. The values of certain quantities for the two dipoles in the four considered cases.
Here U∗1p and U∗2p denote the effective phase velocities of the dipoles formed by vortices
(I, II) and vortices (II, III), respectively.

the pivot point in the flexible case than in the rigid case. The stabilising effect of
flexibility was thus attributed to the alteration in the horizontal position of the newly
formed vortices. In this study, the kinematics of the foil is very different from that
in Marais et al. (2012), and the effects of flexibility on the symmetry breaking of
the wake are also found to be different. From figures 4 and 6, it is evident that the
vortices are shed at nearly the same horizontal positions in both the rigid and flexible
cases. Thus, we believe that in the present problem, the mechanism through which the
flexibility affects the wake symmetry properties does rely on altering the positions of
the newly formed vortices.

In the present study, we find that the circulation of vortices may play a crucial role
in dictating the symmetry properties of wake. As shown in table 3, for pair (A1, A2),
in which increased flexibility inhibits symmetry breaking, the vortex circulation is
reduced by increasing the flexibility of the foil, whereas for pair (B1, B2), in which
increased flexibility triggers symmetry breaking, the vortex circulation is enhanced
by increasing the flexibility. This connection between vortex circulation and wake
symmetry properties is intuitively reasonable, because if there is any minor difference
in the geometric factors (such as ξ ) of the two dipoles caused by small perturbation,
then larger vortex circulation will lead to a greater difference between the two
effective phase velocities (see (3.2)). Similar phenomena have also been reported in
a number of recent studies. Liang et al. (2011) and Zheng & Wei (2012) have found
that stronger vortex circulation attributable to an increased Reynolds number tends to
destabilise a wake (in the sense of symmetry preservation). Cleaver et al. (2012) have
found a minimum value of dimensionless circulation to be necessary for symmetry
breaking to occur, and they interpreted this number as the inverse of a modified
Strouhal number based on the dipole velocity. From table 3, it can be inferred that
in the current study, this threshold value must lie somewhere between 1.68 and 2.38.
To determine this value more precisely, we examine the circulation and wake type
in numerous cases and find that the threshold value is approximately 2.0 (see the
(Γ, StA) map in figure 7a), which is very close to 1.85, the value reported by Cleaver
et al. (2012).

Several transition paths between symmetric and asymmetric wakes on the (Γ, StA)
map are illustrated in figure 7(b). The transition from a symmetric wake to an
asymmetric wake (or vice versa) near intersection ‘a’ (by crossing Γ = Γ ∗ and
StA = St∗A simultaneously with St∗A close to 0.30) corresponds to previous observations
of rigid flapping foils (Godoy-Diana et al. 2008). The transitions that occur near
intersections ‘b’ (path 1) and ‘d’ (path 2) correspond to the finding that flexibility
can inhibit symmetry breaking (Marais et al. 2012). The transitions that take place
near ‘c’ (in path 1) and ‘e’ (in path 3) correspond to the novel finding of this study
that flexibility can also trigger symmetry breaking.
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FIGURE 7. (Colour online) The plot of circulation versus Strouhal number and the
wake-transition paths: (a) Γ versus StA plot and (b) transition paths. The symbols used
to present the data in (a) are defined in table 1; filled and empty symbols represent
symmetric and asymmetric wakes, respectively. The rigid cases are connected by a
dash-dotted line in (a) and (b). The solid lines with arrows in (b) denote the paths for
flexible foils; each arrow represents the direction of decreasing γ .

We now examine the process of vortex formation procedure to elucidate the
mechanism through which flexibility modulates vortex circulation. Figure 8 depicts
the vortex structures in the near wake for the four considered cases at five different
moments during one flapping cycle. It is apparent that in all four cases, all wakes
are of the ‘2S’ type (in which two vortices of opposite signs are shed per oscillation
period). During each stroke, the vortex structure formed at the leading edge merges
with the vortex generated at the trailing edge before the merged structure is shed
into the wake as one single vortex. Thus, the circulation of the vortices that are shed
into the wake depends on vorticity contribution from both the leading edge and the
trailing edge. In figure 8, a large separation bubble near the leading edge can be
clearly observed in the rigid cases (A1 and B1), whereas for the flexible cases (A2
and B2), the deformation of the foil suppresses the formation of a well-established
leading-edge vortex (LEV) structure.

