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SYNCHRONIZATION AND FLUCTUATION THEOREMS
FOR INTERACTING FRIEDMAN URNS

NEERAJA SAHASRABUDHE,∗ Indian Institute of Technology Bombay

Abstract

We consider a model of N interacting two-colour Friedman urns. The interaction model
considered is such that the reinforcement of each urn depends on the fraction of balls of
a particular colour in that urn as well as the overall fraction of balls of that colour in all
the urns combined together. We show that the urns synchronize almost surely and that
the fraction of balls of each colour converges to the deterministic limit of one-half, which
matches with the limit known for a single Friedman urn. Furthermore, we use the notion
of stable convergence to obtain limit theorems for fluctuations around the synchronization
limit.
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1. Introduction

The classical Pólya urn scheme consists of an urn containing x balls of one colour and y balls
of another colour. At time t , one ball is drawn randomly from the urn and its colour observed;
it is then replaced in the urn, along with a ball of the same colour. This self-reinforcement is
carried out repeatedly. Asymptotic properties of the Pólya urn process, and its generalizations
and applications have been studied extensively (see [21] and [17], respectively). The Friedman
urn model (proposed by Bernard Friedman in 1949 [13]) is a generalization of a Pólya urn, where
the chosen ball is replaced with α balls of the same colour and β balls of another colour. It is
known that, for a Pólya urn, the fraction of balls of either colour approaches, with probability 1,
a random limit that is distributed according to a beta distribution. In the case of Friedman urns,
this limit is deterministic and equal to 1

2 with probability 1.
Interacting urn models have been an area of interest recently. For instance, in [5] and [18]

lattice-based interacting Pólya urns were studied. In [2] a graph-based model, with urns at each
vertex and pairwise interactions, was considered. In [16] interacting urns with exponential
reinforcement were studied. In [19] the authors considered an interacting urn model in which
a ball is sampled from each urn and then replaced in the urn along with a random number of
balls of the same colour.

Building on the work of Dai Pra et al. [9] and Crimaldi et al. [7], we study the asymptotic
properties of N (interacting) Friedman urns, each containing balls of two colours, say white
and black. The reinforcement scheme is such that the probability of adding α white and β black
balls to any urn at any time t depends not only on the fraction of balls of a given colour in that
particular urn, but also on the fraction of that colour across all the N urns. We show that the urns
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synchronize almost surely and that the fraction of balls of each colour in every urn converges
to the common deterministic limit of 1

2 . Rates of L2-convergence are obtained to illustrate the
crucial difference between the synchronization phenomenon of interacting Friedman urns and
the interacting Pólya urns of [9]. Furthermore, we study fluctuations in the fraction of balls of
each colour as well as the overall fraction of balls of a colour around the limit 1

2 . The results
obtained here are, in spirit, similar to those obtained in [12]. By that we mean that the scaling
phenomenon resembles that observed in [12]; however, as one would expect, the regions for
Gaussian and non-Gaussian behaviour depend on the interaction parameter.

The paper is organized as follows. We describe the model in detail in the next subsection. In
Section 2 we show that the urns synchronize almost surely and obtain the rate of convergence.
In Section 3 we prove limit theorems for fluctuations in the fraction of balls of each colour
around the limit 1

2 , and fluctuations between the fraction of balls of a colour in one urn and
the overall fraction of balls of that colour. Appendix A contains some relevant concepts and
results pertaining to the notions of stable convergence and stochastic approximation used in the
proofs.

1.1. Basic setup

Consider N urns denoted by U(1), . . . , U(N) such that at time t = 0 each urn contains
W0(i) > 0 white and B0(i) > 0 black balls. Let N0(i) = W0(i) + B0(i) denote the total
number of balls in each urn at the beginning, and let Wt(i) and Bt(i) respectively denote the
number of white and black balls in U(i) at time t . Then

Wt+1(i) = Wt(i) + Yt+1(i), (1)

where Yt+1(i) denotes the number of white balls added to urn U(i) at time t + 1. We assume
that Yt (i) for i = 1, . . . , N are conditionally independent given the past. We denote the total
number of balls in each urn at time t by Nt(i). For notational simplicity, we start with the
same number of balls (denoted by N0) in each urn and add α + β balls with probability 1 at
each time step. This assumption does not affect the asymptotic properties on the urn. Thus,
Nt = t (α+β)+N0 for t ≥ 1. Note that we have dropped the i since Nt is now independent of i.

