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QUASI-SPLIT SYMMETRIC PAIRS OF U(glN) AND THEIR
SCHUR ALGEBRAS

YIQIANG LI and JIERU ZHU

Abstract. We establish explicit isomorphisms of two seemingly-different

algebras, and their Schur algebras, arising from the centralizers of two different

type B Weyl group actions in Schur-like dualities. We provide a presentation

of the geometric counterpart of the above Schur algebras in [1] specialized at

q = 1.

§1. Introduction

1.1 Overview

A classical result of Schur states that the action of the symmetric group Sd fully

centralizes the natural action of the complex general linear algebra glN on the tensor

space (CN )⊗d. As a result, representations for glN , which are summands of (CN )⊗d, are in

bijection with representations for Sd. The Schur algebra of type A is the centralizer algebra

of Sd on (CN )⊗d.

The generalization to type B has an interesting twist: the orthogonal group does not

fully centralize the action of the type B Weyl group on the tensor space. On one hand, the

orthogonal group is known to centralize the action of the Brauer algebra. On the other hand,

the description of the centralizer of the type B Weyl group action, and its quantization, is

nontrivial, as it bears no relation to the orthogonal group. Two historical approaches have

emerged to tackle this problem by Green [6] and Shoji–Sakamoto [14], see also [3], [7], and

[13]. In Green’s approach [6, Section 2.3], the centralizer is given by a subgroup of GLN ,

its Lie algebra being the fixed-point subalgebra glθN of glN under a certain involution θ,

and its quantum analogue and double centralizer property is made explicitly in [3]; while

in the Shoji–Sakamoto’s approach, the centralizer is given as a homomorphic image of a

two-block subalgebra U of U(glN ). The pairs (U(glN ),U) and (U(glN ),U(glθN )) turn out

to be (infinitesimal) quasi-split symmetric pairs of type A [15]. The purpose of this paper

is to establish explicit isomorphisms between U and U(glθN ), and consequently on their

respective Schur algebras, despite the ostensibly different actions from the type B Weyl

group.

1.2 Main results

The involution θ is induced by the diagram involution, say θ for an abuse of notation,

on the Dynkin graph of glN sending the Chevelley generator Ei to Fθ(i) and Fi to Eθ(i).

The fixed-point subalgebra glθN are generated by the simplest possible elements fixed by θ:

ei = Ei+Fθ(i), fi = Fi+Eθ(i), and di =Hi−Hθ(i). But the defining relations with respect

to these generators are unknown until now, even though their quantum version in [10] has

an explicit presentation under a quantized analogues of ei, fi,di. To this end, we adapt

Letzter’s proof in [10] for the quantum case to give a presentation of U(glθN ), the universal

enveloping algebra of glθN with respect to ei, fi,di.
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Proposition A (Propositions 2.1.4, 3.1.2). The algebra U(glθN ) is generated by e1, . . . ,

en, f1, . . . , fn, d1, . . . ,dn+1 subject to a list of Relations (5)–(14), when N = 2n+1. For N

even, there is a similar presentation for U(glθN ); see (R1)–(R4).

It has been somewhat known that the algebra U(glθN ) and the two-block Levi subalgebra

U are isomorphic to each other, but the isomorphism is implicit. We further establish an

explicit isomorphism between U(glθN ) and U in Lemma 18 and subsequent comments. Here

ei, fi, hi are the Chevalley generators of the first block gln+1, and ei, fi, hi are the Chevalley

generators of the second block gln in U.

Theorem A (Theorem 2.4.2). There is an explicit isomorphism

φ : U(glθN )→ U(gln+1⊕gln)

between the two algebras, given via

ei 7→ ei+ei fi 7→ fi+fi (i < n),

en 7→ 2en fn 7→ fn di 7→ hi+hi (1≤ i≤ n) dn+1 7→ 2hn+1.

While it is not hard to show that φ is a homomorphism, it is nontrivial to show that it

is an isomorphism. The difficulty lies in the fact that the obvious commutative subalgebra

generated by di is not the Cartan subalgebra of U(glθN ) via an easy dimension count.

To describe the preimage of φ, we employ the notion of root vectors in relation to a root

space decomposition of glθN with respect to di’s. In particular, let ǫi =d∗
i , and for an element

α in the span of ǫi, the α-root space is all elements x in glθN such that [di,x] = α(di)x. In

Proposition 2.3.8, we gave a description of the root space decomposition of glθN :

Proposition B (Proposition 2.3.8). The root spaces of glθN is either 1- or 2-dimensional

if α 6= 0. The 0-weight space is N-dimensional, spanned by d1, . . . ,dn+1, as well as explicitly

and recursively defined elements h1, . . . ,hn in (30).

This gives a precise description of the Cartan subalgebra, by giving additional elements

which commute with the generators di, as a basis of the 0-weight space. When the α-root

space is 2-dimensional, let Xα and X ′
α be two explicit elements which span the α-root

space, and use Xα if the associated root space is 1-dimensional. The roots α in glθN can

be identified with roots in gln+1 and gln using successive imbedding of Lie algebras. For

proper indices i and j, let Yǫi−ǫj =Eij be the matrix unit in gln+1, and let Zǫi−ǫj =Eij in

gln, where the notation distinction signals the specific block in glN . Then in Theorem

2.4.1, we gave explicit description of the preimage of φ in terms of root vectors, here

hn+1 =
1
2dn+1:

Theorem B (Theorem 2.4.1). The following is true

φ(Xα) = Yα φ(X ′
α) = Yα+Zα φ(hi) = hi (1≤ i≤ n+1).

Therefore, the preimage of the Cartan generators of U(glθN ) can be explicit: if we let

hi = di−hi, then φ(hi) = hi. Theorem 2.4.2 follows from this observation. To this end, in

Proposition 3.3.1 and Proposition 3.3.2, we have the following diagram
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where SB
d is the type B Weyl group, and the first row is Green’s approach while the

second row is via Shoji–Sakamoto.

Unpublished work of Kujawa–Zhu established a presentation for the centralizer, say S,

in Shoji–Sakamoto’s approach: this is a quotient of the algebra U(gln+1⊕ gln) subject to

further relations on the Cartan generators (34)–(36). Via the isomorphism φ, we therefore

write down their counterparts, say Sj , in Green’s approach as relations in S (see Proposition

2.5.1) as follows.

Proposition C (Proposition 2.5.1). The centralizer algebra Sj in Green’s approach

is isomorphism to the quotient algebra of U(glθN ) by the ideal generated by the following

relations.

d1+ · · ·+dn+hn+1 = d,

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n+1,

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n.

Note it is widely believed that the standard quantum algebra Uq(gl
θ
N ) and Letzter’s

nonstandard quantization U i
q (or U j

q ) [10] are not isomorphic to each other. Surprisingly, a

recent work of Lai et al. [9] shows that the quantum deformations of the centralizers S and

Sj in both constructions are indeed isomorphic to each other. It is not immediately clear

how our approach is related to [9].

1.3 Geometric implications

Our main results are secretly motivated by a geometric question in [1] as we explained

as follows.

The quantum version of the Schur algebra has a geometric construction by Beilinson

et al. [4]. If Y is the variety of complete flags in a d -dimensional vector space over a finite

field Fq, and X is the variety of N -step flags in F
d
q , then the Schur algebra can be realized

geometrically: The Hecke algebra of type A, as a deformation of the group algebra of Sd,

can be now realized as GLd-invariant functions on the double flag variety Y ×Y. The q-

Schur algebra of type A now consists of GLd-invariant functions on the variety X ×X . The

centralizing action of the q-Schur algebra and Hecke algebra on the q-tensor space, can be

realized as a convolution between functions on X ×X , X ×Y, and Y ×Y.

Meanwhile, Bao et al. [1] gave a geometric construction of a quantization of the type B

q-Schur algebra Sj
q . In particular, the isotropic flags XB and YB yield the type B Hecke

algebra, similar to type A. In the quantum case, the quantum algebra behind the algebra

of ON -invariant functions on XB ×XB, denoted U j
q or U i

q depending on a parity, has a

presentation using Chevalley generators, and can be imbedded inside the type A quantum

group. Similar to type A, this algebra surjects onto the type B q-Schur algebra Sj
q . This

algebra has been studied intensively in [2] and [12], and it admits a canonical basis. It is
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an open problem to provide a presentation of Sj
q , see [1, Section 3.5]. It is known that Sj

is the specialization of Sj
q at q = 1.

Proposition D. Proposition C answers affirmatively the presentation problem in [1,

Section 3.5] when q is specialized at 1 and further disproves the naive expectation in [1,

Section 3.5]

In addition, the presentation in Proposition C provides insights into a potential full list

of defining relations for Sj
q , which has yet to be explored; see [11] where the rank one case

is settled.

§2. The algebra U
j

In this section, we aim to define the fixed point subalgebra of the general linear Lie

algebra glN , where N = 2n+1 is a positive odd integer. We will give a presentation of

its universal enveloping algebra U j in nonstandard generators, and construct an explicit

homomorphism from U j to the two-block Levi Lie subalgebra of U(glN ), the universal

enveloping algebra of glN . This homomorphism turns out to be in fact an isomorphism,

with an explicit description of the inverse image of the each Chevalley generator. In the

end, we will describe the associated type B Schur algebra and give a presentation in terms

of generators and relations.