The primary factor affecting vorticity production at the leading edge is the effective
angle of attack, which can be defined as

αeff (t)= φ − θ = arctan
(

UL2

UL1

)
− θ. (3.3)

Here, φ is the angle of attack seen by a rigid foil and θ is the deflection angle
associated with foil deformation (see figure 9). The time histories of the effective
angles of attack are presented in figure 10. From this figure, it is evident that because
of the deformation of the foil, the effective angle of attack is considerably reduced
in the flexible cases (A2 and B2) compared with the rigid cases (A1 and B1).
As suggested by Anderson et al. (1998) and Shoele & Zhu (2012), a decrease in
the effective angle of attack reduces the scale of separation and thus the vorticity
generation at the leading edge.

The primary factor affecting vorticity production at the trailing edge is the trailing-
edge flapping velocity UT2 (see figure 9). The time histories of the trailing-edge
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(a)
0T 0.2T 0.4T 0.6T 0.8T

(b)

(c)

(d)

FIGURE 8. (Colour online) Vortex structures and foil shapes at five different moments
within one flapping cycle: (a) case A1, (b) case A2, (c) case B1 and (d) case B2. Here
T =πĀ is the dimensionless oscillation period.

flapping velocities are presented in figure 11. From this figure, it is evident that
the magnitude of the trailing-edge flapping velocity becomes much larger when the
flexibility of the foil is increased. For both plunging and pitching foils, a large
trailing-edge flapping velocity is typically correlated with strong vorticity production
(see, for example, Michelin & Smith 2009 and Schnipper, Andersen & Bohr 2009).

The root-mean-square (r.m.s.) values of the effective angles of attack and the
trailing-edge flapping velocities in the four cases are summarised in table 4. The
effective angle of attack in case A2 is reduced by 50 % compared with case A1,
whereas the trailing-edge flapping velocity is increased by a factor of 1.35. The
effective angle of attack in case B2 is reduced by 43 % compared with case B1,
whereas the trailing-edge flapping velocity is increased by a factor of 2.88. The
competition between the two opposing effects of flexibility eventually determines the
overall trend of the modification of the vortex circulation. It can be concluded that
the effect of decreasing the angle of attack is dominant in pair (A1, A2), whereas
the effect of increasing the trailing-edge velocity is dominant in pair (B1, B2). From
table 4, it is also evident that the amplitude ratio of the flexible foil is a close
approximation of the trailing-edge velocity ratio between the flexible foil and the
rigid foil. This finding can be easily understood, as the flapping period is the same
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UL2

UL1

UT2

FIGURE 9. (Colour online) Definitions of the effective angle of attack, the angle of attack
seen by a rigid foil and the deflection angle (the angle between the chord of the foil and
the horizontal direction).
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FIGURE 10. Time histories of the effective angles of attack for (a) pair (A1, A2) and (b)
pair (B1, B2). Here T =πĀ is the dimensionless oscillation period.
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FIGURE 11. Time histories of the trailing-edge flapping velocities for (a) pair (A1, A2)
and (b) pair (B1, B2). Here T =πĀ is the dimensionless oscillation period.

for both the flexible and rigid cases. It also explains why the amplitude ratio is the
crucial parameter that dictates the symmetry properties of the wake.
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αrms
eff (deg.) Urms

T2 Aeff /A

A1 38.3 0.69 1.0
A2 19.2 0.93 1.34
B1 30.0 0.69 1.0
B2 17.0 1.99 2.85

TABLE 4. Root-mean-square values of the effective angle of attack, r.m.s. values of the
trailing-edge flapping velocity and amplitude-ratio values.

3.4. Relation between structural resonance and wake symmetry
It has been reported in some recent publications that harmonic (or superharmonic)
structural resonance can be exploited to increase the transfer of energy to the fluid
in flexible flapping-foil systems (Combes & Daniel 2003; Michelin & Smith 2009;
Vanella et al. 2009; Masoud & Alexeev 2010; Shyy et al. 2010; Kang et al. 2011);
in other literature, the enhancement of propulsive efficiency has been attributed to the
streamlined shape taken on by the foil as a result of deformation, rather than the effect
of resonance (Thiria & Godoy-Diana 2010; Ramananarivo et al. 2011). Thus, the
exact role of resonance in flapping-based propulsion is still not fully understood. Here,
in the context of these recent works, an endeavour is made to explore the relation
between structural resonance and wake symmetry.