Let Zt(i) be the fraction of white balls in U(i) at time t, and let Zt = (1/NNt)
∑N

i=1 Wt(i) =
(1/N)

∑
i Zt (i) be the overall fraction of white balls. Fix α, β ∈ N. Then consider the

reinforcement model

P(Yt+1(i) = w | Ft ) =
{

pZt + (1 − p)Zt (i) for w = α,

1 − pZt − (1 − p)Zt (i) for w = β,

for some fixed p ∈ [0, 1]. The parameter p is called the interaction parameter. When p = 0,

we obtain N -independent Friedman urns, each mimicking the classical single-urn Friedman
model. While Zt denotes the overall fraction of white balls throughout this paper, to avoid any
confusion, we will explicitly mention whenever it represents the fraction of white balls for the
single-urn model.

Remark 1. This model is inspired from the work carried out on interacting Pólya urns in [9].
The tools and concepts used to obtain results for the asymptotic behaviour of interacting
Friedman urns are similar to those used in [7] and [9]. As and when necessary, we point
out the differences and similarities between the two.

Before going into details, we define the setup rigorously. On a probability space (�, F , P),

consider a family of Uniform[0, 1] random variables U(t, i), t, i ∈ N. Define by Ft the σ -field
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generated by {U(s, i); 0 ≤ s ≤ t, i ∈ N}. Define

Yt+1(i) =
{

α if U(t + 1, i) ≤ pZt + (1 − p)Zt (i),

β otherwise.

Then the Yt (i) are conditionally independent given Ft .
For a classical Pólya urn, it is known that the limiting distribution of the fraction of balls of

either colour is given by a beta distribution, whereas, for a classical Friedman urn, this limit is a
deterministic quantity, namely, 1

2 . The following computation illustrates the underlying reason
as to why the asymptotic behaviour of Pólya urns and Friedman urns is different:

E[Zt+1(i) | Ft ] = E

[
Wt+1(i)

Nt+1

∣∣∣∣ Ft

]
= E

[
Wt(i) + Yt+1(i)

Nt+1

∣∣∣∣ Ft

]
= Nt

Nt+1
Zt(i) + 1

Nt+1
[α(pZt + (1 − p)Zt (i))

+ β(1 − pZt − (1 − p)Zt (i))]
= Nt + (α − β)(1 − p)

Nt+1
Zt(i) + (α − β)p

Nt+1
Zt + β

Nt+1
, (2)

E[Zt+1 | Ft ] = E

[
1

N

∑
i

Zt+1(i)

∣∣∣∣ Ft

]
= 1

N

∑
i

E[Zt+1(i) | Ft ]

= Nt + (α − β)

Nt+1
Zt + β

Nt+1
. (3)

In the case of Pólya urns, α = 1 and β = 0. This means that in that case, Zt is a martingale.
Friedman urns do not satisfy the martingale property. This marks the essential difference
between the two urn models. In the next section we prove an important synchronization
result for interacting Friedman urns. We fix the following notation. By ρ we denote the ratio
(α − β)/(α + β) with α �= β > 0. Without loss of generality, we can assume that ρ > 0. We
also assume that the interaction is nontrivial, that is, 0 < p < 1.

2. Synchronization

From (1), we obtain

Zt+1(i) = 1

Nt+1
[NtZt (i) + Yt+1(i)].

We already know that in the case of a single urn, the fraction of balls of each colour converges
to 1

2 almost surely (a.s.). In order to prove a similar result for interacting urns, we first show
L2-synchronization, that is, we show that limt→∞ E[(Zt (i) − Zt)

2] = 0. We also prove an
almost-sure synchronization result.

The following theorem explicitly states the rates of convergence (to 0) of var(Zt ), var(Zt (i))

and var(Zt − Zt(i)) for i = 1, . . . , N . While it is expected that all these quantities converge
to 0, it is interesting to see that they do not always (i.e. in every regime determined by the
interacting parameter p) go to 0 at the same rate. For two positive sequences at and bt , we
write at ∼ bt if 0 < lim inf t→∞(at/bt ) ≤ lim supt→∞.(at /bt ) < ∞.
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2.1. L2-synchronization

Theorem 1. Set ρ = (α − β)/(α + β) > 0. For every i ∈ {1, . . . , N}, the following
asymptotic estimates hold:

var(Zt ), var(Zt (i)) ∼

⎧⎪⎨⎪⎩
t2ρ−2 for ρ > 1

2 ,

t−1 log t for ρ = 1
2 ,

t−1 for ρ < 1
2 ,

var(Zt (i) − Zt) ∼

⎧⎪⎨⎪⎩
t2ρ−2ρp−2 for ρ > 1/2(1 − p),

t−1 log t for ρ = 1/2(1 − p),

t−1 for ρ < 1/2(1 − p).