2.1 The fixed point subalgebra

In this section, we introduce the fixed point subalgebra of gl2n+1(C) with respect to an

involution on its Dynkin diagram. We will further give a presentation of this fixed point

subalgebra. Let Γ be the Dynkin diagram associated to the Lie algebra g= gl2n+1(C). It has

2n vertices 1,2, . . . ,2n and a graph automorphism τ ∈Aut(Γ ) such that τ(i) = 2n+1−i. Let

E1, . . . ,E2n,F1, . . . ,F2n,H1, . . . ,H2n+1 be the Chevalley generators of g and let h⊂ g be the

Cartan subalgebra spanned by Hi(1≤ i≤ 2n+1). In other words, Ei =Ei,i+1, Fi = Fi+1,i,

Hi =Ei,i, where Ei,j is the matrix unit with a single nonzero entry 1 in the (i, j)-position.

The automorphism τ induces an automorphism of the Lie algebra gl2n+1(C), which can be

extended to an automorphism θ of g= gl2n+1(C) via

θ(Ei) = Fτ(i), θ(Fi) = Eτ(i), θ(Hi) =Hτ(i)+1.

In fact, for any subset X of the vertices in Γ , and any graph automorphism τ on Γ which

leaves X invariant, Kolb [8, Theorem 2.5] defined an automorphism θ(X,τ) of the associated

Lie algebra. When X = ∅ and τ is taken as above, the automorphism θ(X,τ) specializes to

the automorphism mentioned above.

Let

gθ = {x ∈ g | x= θ(x)}, hθ = {h ∈ h | h= θ(h)}.

The result in [8, Lemma 2.8] specializes to the following

Lemma 2.1.1. [8, Lemma 2.8] The subalgebra gθ is generated by the following elements

in hθ and

{Fi+θ(Fi) | 1≤ i≤ 2n}.

We now give a description of generators for hθ.
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Lemma 2.1.2. The subalgebra hθ is spanned by Hi+H2n+2−i for 1≤ i≤ n+1.

Proof. Let h= c1H1+ · · ·+ c2n+1H2n+1 be fixed by θ, then by the definition of θ

c1H1+ · · ·+ c2n+1H2n+1 = c2n+1H1+ · · ·+ c1H2n+1

and ci = c2n+1−i, hence h is a linear combination of Hi+H2n+2−i.

Remark 2.1.3. As we will show later in Theorem 2.4.2, there is a larger algebra

containing hθ which is abelian. Therefore, hθ is not a Cartan subalgebra of gθ.

Let U j = U(gθ) be the universal enveloping algebra of gθ. By the two lemmas above, U j

is generated by elements

ei = Ei+F2n+1−i, 1≤ i≤ n, (1)

fi = Fi+E2n+1−i, 1≤ i≤ n, (2)

di =Hi+H2n+2−i, 1≤ i≤ n, (3)

dn+1 = 2Hn+1. (4)

We aim to give a presentation of U j . The following relations are known to be true for

the quantum case in [10, Lemma 2.2].

Proposition 2.1.4. The algebra U j is generated by e1, . . . ,en, f1, . . . , fn, d1, . . . ,dn+1

subject to the following relations

didj = djdi, (5)

[da,ej ] = (−δa,j+1− δ2n+2−a,j+1+ δa,j)ej , (6)

[da, fj ] = (−δa,j + δa,j+1+ δ2n+2−a,j+1)fj , (7)

eifj − fjei = δij(di−di+1) i < n, (8)

e2i ej −2eiejei+eje
2
i = 0 |i− j|= 1, (9)

f2i fj −2fifjfi+ fjf
2
i = 0 |i− j|= 1, (10)

eiej = ejei |i− j|> 1, (11)

fifj = fjei |i− j|> 1, (12)

e2nfn−2enfnen+ fne
2
n =−4en, (13)

f2nen−2fnenfn+enf
2
n =−4fn. (14)

Proof. These relations hold by a straightforward calculation.

Let B be the algebra generated by e1, . . . ,en, f1, . . . , fn, d1, . . . ,dn+1 subject to Relations

(5), (6), and (7), then B has a basis {wds}, where w is a word in e1, . . . ,en, f1, . . . , fn, and s=

(s1, . . . , sn+1) ∈ Z
n+1
≥0 with ds = ds1

1 · · ·D
sn+1

n+1 . Define a filtration on B by declaring degei =

deg fi = 1 and degDi = 0, then any element in B can be written as a sum of homogeneous

parts, and declare its degree to be the highest among its homogeneous parts. On the other
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hand, the algebra U(gl2n+1(C)) has a Poincaré–Birkhoff–Witt (PBW) -basis and admits a

filtration. The degree of each monomials is defined via degEi =1, degFi =0, degHi =0. As a

subalgebra of U(gl2n+1(C)), U
j inherits a filtration where degrees on monomials are defined

similarly.

Let I be the ideal in B generated by Relations (8)–(14). The previous lemma implies

that there is a well-defined surjection φ :B→ U j with I lying in the kernel. Now we claim

that the kernel is exactly I. Assume by contradiction that

x=
∑

w,s

aw,swd
s

is in the kernel of φ, x 6∈ I, aw,s ∈C and x is of smallest degree in B. For notation purposes,

rewrite fi = e2n+1−i for 1≤ i≤ n. By the definition of φ, if w = ei1ei2 . . .eik , then

φ(aw,swd
s) = asEi1Ei2 . . .Eikφ(d

s)+ lower terms in U j .

In the above case, let Ew = Ei1Ei2 . . .Eik and let I0 be the index set of (w,s) for the top

degree terms in x, then by degree considerations,
∑

s∈I0

aw,sE
wφ(ds) = 0 ∈ U(gl2n+1(C)).

Moreover, based on the PBW basis of U(gl2n+1(C)) and the fact that φ(ds1) = φ(ds2) if

and only if s1 = s2, for each fixed s, we have
∑

w:aw,s 6=0

aw,sE
w = 0 ∈ U(gl2n+1(C))

and the above element is in the ideal generated by the Serre relations for the positive part of

U(gl2n+1). Comparing these relations and Relations (9)–(14), one can use the corresponding

relations to rewrite
∑

w:aw,s 6=0

aw,sw

as an element of strictly less degree, resulting an element x′ in the kernel of φ, x′ 6∈ I, whose

degree is less than x, contradicting the choice of x.

Remark 2.1.5. For more details, see the proof of Lemma 3.1.2 in the next section.

2.2 A homomorphism between U
j and U(gln+1⊕gln)

Lemma 2.2.1. There is a well-defined algebra homomorphism ψ : U j → U given by

ψ(ei) = fi+fi ψ(fi) = ei+ei (i < n), (15)

ψ(en) = 2fn ψ(fn) = en, (16)

ψ(di) =−hi−hi (1≤ i≤ n) ψ(dn+1) =−2hn+1. (17)

Proof. The Relations (5), (9), (10), (11), and (12) are trivial to check. For (6), it boils

down to

[da,ej ] = (−δa,j+1+ δa,j)ej
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unless a= n+1 and j = n, which will be checked separately (2n+2−a= j+1 is equivalent

to a+ j = 2n+1, and since j ≤ n and a≤ n+1, this only holds when j = n and a= n+1.)

The calculation is as follows:

[ψ(da),ψ(ej)] = [−ha−ha,fj +fj ]

= (−δa,j+1+ δa,j)fj +fj = (−δa,j+1+ δa,j)(ψ(ej)).

For the case a= n+1 and j = n,

[ψ(dn+1),ψ(en)] = [−2hn+1,2fn] =−4fn =−2ψ(en),

which is the value of (−δa,j+1− δ2n+2−a,j+1+ δa,j)ψ(ej).

Relation (7) can be checked similarly. For Relation (8), the relation holds when i 6= j.

When i= j < n,

[ψ(ei),ψ(fi)] = [fi+fi, ei+ei] = [fi, ei]+ [fi, ei]

=−hi+hi+1−hi+hi+1 = ψ(di−di+1).

Relations (13) is checked as follows ((14) can be checked similarly.)

ψ(e2nfn−2enfnen+ fne
2
n) = ψ(en)([ψ(en),ψ(fn)])+ [ψ(fn),ψ(en)]ψ(en)

= 4(fn[fn, en]+ [en,fn]fn) = 4(fn(−hn+hn+1)+(hn−hn+1)fn)

= 4([hn,fn]− [hn+1,fn]) = 4(−fn−fn) =−8fn =−4ψ(en).

Lemma is proved.

Remark 2.2.2. As we will show later in Theorem 2.4.2, ψ is in fact an isomorphism.

Let i be the involution on U(gln+1(C))⊗U(gln(C)) induced by the following involution

on each factor: U(gln+1(C)) ≃ U(gln+1(C)) via ei 7→ fi (1 ≤ i ≤ n), fi 7→ ei (1 ≤ i ≤ n),

hi 7→ −hi (1 ≤ i ≤ n+1), and U(gln(C)) ≃ U(gln(C)) similarly. Let φ = i ◦ψ, then φ is

given by

φ(ei) = ei+ei φ(fi) = fi+fi (i < n),

φ(en) = 2en φ(fn) = fn,

φ(di) = hi+hi (1≤ i≤ n) φ(dn+1) = 2hn+1. (18)

Remark 2.2.3. Notice that the relations in U j are preserved once dn+1 is shifted by

a constant. In other words, for any c ∈ C, the map which fixes all other generators and

dn+1 7→ dn+1+ c, defines an algebra automorphism on U j . Therefore, the map φ can be

alternatively defined via a constant shift on dn+1.