For this purpose, we analyse the results of two of the series of simulations listed in
table 1, namely, series 6 (Ā= 1.0, β = 0.2, which includes case A1 and case A2) and
series 12 (Ā= 0.4, β = 2.0, which includes case B1 and case B2). For each case in
these two series, we evaluate the reduced forcing frequency, which is defined as the
ratio of the forcing frequency (f ) to the first natural frequency (f1) of the filament–
fluid system. The reduced forcing frequency increases with increasing flexibility, with
a rigid limit of f /f1 = 0 and a resonant point at f /f1 = 1. For cases with large mass
ratios (such as those in series 12), where the influence of the external fluid can be
neglected, the f1 value is approximately the same as that of a clamped–free elastic
filament in vacuum. For the cases with small mass ratios (such as those in series 6),
the natural frequencies of the system can be significantly affected by the presence of
ambient fluid. Thus, we use the first natural frequency of a passive elastic filament in
an axial flow (Michelin & Smith 2009) as an approximation for f1 in such cases.

The evolution of the vortex circulation, amplitude ratio and propulsive efficiency
with increasing reduced forcing frequency is presented in figure 12. As discussed
above, a wake transition (from a symmetric pattern to an asymmetric pattern or vice
versa) occurs when the vortex circulation Γ crosses a critical value. Because the LEV
and the trailing-edge vortex (TEV) first amalgamate before they are shed into the wake
as one single vortex, the vortex circulation depends on contributions from both the
LEV and the TEV. The amplitude ratio is a natural indicator of structural resonance.
From the discussion in § 3.3, it is known that this parameter is also a good indicator
of the TEV strength.

From the two efficiency curves presented in figure 12, it is evident that the optimal
propulsive efficiency is achieved at a reduced forcing frequency that is much lower
than the resonant point. More specifically, peak performance is achieved near f /f1 =
0.7 for series 6 and near f /f1 = 0.4 for series 12. This finding is consistent with the
observation reported by Ramananarivo et al. (2011). From the slopes of the efficiency
curves at the point of wake transition, it is clear that the occurrence of symmetry
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FIGURE 12. Normalised propulsive efficiency, normalised circulation and amplitude ratio
as functions of the reduced forcing frequency for the cases considered in: (a) series
6 (Ā = 1.0; β = 0.2); and (b) series 12 (Ā = 0.4; β = 2.0). The circles and the solid
lines connecting them represent propulsive efficiency. The squares and the solid lines
connecting them represent vortex circulation. The triangles and the solid lines connecting
them represent amplitude ratios. The propulsive efficiency and circulation are normalised
by the values obtained in the rigid foil (γ = 104). The empty symbols represent cases
with symmetric wakes, and the filled symbols represent cases with asymmetric wakes. The
horizontal dash-dotted lines represent the critical values of the vortex circulation (Γ ∗) that
corresponds to wake transitions. The vertical dashed lines represent the critical values of
the reduced forcing frequency that correspond to wake transitions.

breaking leads to a decline in efficiency, as claimed in the introduction. From the
two amplitude-ratio curves presented in figure 12, it is evident that the evolution of
the amplitude ratio exhibits very different features for series 6 than for series 12.
The amplitude ratio achieved in series 6 is much lower than that in series 12. For
example, at the point of wake transition, the amplitude ratio is only 1.1 in series 6,
whereas it is approximately 1.9 in series 12. In the amplitude-ratio curve for series 6,
a slight and rather broad peak is observed at f /f1= 0.3–0.4, indicating the occurrence
of superharmonic resonance. Moreover, no clear resonance is observed near f /f1= 1.0.
In a previous study by Ramananarivo et al. (2011), the superharmonic behaviour was
associated with the nonlinearity in the structural equation, and the lack of a peak near
f /f1 = 1.0 was attributed to the effect of nonlinear fluid damping. In the amplitude-
ratio curve for series 12, however, no superharmonic behaviour is observed, but clear
resonance is evident at f /f1 = 1.0. These two different features observed in series
12 compared with series 6 can be understood as follows: (a) the nonlinearity in the
structural equation is weakened by a reduced flapping amplitude; and (b) the effect
of fluid damping is also weakened because the fluid force becomes less important at
larger mass ratios.