Here var(X) denotes the variance of a random variable X.

Remark 2. The L2-synchronization result in [9] for the Pólya urns can be obtained by substi-
tuting ρ = 1.

Remark 3. (Synchronization rate.) Since 0 < p < 1, 1/2(1 − p) > 1
2 . So, the regime

{ρ < 1
2 } is a subset of {ρ < 1/[2(1 − ρ)]}. Thus, for a given i, for ρ < 1

2 , the L2 rate of
convergence of var(Zt ), var(Zt (i)), and var(Zt −Zt(i)) are the same. However, in the interval
1
2 < ρ < 1

2 (1 −p), the var(Zt −Zt(i)) converges to 0 faster than both var(Zt ) and var(Zt (i)).
Indeed, the difference var(Zt (i) − Zt) converges to 0 at the rate 1/t for ρ < 1/[2(1 − p)],
while both var(Zt ) and var(Zt (i)) converge at a rate t2ρ−2 for 1

2 < ρ < 1/[2(1 − p)].
Again, for ρ > 1/[2(1 − p)], var(Zt (i) − Zt) converges at a faster rate. This means that the
L2-synchronization rate is faster than (or equal to) the rate at which Zt , Zt (i) → 1

2 in L2. This
is a deviation from the behaviour observed in the interacting Pólya urns model.

To be able to prove Theorem 1, we first do some computations to obtain recurrence relations
for var(Zt ) and var(Zt (i)), and the difference var(Zt (i) − Zt). The proof of the theorem then
uses the same tools as those in [9]. In the following discussion, we denote pZt + (1 − p)Zt (i)

by ai whenever convenient.
Let us first consider var(Zt+1) = E[var(Zt+1 | Ft )] + var(E[Zt+1 | Ft ]). Then

var(E[Zt+1 | Ft ]) = var

(
Nt + (α − β)

Nt+1
Zt + β

Nt+1

)
=

(
Nt + (α − β)

Nt+1

)2

var(Zt )

and

E[var(Zt+1 | Ft )] = E

[
1

N2

∑
i

var(Zt+1(i) | Ft )

]
= E

[
1

N2

∑
i

var

(
Yt+1(i)

Nt+1

∣∣∣∣ Ft

)]
= E

[
1

N2N2
t+1

∑
i

α2ai + β2(1 − ai) − (αai + β(1 − ai))
2
]

= E

[
1

N2N2
t+1

∑
i

(α − β)2ai(1 − ai)

]
= 1

N2N2
t+1

(α − β)2
∑

i

E[ai(1 − ai)]
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= (α − β)2

N2N2
t+1

∑
i

E[pZt + (1 − p)Zt (i) − p2Z2
t − (1 − p)2Z2

t (i)

− 2p(1 − p)ZtZt (i)]

= (α − β)2

NN2
t+1

E

[
Zt − p(2 − p)Z2

t − (1 − p)2

N

∑
i

Z2
t (i)

]

= (α − β)2

NN2
t+1

[
1

2
− p(2 − p)

(
var(Zt ) + 1

4

)
− (1 − p)2

N

∑
i

(
var(Zt (i)) + 1

4

)]

= (α − β)2

NN2
t+1

[
1

4
− p(2 − p) var(Zt ) − (1 − p)2 var(Zt (j))

]
for any j ∈ {1, 2, . . . , N}. So,

var(Zt+1) = (α − β)2

NN2
t+1

[
1

4
− p(2 − p) var(Zt ) − (1 − p)2 var(Zt (j))

]
+

(
Nt + (α − β)

Nt+1

)2

var(Zt ). (4)

Now consider var(Zt+1(i)) = E[var(Zt+1(i) | Ft )] + var(E[Zt+1(i) | Ft ]). From above,
we already have

var(Zt+1(i) | Ft ) = (α − β)2

N2
t+1

ai(1 − ai),

E[var(Zt+1(i) | Ft )] = (α − β)2

N2
t+1

E[ai(1 − ai)]

= (α − β)2

N2
t+1

[1 − p2 var(Zt ) − (1 − p2) var(Zt (i))].