Corollary 2.2.4. After restricting to g, the above map induces a well-defined Lie

algebra homomorphism φ|gθ : gθ → gln+1(C)⊕gln(C).

2.3 Root vectors in U
j

Next we aim to give a weight space decomposition of gθ. First let d′
n+1 =

1
2dn+1. Let

ǫi = d∗
i be the element in (hθ)∗ dual to di for 1≤ i≤ n, and ǫn+1 = (d′

n+1)
∗.

We shall define root vectors in gθ similar to the well-known root vectors in type A.

Specifically, recall h1, . . . ,hn+1 is a basis of the Cartan subalgebra of gln+1(C), and h1, . . . ,hn
is a basis of the Cartan subalgebra of gln(C). When context is clear and index makes sense,
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we identify ǫi with h
∗
i or h∗

i
. Let

Φn+1 = {ǫi− ǫj | 1≤ i, j ≤ n+1, i 6= j}

Πn+1 = {ǫi− ǫj | 1≤ i < j ≤ n+1, j− i= 1}, (19)

be the set of roots and simple roots in gln+1(C). For any α ∈ Φn+1, the root vectors Yα ∈

gln+1(C) are defined recursively as follows. Recall that e1, . . . , en are the standard upper-

triangular Chevalley generators in gln+1(C). On a simple root αi = ǫi− ǫi+1, set Yαi
= ei

for 1≤ i≤ n. In general, let α= ǫi− ǫj where i < j, define Yα recursively via

Yα = Y(ǫi−ǫi+1)+(ǫi+1−ǫj) = [Yǫi−ǫi+1 ,Yǫi+1−ǫj ] = [ei,Yǫi+1−ǫj ]. (20)

Similarly, for αi = ǫi−ǫi+1, set Y−αi
= fi, where f1, . . . ,fn are the standard lower-triangular

Chevalley generators in gln+1(C), and define Y−α for negative roots recursively as follows

Y−α = Y−(ǫi−ǫi+1)−(ǫi+1−ǫj) = [Y−(ǫi−ǫi+1),Y−(ǫi+1−ǫj)] = [fi,Y−ǫi+1+ǫj ]. (21)

Similarly, let

Φn = {ǫi− ǫj | 1≤ i, j ≤ n,i 6= j}

Πn = {ǫi− ǫj | 1≤ i < j ≤ n,j− i= 1} (22)

be the set of roots and simple roots in gln(C). For any α ∈Φn, the root vectors Zα ∈ gln(C)

are defined similarly.

It is well known that {Yα}α∈Φn+1 ∪ {hi}
n+1
i=1 form a basis for gln+1(C), and [hi,Yα] =

α(hi)Yα. Similar results also hold for Zα.

In the same fashion, we construct root vectors in gθ. Recall that {H1, . . . ,H2n+1} is a

basis of the Cartan subalgebra in gl2n+1(C). Let µi =H∗
i be the element in h∗ dual to Hi

for 1≤ i≤ 2n+1, and let

Φ+
2n+1 = {µi−µj | 1≤ i < j ≤ 2n+1}. (23)

We call Φ+
2n+1 the set of positive roots in gl2n+1. For every positive root α ∈ Φ+

2n+1, we

construct Xα ∈ gθ recursively as follows. Recall that ei, fi,di are elements in gθ defined in

(1)–(4). On a simple root, let

Xµi−µi+1 = ei (1≤ i≤ n)

Xµi−µi+1 = f2n+1−i (n+1≤ i≤ 2n).

In general, for α= µi−µj , define Xα similar to (20):

Xµi−µj
=X(µi−µi+1)−(µi+1−µj) = [Xµi−µi+1 ,Xµi+1−µj

]. (24)

Even though the definition uses a fixed order of splitting a positive root into a sum

of simple roots, we argue that the result is independent of the order of the sum and its

associated order of taking Lie brackets. Specifically, it is helpful to give an alternative

formulation of the root vectors:

Corollary 2.3.1. The following holds for any 1≤ i < j ≤ 2n+1: if α= µi−µj, then

Xα =X(µi−µj−1)+(µj−1−µj) = [Xµi−µj−1 ,Xµj−1−µj
]. (25)
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Proof. First, for x,y,z ∈ g, if [x,z] = 0, then

[x, [y,z]] =−[y, [z,x]]− [z, [x,y]] = [[x,y], z].

Fix j and induct on i. The base cases i= j−1 and i= j−2 follow from definition. Suppose

the statement is true for k ≤ i < j, then

[Xµk−1−µj
] = [Xµk−1−µk

,Xµk−µj
] = [Xµk−1−µk

, [Xµk−µj−1 ,Xµj−1−µj
]]

= [[Xµk−1−µk
,Xµk−µj−1 ],Xµj−1−µj

]] = [Xµk−1−µj−1 ,Xµj−1−µj
].

The third equality follows from the fact that for any two simple roots not adjacent to each

other in the sequence e1, . . . ,en, fn, . . . , f1, their associated root vectors commute with each

other.

For the set of simple roots

Π2n+1 = {αi = µi−µi+1 | 1≤ i≤ 2n}.

We impose a total order based on the ordering on i. Moreover, two roots are said to be

adjacent if they are adjacent on the associated Dynkin diagram of type A2n. Each simple

root vector induces a Lie algebra endomorphism in gθ by its adjoint action:

adXαi
: gθ → gθ adXαi

(z) = [Xαi
, z].

For short, we denote adXαi
simply as αi. The following identity will be helpful in the

future.

The sequence of simple roots (αi1 ,αi2 ,αi3 , . . . ,αis) is called admissible if for any k such

that 1≤ k ≤ s−1, αk is adjacent to one of αik+1
, αik+2

, . . ., αis .

Lemma 2.3.2. Let αi1 ,. . ., αis be a sequence of simple roots. Then

αi1
◦αi1

◦ · · · ◦αis
(dk) 6= 0

for some k, 1≤ k ≤ n+1, only if the sequence (αi1 , . . . ,αis) is admissible.

Proof. We prove by induction on s. Suppose the statement is true for s ≤m. For s =

m+1, suppose there exists dk such that

αi1
◦αi2

◦ · · · ◦αim+1
(dk) 6= 0

then the sequence (αi2 , . . . ,αim+1) is admissible by induction hypothesis. Suppose further

that αi1 is not adjacent to any of αi2 , . . . ,αim+1 , then

αi1
◦αi2

◦ · · · ◦αim+1
(dk) = [[Xαi1

,Xαi2
],αi3

◦αi2
◦ · · · ◦αim+1

(dk)]

+[αi1
◦αi3

◦ · · · ◦αim+1
(dk),Xαi2

].

In the sum, the first term is zero because αi1 is nonadjacent to αi2 , and the second term

is zero by induction hypothesis for s =m. Now we have shown that the claim is true for

s=m+1.

Lemma 2.3.3. Let (β1, . . . ,βs) be a sequence of consecutive simple roots in increasing

order. If (αi1 , . . . ,αis) is a permutation of the sequence (β1, . . . ,βs), then

αi1
◦αi2

◦ · · · ◦αis
(dk) ∈ Cβ

1
◦β

2
◦ · · · ◦β

s
(dk)

for all 1≤ k ≤ n+1.
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Proof. First observe that if αi1
◦ αi2

◦ · · · ◦ αit+1
(dk) = 0, then the statement is

automatically true. We now assume that this quantity is nonzero. It follows that the

sequence (αi2 ,αik+1
, . . . ,αis) must be admissible, and therefore must be a permutation of

consecutive roots by Lemma 2.3.2.

We proceed by induction on s : the base case when s= 2 is a straightforward check. Now

suppose the statement holds for s≤ t. We claim it also holds for s= t+1. Let β1, . . . ,βt be

the rearrangement of αi2 , . . . ,αik+1
in increasing order, then

x= αi1
◦αi2

◦ · · · ◦αit+1
(dk) ∈ Cαi1

◦β
1
◦ · · · ◦β

t
(dk).

Since x 6= 0, αi1 is adjacent to one of β1, . . . ,βt. By assumption there are no repeated roots,

therefore αi1 must be immediately smaller than β1 or immediately larger than βt. The

former case yields the desired conclusion automatically. If the latter is true, then

αi1
◦β

1
◦ · · · ◦β

t
(dk)

= [[Xα1 ,Xβ1 ],β2
◦ · · · ◦β

t
(dk)+ [αi1

◦β
2
◦ · · · ◦β

t
(dk),Xβ1 ].

The first term is zero, and the second term is in C[Xβ1 ,β2
◦· · ·◦β

t
◦αi1

(dk)] by the induction

hypothesis as desired.

Lemma 2.3.4. For any a,b,c ∈ g,

[a, [b, [a,c]]] =
1

2
[b, [a, [a,c]]]+

1

2
[c, [a, [a,b]]]+

1

2
[a, [a, [b,c]]].

Proof. This is a straightforward check.

Theorem 2.3.5. The root vectors {Xα}α∈Φ+
2n+1

and {di}1≤i≤n+1 span gθ.