From figure 12, it is apparent that the wake transitions occur at a reduced forcing
frequency much lower than the resonant point (at f /f1 = 0.32 for series 6 and
f /f1 = 0.52 for series 12). At first glance, it would seem that the wake symmetry
properties and the structural resonance are completely unrelated to each other.
However, after a more in-depth analysis, a more profound understanding can be
attained. By comparing the trend in the vortex circulation with that in the amplitude
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ratio, we find that for series 6 and series 12, the relation between the wake symmetry
properties and the structural resonance are very different in nature. For series 6,
the vortex circulation Γ decreases with increasing reduced forcing frequency. This
decrease in Γ is attributable to the reduced LEV strength, which is caused by the
suppression of flow separation. Although the TEV strength increases marginally
because of the slight increase in trailing-edge amplitude and velocity, its effect on
the vortex circulation is completely overwhelmed by that of the attenuated LEV.
The wake transition eventually occurs when the vortex circulation falls below the
critical value. Thus, we can conclude that for series 6, the wake transition cannot be
associated with the resonance effect. For series 12, a plateau in the vortex circulation
is initially observed at 0< f /f1 < 0.45 as the reduced forcing frequency is increased
(from the rigid limit). The minimal variation in circulation in this range is attributed
to the cancellation between an attenuated LEV and an intensified TEV. As the
reduced forcing frequency is increased beyond f /f1 = 0.45, however, the effect of the
intensified TEV becomes the dominant factor influencing the vortex circulation. The
trends observed in the vortex circulation and the trailing-edge amplitude with this
increase in reduced forcing frequency are strongly correlated with each other, and the
maxima of both quantities are also achieved at the same reduced forcing frequency,
i.e. the resonant point. The wake transition occurs when the vortex circulation exceeds
the critical value. Although this transition occurs at a reduced forcing frequency much
lower than the resonant point, a close relation between the wake transition and the
structural resonance is evident from the observations.

In the recent works cited above, two mechanisms that dictate the effects of
flexibility on flapping-foil systems have been proposed, namely, the purely
hydrodynamic effect attributable to deformation and the occurrence of structural
resonance. By exploring a wide range of parameters, we observed the manifestation
of both mechanisms in the present study. Based on the analysis presented above,
we find that the wake transition near the lower transitional border depicted in
figure 3(d) (where flexibility inhibits symmetry breaking) is associated with the
purely hydrodynamic effect, whereas the wake transition near the upper transitional
border depicted in figure 3(d) (where flexibility triggers symmetry breaking) is
associated with the resonance effect.

4. Conclusions

We numerically studied the effects of the foil flexibility on the symmetry properties
of the wake behind a self-propelled plunging foil. Our results indicate that the wake
can either be stabilised or destabilised (in the sense of symmetry preservation)
by increased flexibility. We demonstrated that for symmetry breaking to occur,
the (dimensionless) vortex circulation must exceed a certain threshold value. The
modification of vortex circulation is found to be the pivotal factor in the influence
of the foil flexibility on the wake symmetry properties. Decreasing vortex circulation
tends to stabilise the wake while increasing vortex circulation tends to destabilise it.

Increasing the flexibility of the foil can exert two opposing effects on the strength of
vortex circulation. On one hand, increased flexibility reduces vorticity production near
the leading edge by causing the foil to take on a ‘streamlined’ shape (with a reduced
effective angle of attack); on the other hand, flexibility also enhances local vorticity
production by increasing the trailing-edge flapping velocity. If the former effect is
dominant, the wake is stabilised (symmetry breaking is inhibited). Conversely, if the
latter effect is dominant, the wake is destabilised (symmetry breaking is triggered).
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Further investigation indicates that the former effect is purely hydrodynamic, whereas
the latter effect can be associated with the structural resonance.

Finally, it is necessary to note that wake symmetry properties are closely related to
efficiency and maneuverability. Symmetry breaking must be avoided during cruising,
as propulsive efficiency is reduced if an asymmetric wake arises. However, symmetry
breaking can be exploited for manoeuvring, as an asymmetric wake is automatically
accompanied by a net lift and torque. In light of these considerations, flexibility can
be exploited by animals to achieve high efficiency or to perform manoeuvres. The
results of this work provide new insights into the functional role of passive flexibility
in flapping-based biolocomotion.
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