Then

var(Zt+1(i)) = (α − β)2

N2
t+1

[1 − p2 var(Zt ) − (1 − p2) var(Zt (i))]

+ 1

N2
t+1

var([Nt + (α − β)(1 − p)]Zt(i) + (α − β)pZt )

= (α − β)2

N2
t+1

[1 − (1 − p2) var(Zt (i))] +
(

Nt + (α − β)(1 − p)

Nt+1

)2

var(Zt (i))

+ 2p(α − β)(Nt + (α − β)(1 − p))

N2
t+1

cov(Zt , Zt (i)). (5)

Finally, let us consider the difference var(Zt (i) − Zt). We have

var(Zt+1(i) − Zt+1) = E[var(Zt+1(i) − Zt+1 | Ft )] + var(E[Zt+1(i) − Zt+1 | Ft ])
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and

Zt+1(i) − Zt+1 = Wt+1(i)

Nt+1
− 1

N

∑
i

Wt+1(i)

Nt+1

= Nt

Nt+1
Zt(i)

Yt+1(i)

Nt+1
− 1

N

∑
i

Nt

Nt+1
Zt(i)

Yt+1(i)

Nt+1

= Nt

Nt+1
(Zt (i) − Zt) + 1

Nt+1

(
1 − 1

N

)
Yt+1(i) − 1

NNt+1

∑
j �=i

Yt+1(j).

Then

var(E[Zt+1(i) − Zt+1 | Ft ]) = var

(
Nt + (α − β)(1 − p)

Nt+1
(Zt (i) − Zt)

)
=

(
Nt + (α − β)(1 − p)

Nt+1

)2

var(Zt (i) − Zt)

and
E[var(Zt+1(i) − Zt+1 | Ft )]

= E

[
var

(
N − 1

Nt+1N
Yt+1(i) − 1

Nt+1N

∑
j �=i

Yt+1(i)

∣∣∣∣ Ft

)]

= E

[(
N − 1

Nt+1N

)2

var(Yt+1(i) | Ft ) + 1

N2
t+1N

2

∑
j �=i

var(Yt+1(j) | Ft )

]

= E

[(
N − 1

Nt+1N

)2

(α − β)2ai(1 − ai) + 1

N2
t+1N

2
(α − β)2

∑
j �=i

aj (1 − aj )

]

= 1

N2
t+1N

2
(α − β)2

E

[
(N2 − 2N)ai(1 − ai) +

∑
j

aj (1 − aj )

]

= 1

N2
t+1N

2
(α − β)2(N2 − 2N)

[
E[ai(1 − ai)] +

∑
j

E[aj (1 − aj )]
]

= (α − β)2

N2
t+1

[
N − 2

N
[1 − p2 var(Zt ) − (1 − p2) var(Zt (i))]

]
+ (α − β)2

NN2
t+1

[
1

4
− 2(2 − p) var(Zt ) − (1 − p)2 var(Zt (i))

]
.

So,

var(Zt+1(i) − Zt+1) =
(

Nt + (α − β)(1 − p)

Nt+1

)2

var(Zt (i) − Zt)

+ (α − β)2

N2
t+1

[
N − 2

N
[1 − p2 var(Zt ) − (1 − p2) var(Zt (i))]

]
+ (α − β)2

NN2
t+1

[
1

4
− 2(2 − p) var(Zt ) − (1 − p)2 var(Zt (i))

]
. (6)
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2.2. Proof of Theorem 1

Suppose that xt+1 = f (t)xt + g(t) such that 0 < f (t) < 1 for every t ≥ 0 and x0 = 0. If
we set y0 = x0 and yt = xt/

∏t−1
k=0 f (k), yt satisfies

y0 = 0 and yt+1 = yt + F(t),

where F(t) = g(t)/
∏t

k=0 f (k). Then we can verify that yt = ∑t−1
i=0 F(i) for t ≥ 1. This leads

to a solution for the original difference equation in x, which is given by

x0 = 0 and xt =
t−1∏
k=0

f (k)

t−1∑
i=0

g(i)∏i
k=0 f (k)

for t ≥ 1.