Proof. Let (gθ)′ = [gθ,gθ]. Recall hθ is the subalgebra spanned by di, 1≤ i≤ n+1. Since

[gθ,hθ]⊂ (gθ)′, it suffices to show root vectors span (gθ)′.

Given an arbitrary element

αi1
◦αi2

◦ · · · ◦αis
(dk) ∈ (gθ)′, (26)

where αi1 , . . ., αis are simple roots in gl2n+1(C) (with possible repetitions.) We claim it is

in the span of root vectors whose expression only involves the roots αi1 , . . ., αis .

We prove this by induction on s. Suppose the statement is true for s= t. Then for s= t+1,

by Lemma 2.3.2, if (26) is nonzero, then the sequence (αi2 , . . . ,αit+1) is admissible. If there

is no repetition of simple roots among them, then the admissible condition implies that

they are a permutation of a sequence of consecutive simple roots, and by Lemma 2.3.3 is a

root vector.

Now we discuss the case when there are repeated roots. List all roots which sit at the left

endpoint of such a pair of repeated roots, and choose the rightmost one, αiℓ , among them.

By design, this root has a twin counterpart to its right, but no pairs of repeated roots to

its right. By the induction on length,

αiℓ+1
◦ · · · ◦αit+1

(dk) (27)

is in the span of root vectors concerning αiℓ+1
, . . ., αit+1 for any k. Therefore, (26) is a linear

combination of elements the form

αi1
◦ · · · ◦αiℓ

◦β1 ◦β2 ◦ · · · ◦βp(dk), (28)
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where (β1,β2, . . . ,βp) is an increasing sequence of consecutive simple roots, and α= αiℓ = βj
for some 1≤ j ≤ p. Notice that if two simple roots γ1 and γ2 are nonadjacent, then for any

z ∈ gθ,

[Xγ1 , [Xγ2 , z]] = [[Xγ1 ,Xγ2 ], z]+ [[Xγ1 , z],Xγ2 ] =−[Xγ2 , [Xγ1 , z]],

therefore up to a sign, one can move αiℓ past all nonadjacent roots to its right in (28), such

that its rightmost end is of the form

1) α ◦ α ◦ γ(y), where γ is immediately larger than α and y is a root vector whose

expression contains only roots nonadjacent to α; or

2) α◦β ◦α◦γ(y),

where (β,α,γ) is an increasing sequence of consecutive simple roots, y is a root vector

whose expression only contains roots nonadjacent to α or β.

In Case 1),

[Xα, [Xα, [Xγ ,y]]] = [Xα, [[Xα,Xγ ],y]] = [[Xα, [Xα,Xγ ]],y] = c[Xα,y].

Here,

c=

{

−4 if {α,β}= {ǫn− ǫn+1,−ǫn+ ǫn+1}

0 otherwise.

Therefore, (28) can be written as an element in the form of (26) of strictly lower length by

the relations in gθ.

In Case 2),

[Xα, [Xβ, [Xα, [Xγ ,y]]]] = [Xα, [Xβ, [[Xα,Xγ ],y]]]

= [Xα, [[Xβ, [Xα,Xγ ]],y]] = [[Xα, [Xβ, [Xα,Xγ ]]],y].

By Lemma 2.3.4,

[Xα, [Xβ, [Xα,Xγ ]]] =
1

2
[Xβ, [Xα, [Xα,Xγ ]]],

+
1

2
[Xγ , [Xα, [Xα,Xβ]]]+

1

2
[Xα, [Xα, [Xβ,Xγ ]]]. (29)

The third term is of the form in Case 1), therefore (29) is in

C[Xα,Xβ]⊕C[Xα,Xγ ].

After taking the bracket with y, one can use the Jacobi identity to rewrite the ending part

in (28), so that it is of the form (26) of smaller length.

For α ∈Φn+1, an element x ∈ gθ is a weight vector of weight α, under the adjoint action

of d1, . . . ,dn, d
′
n+1, if and only if

[di,x] = α(di)x (1≤ i≤ n) [d′
n+1,x] = α(d′

n+1)x.

Define a map s : Φ+
2n+1 → Φn+1 ∪{0}, such that on a simple root α ∈ Π2n+1, Xα is a

weight vector of weight s(α). That is to say,

s(µi−µi+1) = ǫi− ǫi+1 (1≤ i≤ n),

s(µi−µi+1) =−ǫ2n+1−i+ ǫ2n+2−i (n+1≤ i≤ 2n).
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Extend s linearly so that on a sum of simple roots α= α1+ · · ·αi ∈ Φ+
2n+1,

s(α) = s(α1)+ · · ·+s(αi).

The map s specifies the weight of each root vector.

Lemma 2.3.6. Let α ∈ Φ+
2n+1, then Xα is of weight s(α) under the adjoint action of

d1, . . . ,dn,d
′
n+1.

Proof. The statement is clear on a simple root vector. On a sum of simple roots, it

follows from the calculation

[di, [Xα,Xβ]] = [[di,Xα],Xβ]+ [[di,Xβ],Xα] = s(α+β)(di)[Xα,Xβ].

The lemma is proved.

Remark 2.3.7. We can thus view Φn+1 as the set of roots for gθ.

Recall φ is the homomorphism defined in Corollary 2.2.4. We can describe the stalks of

s explicitly.

Proposition 2.3.8. For the map s defined above and 1≤ i < j ≤ n,

s−1(0) = {µi−µ2n+2−i | 1≤ i≤ n},

s−1(ǫi− ǫn+1) = {µi−µn+1},

s−1(−ǫi+ ǫn+1) = {µn+1−µ2n+2−i},

s−1(ǫi− ǫj) = {µi−µj ,µi−µ2n+2−j},

s−1(−ǫi+ ǫj) = {µ2n+2−j −µ2n+2−i,µj −µ2n+2−i}.

Proof. Notice that

0 = (ǫi− ǫi+1)+ · · ·+(ǫn− ǫn+1)+(−ǫn+ ǫn+1)+ · · ·+(−ǫi+ ǫi+1).

Therefore, the element simplifies to be

s−1(ǫi− ǫi+1)+ · · ·+s−1(ǫn− ǫn+1)+s
−1(−ǫn+ ǫn+1)+ · · ·+s−1(−ǫi+ ǫi+1)

= (µi−µi+1)+ · · ·+(µn−µn+1)+(µn+1−µn+2)+ · · ·+(µ2n+1−i−µ2n+2−i)

= µi−µ2n+2−i,

which is in s−1(0). Also, when i < j < n+1,

ǫi− ǫj =(ǫi− ǫi+1)+ · · ·+(ǫj−1− ǫj)

+(ǫj − ǫj+1)+ · · ·+(ǫn− ǫn+1)+(−ǫn+ ǫn+1)+ · · ·+(−ǫj + ǫj+1).

Therefore, we have

s−1(ǫi− ǫi+1)+ · · ·+s−1(ǫn− ǫn+1)+s
−1(−ǫn+ ǫn+1)+ · · ·+s−1(−ǫj + ǫj+1)

= (µi−µi+1)+ · · ·+(µn−µn+1)+(µn+1−µn+2)+ · · ·+(µ2n+1−j −µ2n+2−j)

= µi−µ2n+2−j ,

which is also in s−1(ǫi− ǫj), in addition to µi−µj . The other cases can be checked via a

similar calculation.
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2.4 An algebra isomorphism with U(gln+1⊕gln)

Based on the previous lemma, we re-index the root vectors using weights of di. In

particular, for 1≤ i < j ≤ n, let

X ′
ǫi−ǫj

=Xµi−µj
Xǫi−ǫj =

1

2
Xµi−µ2n+2−j

X ′
−ǫi+ǫj

=Xµ2n+2−j−µ2n+2−i
X−ǫi+ǫj =

1

2
Xµj−µ2n+2−i

.

In addition, for 1≤ i≤ n, let

Xǫi−ǫn+1 =
1

2
Xµi−µn+1 , X−ǫi+ǫn+1 =X−µi+µn+1 .

Also, define hi for 1≤ i≤ n+1 recursively via hn+1 = d′
n+1 and

hi = hi+1+
1

2
Xµi−µ2n+2−i

(1≤ i≤ n). (30)

Recall Φn+1 and Φn are the set defined in (19) and (22), and φ is the map defined after

(18). The following lemma establishes a connection between the various root vectors.

Lemma 2.4.1. The following holds

φ(Xα) = Yα (∀α ∈ Φn+1), (31)

φ(X ′
α) = Yα+Zα (∀α ∈ Φn), (32)

φ(hi) = hi (1≤ i≤ n+1). (33)

Proof. We first prove (32) for a root α= ǫi− ǫj with i < j by fixing j and induction on

i. The base case i= j−1 is true by definition:

φ(X ′
ǫj−1−ǫj

) = φ(Xµj−1−µj
) = φ(ej−1) = ej−1+ej−1 = Yǫj−1−ǫj +Zǫj−1−ǫj .

Suppose the statement is true for i= k, then

φ(Xǫk−1−ǫj ) = φ(Xµk−1−µj
) = φ([Xµk−1−µk

,Xµk−µj
])

= [ek−1+ek−1,Yǫk−ǫj +Zǫk−ǫj ] = Yǫk−1−ǫj +Zǫk−1−ǫj .

The arguments are similar for a negative root in (32).

To show (31) for a root α = ǫi− ǫn+1 for 1≤ i≤ n, we induct on i. The base case when

i= n is as follows

φ(Xǫn−ǫn+1) = φ(
1

2
Xµn−µn+1) =

1

2
φ(en) = en = Yǫn−ǫn+1 .

Suppose the statement is true for i= k,

φ(Xǫk−1−ǫn+1) = φ(
1

2
Xµk−1−µn+1) =

1

2
φ([Xµk−1−µk

,Xµk−µn+1 ]) = φ([ek−1,X
′
ǫk−ǫn+1

])

= [ek−1+ek−1,Yǫk−ǫn+1 ] = Yǫk−1−ǫn+1 .

The arguments are similar for a negative root in (32).
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We now show that (33) is true by induction on i. The case when i = n+1 is given via

definition. The next case when i= n is verified as follows:

φ(hn) = φ(hn+1+
1

2
Xµn−µn+2) = φ(hn+1)+

1

2
[φ(Xµn−µn+1),φ(Xµn+1−µn+2)]

= φ(hn+1)+
1

2
[φ(Xǫn−ǫn+1),φ(X−ǫn+ǫn+1)] = hn+1+[en,fn] = hn.

Using i= n as the base case, suppose the statement is true for i, then by Lemma 2.3.1,

φ(hi−1) = φ(hi)+φ(
1

2
Xµi−1−µ2n+3−i

)

= φ(hi)+
1

2
φ([Xµi−1−µi

, [Xµi−µ2n+2−i
,Xµ2n+2−i−µ2n+3−i

]])

= hi+φ([ei−1, [hi−hi+1,X−ǫi−1+ǫi ]]) = hi+φ([ei−1, [hi−hi+1, fi−1]])

= hi+[Yǫi−1−ǫi +Zǫi−1−ǫi , [hi−hi+1,Yǫi−1+ǫi +Zǫi−1+ǫi ]]

= hi+[Yǫi−1−ǫi +Zǫi−1−ǫi ,Y−ǫi−1+ǫi ] = hi+hi−1−hi = hi−1,

and therefore the statement is also true for i− 1. Notice the root µi−µ2n+2−i = 0 if and

only if i= n+1, and the induction starts at i= n.

We now show (31) via fixing j and induction on i. The base case for (i, j) when i= j−1

(or j = i+1) is as follows

φ(X ′
ǫi−ǫi+1

) = φ(
1

2
Xµi−µ2n+2−(i+1)

) =
1

2
φ([Xµi−µi+1 ,Xµi+1−µ2n+2−(i+1)

])

=
1

2
φ([ei,2(hi+1−hi+2)]) = [Yǫi−ǫi+1 +Zǫi−ǫi+1 ,hi+1−hi+2] = Yǫi−ǫi+1 .

Now suppose (31) holds for the index pair (i, j), then we claim it also holds for (i−1, j):

φ(Xǫi−1−ǫj ) = φ(
1

2
Xµi−1−µ2n+2−j

) =
1

2
φ([Xµi−1−µi

,Xµi−µ2n+2−j
])

= φ([ei−1,X
′
ǫi−ǫj

]) = [Yǫi−1−ǫi +Zǫi−1−ǫi ,Yǫi−ǫj ] = Yǫi−1−ǫj .

Therefore, we have shown (31) by induction. The negative roots follow a similar

argument.

Recall the definition of hi in (30).

Theorem 2.4.2. The morphism φ (resp. φ|gθ) in (18) is an isomorphism of (resp. Lie)

algebras. Moreover, the following set is a basis of gθ.

{Xα}α∈Φn+1 ∪{X ′
α}α∈Φn

∪{h1, . . . ,hn+1}∪{d1, . . . ,dn},

and the elements d1, . . ., dn, h1, . . ., hn+1 pairwise commute.

Proof. These elements are exactly those mentioned in Theorem 2.3.5, hence they span

gθ. By Lemma 2.4.1, they are also linearly independent, because their image forms a linearly

independent set.

2.5 The type B Schur algebra

Recall the elements hi, defined in terms of generators of U i in (30). For 1 ≤ i ≤ n, let

hi = di−hi. By the definition of φ and Lemma 2.4.1, φ(hi) = hi. Now fix a positive integer
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d. Let S be a quotient of U(gln+1(C)⊕gln(C)), by the following relations

h1+ · · ·+hn+1+h1+ · · ·+hn = d, (34)

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n+1, (35)

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n. (36)

These relations are analogous to the type A relations, that is, relations in a presentation

for the type A Schur algebras given by Doty–Giaquinto [5].

On the other hand, let Sj be the quotient of U j under further relations

d1+ · · ·+dn+hn+1 = d, (37)

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n+1, (38)

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n. (39)

Note: once unraveling the notation of root vectors, these relations are purely in terms of

generators ei, fi, and di of U
j .

Proposition 2.5.1. The algebras Sj and S are isomorphic.

Remark 2.5.2. The algebra Sj is isomorphic to the centralizer of the type B Weyl

group studied by Green [6].

Remark 2.5.3. By an unpublished work of Kujawa–Zhu, the hyperoctahedral Schur

algebra admits a presentation as a quotient using Relations (34)–(36). Therefore, the above

proposition provides an alternative presentation of the Schur algebra of type B.

Example 2.5.4. When n = 1, Sj is the algebra with generators e1, f1, d1, d2 subject

to the relations in Proposition 2.1.4 and the following additional relations.

d1+
1

2
d2 = d,

d2(d2−2) · · ·(d2−2d) = 0,

(d2+[e1, f1])(d2+[e1, f1]−2) · · ·(d2+[e1, f1]−2d) = 0,

(d2+
1

2
[e1, f1]−d)(d2+

1

2
[e1, f1]−d−1) · · ·(d2+

1

2
[e1, f1]−2d) = 0.

§3. The algegbra U
i

In the case when N is even, all major results in the previous section have their analogous

counterparts in this section: a root space decomposition of the fixed point subalgebra, an

isomorphism with the two-block Levi Lie subalgebra of U(glN ), an explicit description of

inverse image of such an isomorphism using the notion of root vectors, and an alternative

presentation of the type B Schur algebra.

3.1 The fixed point subalgebra

We start by introducing the fixed point subalgebra and its presentation using generators

similar to those in Section 2.1. We now discuss the case when the underlying Dynkin diagram

has an odd number of vertices. We will abuse some of the previous notation despite this new

assumption on the parity. In particular, let g = gl2n(C) and let Γ be the Dynkin diagram
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of gl2n(C). Then Γ has vertices 1,2, . . . ,2n−1. Let τ ∈Aut(Γ ) be the graph automorphism

such that τ(i) = 2n− i, then τ induces a Lie algebra automorphism on sl2n(C), which

extends to a Lie algebra automorphism θ on gl2n(C) via

θ(Ei) = Fτ(i), θ(Fi) = Eτ(i), θ(Hi) =Hτ(i)+1.

Let gθ = gl2n(C)
θ be the subalgebra of g fixed by θ, and Ei,Fi(1≤ i≤ 2n−1), Hi(1≤ i≤ 2n)

be the Chevalley generators of U(gl2n). Define the following elements in U(gl2n):

ei = Ei+F2n−i (1≤ i≤ n−1),

fi = Fi+E2n−i (1≤ i≤ n−1),

t= En+Fn,

di =Hi+H2n+1−i (1≤ i≤ n).

Let h⊂ g be the Cartan subalgebra of gl2n(C), and hθ = {h ∈ h | θ(h) = h} the subalgebra

of h fixed by θ. Similar to Lemma 2.1.2, we have the following

Lemma 3.1.1. The algebra hθ is spanned by di(1≤ i≤ n).

By Lemma 2.1.1, the elements ei, fi, t, di generate gθ. Let U(gθ) be the universal

enveloping algebra of gθ.

Proposition 3.1.2. The algebra U(gθ) is generated by e1, . . . ,en−1, f1, . . . , fn−1, t,

d1, . . . ,dn, subject to the following relations

tdi = dit (1≤ i≤ n),

diej −ejdi = (δi,j − δi,j+1)ej ,

difj − fjdi = (−δi,j + δi,j+1)fj , (R1)

tei = eit,

tfi = fit (1≤ i≤ n−2),

eiej = ejei |i− j|> 1,

fifj = fjfi |i− j|> 1,

eifj − fjei = δi,jdi−di+1, (R2)

e2n−1t−2en−1ten−1+ te2n−1 = 0,

f2n−1t−2fn−1tfn−1+ tf2n−1 = 0, (R3)

en−1t
2−2ten−1t+ t2en−1 = en−1,

fn−1t
2−2tfn−1t+ t2fn−1 = fn−1. (R4)

Proof. R1): [t,di] = [En+Fn,Hi+H2n+1−i] is only nonzero when i= n, in which case

[t,dn−1] = [En+Fn,Hn+Hn+1]

= [En,Hn]+ [En,Hn+1]+ [Fn,Hn]+ [Fn,Hn+1]

= En−En−Fn+Fn = 0.
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Also, for 1≤ i≤ n and 1≤ j ≤ n−1, 2≤ i+ j ≤ 2n−1 and

diej −ejdi = [Hi+H2n+1−i,Ej +F2n−j ]

= (δi,j − δi,j+1+ δ2n+1−i,j − δ2n+1−i,j+1)Ej

+(−δi,2n−j + δi,2n−j+1− δ2n+1−i,2n−j + δ2n+1−i,2n−j+1)F2n−j

= (δi,j − δi,j+1)(Ej +F2n−j) = (δi,j − δi,j+1)ej .

Similarly,

difj − fjdi = [Hi+H2n+1−i,Fj +E2n−j ]

= (−δi,j + δi,j+1− δ2n+1−i,j + δ2n+1−i,j+1)Fj

+(δi,2n−j − δi,2n−j+1+ δ2n+1−i,2n−j − δ2n+1−i,2n−j+1)E2n−j

= (−δi,j + δi,j+1)(Fj +E2n−j) = (−δi,j + δi,j+1)fj .

R2): The only nontrivial relation to check is eifj − fjei = δi,jdi−di+1, and the calculation

is as follows:

eifj − fjei = [Ei+F2n−i,Fi+E2n−i]

= [Ei,Fi]− [E2n−i,F2n−i]

=Hi−Hi+1−H2n−i+H2n−i+1 = di−di+1.

R3):

e2n−1t−2en−1ten−1+ te2n−1

= (En−1+Fn+1)
2(En+Fn)−2(En−1+Fn+1)(En+Fn)(En−1+Fn+1)

− (En+Fn)(En−1+Fn+1)
2,

where

(En−1+Fn+1)
2En−2(En−1+Fn+1)En(En−1+Fn+1)+En(En−1+Fn+1)

2

= (E2
n−1+2En−1Fn+1+F

2
n+1)En

−2(En−1EnEn−1+Fn+1EnEn−1+En−1EnFn+1+Fn+1EnFn+1)

+En(E
2
n−1+2En−1Fn+1+F

2
n+1)

= (E2
n−1En−2En−1EnEn−1+EnE

2
n−1)

+(2En−1Fn+1En−2Fn+1EnEn−1−2En−1EnFn+1+2EnEn−1Fn+1)

+(F 2
n+1En−2Fn+1EnFn+1+EnF

2
n+1) = 0.

Similarly,

(En−1+Fn+1)
2Fn−2(En−1+Fn+1)Fn(En−1+Fn+1)+Fn(En−1+Fn+1)

2 = 0.

and therefore the relation holds. The other relation can be checked in a similar way.

R4):

en−1t
2−2ten−1t+ t2en−1

= (En−1+Fn+1)(En+Fn)
2−2(En+Fn)(En−1+Fn+1)(En+Fn)

+(En+Fn)
2(En−1+Fn+1),
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where

En−1(En+Fn)
2−2(En+Fn)En−1(En+Fn)+(En+Fn)

2En−1

= En−1(E
2
n+EnFn+FnEn+F

2
n)

−2(EnEn−1En+EnEn−1Fn+FnEn−1En+FnEn−1Fn)

+(E2
n+EnFn+FnEn+F

2
n)En−1

= (En−1E
2
n−2EnEn−1En+E

2
nEn−1)

+(En−1F
2
n −2FnEn−1Fn+F

2
nEn−1)

+En−1(EnFn+FnEn)−2(EnEn−1Fn+FnEn−1Fn)+(EnFn+FnEn)En−1

= En−1(2FnEn+Hn−Hn+1)−2(EnFnEn−1+En−1FnFn)

+(2EnFn− (Hn−Hn+1))En−1

= [En−1,Hn] = En−1.

On the other hand,

Fn+1(En+Fn)
2−2(En+Fn)Fn+1(En+Fn)+(En+Fn)

2Fn+1

= Fn+1(E
2
n+EnFn+FnEn+F

2
n)

−2(EnFn+1En+EnFn+1Fn+FnFn+1En+FnFn+1Fn)

+(E2
n+EnFn+FnEn+F

2
n)Fn+1

= (Fn+1F
2
n −2FnFn+1Fn+F

2
nFn+1)

+(Fn+1E
2
n−2EnFn+1En+E

2
nFn+1)

+Fn+1(EnFn+FnEn)−2(EnFn+1Fn+FnFn+1En)+(EnFn+FnEn)Fn+1

= Fn+1(2EnFn− (Hn−Hn+1))−2(Fn+1EnFn+FnEnFn+1)

+(2FnEn+Hn−Hn+1)Fn+1

= [Fn+1,Hn+1] = Fn+1.

Therefore,

en−1t
2−2ten−1t+ t2en−1 = En−1+Fn+1 = en−1.

The other relation can be checked similarly.

The fact that these are the only relations follows from the proof of Proposition 2.1.4.

Remark 3.1.3. The defining relations in Proposition 3.1.2 can be deduced from those

in Proposition 2.1.4 by exploring the compatibility of a certain imbedding glN → glN+1 and

the involutions on both sides.

3.2 An algebra homomorphism between U
i and U(gln⊕gln)

Denote U i =U(gθ) based on the parity assumption in this section. On the other hand, let

e1, . . . , en−1, f1, . . . ,fn−1, h1, . . . ,hn be the Chevalley generators of the first copy of gln(C)

in gln(C)⊕gln(C), and e1, . . . , en−1, f1, . . . ,fn−1, h1, . . . ,hn the Chevalley generators of the

second copy.

Lemma 3.2.1. There is an algebra homomorphism: ρ : U i → U(gln ⊕ gln) via the

following assignment

ei 7→ ei+ei (1≤ i≤ n−1),
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fi 7→ fi+fi (1≤ i≤ n−1),

di 7→ hi+hi (1≤ i≤ n),

t 7→ hn−hn.

Proof. We check that all the relations are satisfied in U(gln⊕gln) after applying ρ.

R1) The first relation becomes [hi+hi,hn+hn] = 0 which is true. The other two relations

are straightforward to check.

R2) becomes [ei+ ei,hn−hn] = 0 for 1 ≤ i ≤ n− 2 which is true. The other relation in

R2) are straightforward to check.

For R3), we have

ρ(e2n−1t−2en−1ten−1+ te2n−1)

= (en−1+en−1)
2(hn−hn)−2(en−1+en−1)(hn−hn)(en−1+en−1)+(hn−hn)(en−1+en−1)

2.

Since generators of the first block commute with those of the second block, it yields

(en−1+en−1)
2hn−2(en−1+en−1)hn(en−1+en−1)+hn(en−1+en−1)

2

= (e2n−1+2en−1en−1+e
2
n−1

)hn

−2(en−1hnen−1+en−1hnen−1+en−1hnen−1+en−1hnen−1)

+hn(e
2
n−1+2en−1en−1+e

2
n−1

)

= e2n−1hn−2en−1hnen−1+hne
2
n−1

= en−1(hnen−1− [hn, en−1])−2en−1hnen−1+(en−1hn+[hn, en−1])en−1 = 0.

By symmetry,

(en−1+en−1)
2hn−2(en−1+en−1)hn(en−1+en−1)+hn(en−1+en−1)

2 = 0

and so R3) is satisfied. The other relation in R3) can be checked similarly.

For R4), we have

ρ(en−1t
2−2ten−1t+ t2en−1)

= (en−1+en−1)(hn−hn)
2−2(hn−hn)(en−1+en−1)(hn−hn)+(hn−hn)

2(en−1+en−1).

Since generators of different blocks commute, it becomes

en−1(hn−hn)
2−2(hn−hn)en−1(hn−hn)+(hn−hn)

2en−1

= en−1(h
2
n−2hnhn+h

2
n)

−2(hnen−1hn−hnen−1hn−hnen−1hn+hnen−1hn)

+(h2n−2hnhn+h
2
n)en−1

= en−1h
2
n−2hnen−1hn+h

2
nen−1

= (hnen−1+en−1)hn−2hnen−1hn+hn(en−1hn−en−1)

= [en−1,hn] = en−1.

On the other hand, there is

en−1(hn−hn)
2−2(hn−hn)en−1(hn−hn)+(hn−hn)

2en−1

= en−1(h
2
n−2hnhn+h

2
n)

−2(hnen−1hn−hnen−1hn−hnen−1hn+hnen−1hn)
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+(h2n−2hnhn+h
2
n)en−1

= en−1h
2
n−2hnen−1hn+h

2
nen−1

= (hnen−1+en−1)hn−2hnen−1hn+hn(en−1hn−en−1)

= [en−1,hn] = en−1.

Therefore, we must have

ρ(en−1t
2−2ten−1t+ t2en−1) = en−1+en−1 = ρ(en−1).

The other relation in R4) can be checked similarly. Lemma is proved.

3.3 Compatibility of two actions

In this section, we will see that the homomorphism ρ defined in Section 3.2 is compatible

with the actions of U i and U(gln ⊕ gln) on V ⊗. In particular, there is a vector space

automorphism on V ⊗d which intertwines these two actions. We will also show that this

linear map intertwines two (ostensibly different) Weyl group actions, which are known to be

Schur–Weyl dual of U i and U(gln⊕gln), respectively. Let V be the vector space over C with

ordered basis B1 = {v1, . . . ,vn,vn, . . . ,v1}. Since V is 2n-dimensional, it is isomorphic to the

C-vector space with ordered basis B2 = {w1, . . . ,wn,w1, . . . ,wn}. Let L : V → V be the linear

map such that L(vi) = wi+wi, L(vi) = wi−wi for 1 ≤ i ≤ n. Notice L is an isomorphism

if and only if the characteristic of the underlying field is odd. Let L⊗d : V ⊗d → V ⊗d be the

linear map such that

L⊗d(u1⊗·· ·⊗ud) = L(u1)⊗·· ·⊗L(ud) ui ∈ V,∀i.

We first show that L⊗d intertwines two Weyl group actions. The type B Weyl group Bd is

the group with generators s1, . . . , sd, subject to relations

s2i = 1 (1≤ i, j ≤ d) sisj = sjsi (|i− j|> 1),

sisjsi = sjsisj (|i− j|= 1,1≤ i, j ≤ d−1),

sd−1sdsd−1sd = sdsd−1sdsd−1.

The first action of Bd on V ⊗d, denoted by f1 : CBd → End(V ⊗d), was first given by Green

[6] and defined as follows:

f1(si)(vk1 ⊗·· ·⊗vki
⊗vki+1 ⊗·· ·⊗vkd

) = vk1 ⊗·· ·⊗vki+1 ⊗vki
⊗·· ·⊗vkd

(1≤ i≤ d−1),

f1(sd)(vk1 ⊗·· ·⊗vkd
) = vk1 ⊗·· ·⊗vkd

.

Here, k1, . . . ,kd ∈ {1, . . . ,n,n, . . . ,1}, and i= i.

On the other hand, another action f2, was defined in Hu–Stoll [7] and Mazorchuk–

Stroppel [13], with its quantum version in Shoji–Sakamoto [14]. Using the basis element wi,

this is the action below:

f2(si)(wk1 ⊗·· ·⊗wki
⊗wki+1 ⊗·· ·⊗wkd

) = wk1 ⊗·· ·⊗wki+1 ⊗wki
⊗·· ·⊗wkd

(1≤ i≤ d−1),

f2(sd)(wk1 ⊗·· ·⊗wkd
) = (−1)ǫ(kd)wk1 ⊗·· ·⊗wkd

,

where k1, . . . ,kd ∈ {1, . . . ,n,1, . . . ,n}, and ǫ(kd) is 1 if kd is unbarred, and −1 if kd is barred.
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Proposition 3.3.1. The automorphism L⊗d on V ⊗d induced by L, intertwines the two

actions of the Weyl group Bd, in the following sense

L⊗d(f1(s)(u)) = f2(s)(L
⊗d(u)) ∀s ∈Bd,u ∈ V ⊗d. (40)

In other words, the following diagram holds

Proof. It is enough to show equation (40) holds for any si with 1≤ i≤ d and when u is

any pure tensor. When 1≤ i≤ d−1, this is a straightforward check. When i= d:

1) When u= vi1 ⊗·· ·⊗vid , where i1, . . . , id−1 can be either barred or unbarred, and id is

unbarred,

L⊗d(f1(sd)(u)) = L⊗d(vi1 ⊗·· ·⊗vid−1
⊗vid)

= L(ei1)⊗·· ·⊗L(eid)⊗ (wid −wid
)

f2(sd)(L
⊗d(u)) = f2(sd)(L(vi1)⊗·· ·⊗L(vid−1

)⊗ (wid +wid
))

= L(ei1)⊗·· ·⊗L(eid)⊗ (wid −wid
).

2) On the other hand, when u = vi1 ⊗ ·· ·⊗ vid , where i1, . . . , id−1 can be either barred or

unbarred, and id is unbarred,

L⊗d(f1(sd)(u)) = L⊗d(vi1 ⊗·· ·⊗vid−1
⊗vid)

= L(e1)⊗·· ·L(eid−1
)⊗ (wid +wid

)

f2(sd)(L
⊗d(u)) = f2(sd)(L(ei1)⊗·· ·⊗L(eid−1

)⊗ (wid −wid
))

= L(ei1)⊗·· ·⊗L(eid−1
)⊗ (wid +wid

).

The space V can be regarded as the defining representation for gl(V ) = gl2n(C), using

the ordered basis B1. For future convenience, we will relabel the barred vectors as

B1 = {v1, . . . ,vn,vn+1 = vn, . . . ,v2n = v1}.

As a subalgebra of gl2n(C), gl
θ
2n also acts on V, and denote this action as g1 : U(glθ2n)→

End(V ). It induces an action on V ⊗d, denoted as g1 by an abuse of notation, via

g1(x)(vi1 ⊗·· ·⊗vid) = g1(x)(vi1)⊗·· ·⊗g1(x)(vid).

This action is known to commute with the action f1 of Bd on V ⊗d, when glθ2n gets replaced

by its group analogue in [6], or in the quantum case in [1].

Using the ordered basis B2, one can define an action of gln(C)⊕gln(C) on V, by regarding

the vector space V1 spanned by {w1, . . . ,wn} as the defining representation for the first copy

gl(V1) = gln and the vector space V−1 spanned by {w1, . . . ,wn} as the defining representation

for the second copy gl(V−1) = gln. We denote this action as g2 : U(gln(C)⊕ gln(C)) →

End(V ), and by an abuse of notation also denote by g2 the induced action on V ⊗d. This

action is known to commute with the f2 action of Bd on V ⊗d (see [7], [13].)
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Proposition 3.3.2. The automorphism L⊗d intertwines the action of U i and U(gln⊕

gln), with respect to the homomorphism ρ, in the following sense

g2(ρ(x))(L
⊗d(u)) = L⊗d(g1(x)(u)) ∀x ∈ U i,u ∈ V ⊗d.

In other words, the following diagram commutes

Proof. It is enough to check the following holds for any x that is a generator among

ei, fi,t,di, and for any v ∈ V .

g2(ρ(x))(L(v)) = L(g1(x)(v)). (41)

The main claim then follows from extending the action of U i and U(gln⊕gln) from V to

V ⊗d:

1) To check that (41) holds for x = ej , 1 ≤ j ≤ n− 1, we first check it when v = vi for

1≤ i≤ n:

g2(ρ(ej))L(vi) = g2(ρ(ej))(wi+wi) = g2(ej +ej)(wi+wi) = δj+1,i(wi−1+wi−1),

L(g1(ej)(vi)) = L(g1(Ej +F2n−j)vi) = L(δj+1,ivi−1) = δj+1,i(wi−1+wi−1).

Here, the last equality holds because n+1 ≤ 2n− j ≤ 2n− 1 and F2n−j = E2n−j+1,2n−j ,

where Epq is the matrix unit with 1 in the (p,q)-position and 0 elsewhere. Since 2n− j 6= i,

the action of F2n−j is zero on vi.

When v = vi for 1≤ i≤ n:

g2(ρ(ej))(L(vi)) = g2(ρ(ej))(wi−wi) = g2(ej +ej)(wi−wi) = δj+1,i(wi−1−wi−1),

L(g1(ej)(vi)) = L(g1(Ej +F2n−j)(v2n+1−i)) = L(δ2n−j,2n+1−iv2n+2−i),

= δi,j+1L(vi−1) = δi,j+1(wi−1−wi−1).

The second equality holds because n+1≤ 2n+1− i≤ 2n, 2≤ j+1≤ n, j+1 6= 2n+1− i.

Hence the action of Ej = Ej,j+1 is zero on v2n+1−i.

2) We now check that (41) holds for x= fj , 1≤ j ≤ n−1 and v = vi, 1≤ i≤ n:

g2(ρ(fj))(L(vi)) = g2(ρ(fj))(wi+wi) = g2(fj +fj)(wi+wi) = δj,i(wi+1+wi+1),

g1(fj)(vi) = g1(Fj +E2n−j)(vi) = δj,ivi+1,

L(g1(fj)(vi)) = δj,i(wi+1+wi+1).

Here, E2n−j acts on vi by zero. For a more careful discussion, please refer to case 1).

When v = vi, 1≤ i≤ n,

g2(ρ(fj))L(vi) = g2(fj +fj)(wi−wi) = δj,i(wi+1−wi+1),

g1(fj)(vi) = g1(Fj +E2n−j)(v2n+1−i) = δ2n+1−j,2n+1−iv2n−i = δi,jvi+1,

L(g1(fj)(vi)) = δi,j(wi+1−wi+1).

Here, Fj acts on v2n+1−i by zero.

https://doi.org/10.1017/nmj.2020.16 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2020.16


QUASI-SPLIT SYMMETRIC PAIRS 23

3) We now check the case when x= t, v = vi for 1≤ i≤ n:

g2(ρ(t))L(vi) = g2(hn−hn)(wi+wi) = δn,i(wi−wi),

g1(t) = (En+Fn)vi = δn+1,ivi−1+ δn,ivi+1 = δn+1,ivn+ δn,ivn+1

= δn+1,ivn+ δn,ivn = δn,ivn,

L(g1(t)(vi)) = δn,i(wn−wn).

When v = vi for 1≤ i≤ n:

g2(ρ(t))L(vi) = g2(hn−hn)(wi−wi) = δi,n(wn+wn),

g1(t)(vi) = g1(En+Fn)(v2n+1−i) = δn+1,2n+1−iv2n−i = δi,nvn,

L(g1(t)(vi)) = δi,n(wn+wn).

4) We now prove the case when x= dj and v = vi, for 1≤ i, j ≤ n:

g2(ρ(dj))(L(vi)) = g2(hj +hj)(wi+wi) = δi,j(wi+wi),

g1(dj)(vi) = g1(Hj +H2n+1−j)(vi) = δi,jvi,

L(g1(dj)(vi)) = δi,j(wi+wi).

When v = vi, 1≤ i≤ n:

g2(ρ(dj))(L(vi)) = g2(hj +hj)(wi−wi) = δi,j(wi−wi),

g1(dj)(vi) = g1(Hj +H2n+1−j)(v2n+1−i) = δi,jv2n+1−i = δi,jvi,

L(g1(dj)(vi)) = δi,j(wi−wi).

Hence we have checked all cases.

3.4 Root vectors in U
i

We also introduce the notion of root vectors for gl2n(C)
θ as we did prior to Lemma

2.3.1. Similar to the notation earlier, we distinguish between the first and second copy

in gln(C)⊕ gln(C) by letting g1 = gln(C), g2 = gln(C), and for α ∈ Φn a root in gln, let

Zα ∈ g1,Zα ∈ g2 be the associated root vectors. We adopt the previous notation that ǫi =d∗
i

for 1≤ i≤ n and µi =H∗
i for 1≤ i≤ 2n. Let

Φ+
2n = {µi−µj | 1≤ i < j ≤ 2n},

Π2n = {µi−µi+1 | 1≤ i≤ 2n−1},

be the set of positive roots and simple roots in gl2n(C), respectively. For any α∈Φ+
2n, define

root vectors Xα recursively as follows. For the simple roots:

Xµi−µi+1 = ei (1≤ i 6= n−1),

Xµn−µn+1 = t (1≤ i 6= n−1),

Xµi−µi+1 = f2n−i (n+1≤ i 6= 2n−1).

On α that is a sum of simple roots, Xα is defined recursively as (24). Versions of Lemmas

2.3.1 through 2.3.5 is also true for root vectors in gθ. In particular, we have the following.

Lemma 3.4.1. The root vectors {Xα}α∈Φ+
2n
, {di}1≤i≤n and {t}, together span gθ.
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For α ∈Φn, an element x ∈ gθ is a weight vector of weight α, under the adjoint action of

d1, . . . ,dn, if and only if

[di,x] = α(di)x (1≤ i≤ n).

Define a map t : Φ+
2n → Φn∪{0}, such that on the simple roots α ∈Π2n, Xα is a weight

vector of weight t(α). That is to say,

t(µi−µi+1) = ǫi− ǫi+1 (1≤ i≤ n−1),

t(µn−µn+1) = 0,

t(µi−µi+1) =−ǫ2n−i+ ǫ2n+1−i (n+1≤ i≤ 2n−1).

Extend t linearly so that on a sum of simple roots α= α1+ · · ·αi ∈ Φ+
2n, define

t(α) = t(α1)+ · · ·+ t(αi).

Then a version of Lemma 2.3.6 is also true. Moreover, the stalks of t are described below.

Lemma 3.4.2. For the map t defined above,

t−1(0) = {µi−µ2n+1−i | 1≤ i≤ n},

t−1(ǫi− ǫn) = {µi−µn} (1≤ i≤ n−1),

t−1(−ǫi+ ǫn) = {µn−µ2n+1−i} (1≤ i≤ n−1),

t−1(ǫi− ǫj) = {µi−µj ,µi−µ2n+1−j} (1≤ i < j ≤ n−1),

t−1(−ǫi+ ǫj) = {µj −µ2n+1−i,µ2n+1−j −µ2n+1−i} (1≤ i < j ≤ n−1).

Proof. The proof is very similar to that of Proposition 2.3.8 and is left to the reader.

3.5 An algebra isomorphism with U(gln⊕gln)

We now re-index the root vectors using their weights. Specifically, define t1, . . . ,tn−1,tn
such that tn = t,

ti−1 = ti+Xµi−1−µ2n+1−i
(2≤ i≤ n). (42)

For positive root vectors,

Xǫi−ǫn =Xµi−µn
(1≤ i≤ n−1),

Xǫi−ǫj =Xµi−µj
, X ′

ǫi−ǫj
=Xµi−µ2n+1−j

(1≤ i < j ≤ n−1).

Recall that ei,fi,hi ∈ g1 and ei,fi,hi ∈ g2 are Chevalley generators of each copy of gln(C).

Lemma 3.5.1. Under the map ρ, for α ∈ Φn

ρ(ti) = hi−hi (1≤ i≤ n), (8)

ρ(Xα) = Zα+Zα, (9)

ρ(X ′
α) = Zα−Zα. (10)

In particular, ρ is an isomorphism between Lie algebras.

Proof. We first prove (44) for a positive root α = ǫi− ǫj , by inducting on i. The base

case when i= j−1 is given by the definition of ρ on ej−1 =Xǫj−1−ǫj . Now we claim if (43)
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is true for (i, j), it is also true for (i−1, j):

ρ(Xǫi−1−ǫj ) = ρ([Xǫi−1−ǫi ,Xǫi−ǫj ]) = [ρ(ei−1),Zǫi−ǫj +Zǫi−ǫj ]

= [Zǫi−1−ǫi +Zǫi−1−ǫi ,Zǫi−ǫj +Zǫi−ǫj ] = Zǫi−1−ǫj +Zǫi−1−ǫj .

Now let us prove (43). The base case when i = n follows from the definition of ρ on t.

Suppose (43) is true for i, then we claim it is also true for i−1:

ρ(ti−1) = ρ([Xµi−1−µ2n+2−i
)+ρ(ti)

= ρ([Xµi−1−µi
, [Xµi−µ2n+1−i

,Xµ2n+1−i−µ2n+2−i
]])+ρ(ti)

= ρ([ei−1, [ti,X−ǫi−1+ǫi ]])+ρ(ti) = [ei−1, [ti, fi−1]]+ρ(ti)

= [Zǫi−1−ǫi +Zǫi−1−ǫi , [hi−hi,Z−ǫi−1+ǫi +Z−ǫi−1+ǫi ]]+hi−hi
= [Zǫi−1−ǫi +Zǫi−1−ǫi ,Z−ǫi−1+ǫi −Z−ǫi−1+ǫi ]+hi−hi
= hi−1−hi−hi−1+hi+hi−hi = hi−1−hi−1.

Now we prove (45) by induction on i. The base case when i= j−1 (or j = i+1) is as follows

ρ(Xǫi−ǫi+1) = ρ(Xµi−µ2n−i
) = ρ([Xµi−µi+1 ,Xµi+1−µ2n−i

]) = ρ([ei,ti+1− ti+2])

= [Xǫi−ǫi+1 +Xǫi−ǫi+1 ,hi+1−hi+1] =Xǫi−ǫi+1 −Xǫi−ǫi+1 .

Now suppose (45) is true for (i, j) with i < j < 2n+1−j, we claim it is also true for (i−1, j):

ρ(Xǫi−1−ǫj ) = ρ(Xµi−1−µ2n+1−j
) = ρ([Xµi−1−µi

,Xµi−µ2n+1−j
]) = ρ([ei,X

′
ǫi−ǫj

])

= [Xǫi−1−ǫi +Xǫi−1−ǫi ,Xǫi−ǫj −Xǫi−ǫj ] =Xǫi−1−ǫj −Xǫi−1−ǫj .

Hence we have proved the induction step for positive roots. The arguments for negative

roots are similar.

3.6 The type B Schur algebra

Similar to the previous case, fix a positive integer d, and let S be the quotient of

U(gln(C)⊕gln(C)) under the following relations

h1+ · · ·+hn+h1+ · · ·+hn = d,

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n,

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n.

Further, recall that ti is defined recursively using generators of U i in (42). Define the

following element

hi =
1

2
(ti+di), hi =

1

2
(−ti+di), (1≤ i≤ n).

Then Lemma 3.5.1 and the definition of ρ implies that ρ(hi) = hi and ρ(hi) = hi.

Therefore, let Si be the quotient of U(gθ) under the following relations

d1+ · · ·+dn = d, (46)

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n, (47)

hi(hi−1) · · ·(hi−d) = 0, 1≤ i≤ n. (48)
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Note: once unraveling the notation of root vectors, these relations are purely in terms of

generators ei, fi, t and di of U
i.

Proposition 3.6.1. The algebras S and Si are isomorphic.

Example 3.6.2. When n = 1, Si is the quotient of C[t] under the following relations,

where d is a positive integer,

(t+d)(t+d−2) · · ·(t−d+2)(t−d) = 0.

We refer to [11] for a presentation in the quantum case.

Example 3.6.3. When n= 2, U(gl4(C)
θ) is generated by e, f ,t,d1,d2. Relations (46)–

(48) become explicitly as follows.

d1+d2 = d,

([e, f ]+d1)([e, f ]+d1−2) · · ·([e, f ]+d1−2d) = 0,

(−[e, f ]+d1)(−[e, f ]+d1−2) · · ·(−[e, f ]+d1−2d) = 0,

(t+d2)(t+d2−2) · · ·(t+d2−2d) = 0,

(−t+d2)(−t+d2−2) · · ·(−t+d2−2d) = 0.

Remark 3.6.4. Throughout this article, our choice of the ground field C is based on the

above desired result and the choice of ground field in the unpublished work of Kujawa–Zhu.

Nevertheless, our results also hold for any algebraically closed field k with characteristic

not equal to 2, without alternation of the proofs.
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