Now define xt+1 = var(Zt+1). Then

xt+1 = f (t)xt + g(t),

where f (t) = ((Nt + (α − β))/Nt+1)
2 and g(t) ∼ 1/t2. Then from (4) we obtain

var(Zt ) ∼

⎧⎪⎨⎪⎩
t2ρ−2 for ρ > 1

2 ,

t−1 log t for ρ = 1
2 ,

t−1 for ρ < 1
2 .

Setting xt+1 = var(Zt+1(i)), we obtain g(t) ∼ 1/t . Then from (5) we have

var(Zt (i)) ∼

⎧⎪⎨⎪⎩
t2ρ−2 for ρ > 1

2 ,

t−1 log t for ρ = 1
2 ,

t−1 for ρ < 1
2 .

Again, setting xt+1 = var(Zt+1(i)−Zt+1), we obtain f (t) = ((Nt + (α − β)(1 − p))/Nt+1)
2

and g(t) ∼ 1/t2. Then from (6) we obtain

var(Zt (i) − Zt) ∼

⎧⎪⎨⎪⎩
t2ρ−2ρp−2 for ρ > 1/2(1 − p),

t−1 log t for ρ = 1/2(1 − p),

t−1 for ρ < 1/2(1 − p).

2.3. Almost-sure synchronization

Since we already have L2-synchronization, it is sufficient to show that the almost-sure limits
limt→∞ Zt and limt→∞ Zt(i) exist. This follows from the next proposition.

Proposition 1. Suppose that Zt(i) and Zt are quasimartingales (for details, see [22]). That
is,

∑∞
t=0 E[|E[Zt+1(i) | Ft ] − Zt(i)|] < ∞ and

∑∞
t=0 E[|E[Zt+1 | Ft ] − Zt |] < ∞.

Proof. From the computations carried out in the previous section, we have

E[Zt+1 | Ft ] = Nt + (α − β)

Nt+1
Zt + β

Nt+1
.
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Then
∞∑
t=0

E[E[Zt+1 | Ft ] − Zt ] =
∞∑
t=0

E

[∣∣∣∣Nt + (α − β)

Nt+1
Zt + β

Nt+1
− Zt

∣∣∣∣]

=
∞∑
t=0

E

[
Nt + (α − β) − Nt+1

Nt+1
Zt + β

Nt+1

]

=
∞∑
t=0

E

[ −2β

Nt+1
Zt + β

Nt+1

]

=
∞∑
t=0

−2β

Nt+1
E

[
Zt − 1

2

]
.

Similarly,

E[Zt+1(i) | Ft ] = Nt + (α − β)(1 − p)

Nt+1
Zt(i) + (α − β)p

Nt+1
Zt + β

Nt+1
.

So, we obtain

E[|E[Zt+1(i) | Ft ] − Zt(i)|]
= E

[∣∣∣∣Nt + (α − β)(1 − p)

Nt+1
Zt(i) + (α − β)p

Nt+1
Zt + β

Nt+1
− Zt(i)

∣∣∣∣]
= E

[∣∣∣∣Nt + (α − β) − Nt+1

Nt+1
Zt(i) + β

Nt+1
+ (α − β)p

Nt+1
Zt − (α − β)p

Nt+1
Zt(i)

∣∣∣∣]
= E

[∣∣∣∣ −2β

Nt+1

(
Zt(i) − 1

2

)
+ (α − β)p

Nt+1
(Zt − Zt(i))

∣∣∣∣]
≤ E

[∣∣∣∣ −2β

Nt+1

(
Zt(i) − 1

2

)∣∣∣∣ +
∣∣∣∣ (α − β)p

Nt+1
(Zt − Zt(i))

∣∣∣∣].

The proposition now follows from Theorem 1. �
Using this proposition and the fact that a bounded quasimartingale (see [11] and [22]) has

an almost-sure limit, yields the following theorem.

Theorem 2. Let Zt and Zt(i) be as defined above. Then, for every i ∈ {1, 2, . . . , N},
lim

t→∞(Zt − Zt(i)) = 0 a.s.

Thus, as t → ∞, the Zt(i) synchronize a.s. and converge to the same limit as limt→∞ Zt .
Taking expectations on both sides of (2) and (3), it follows that E[Zt(i)], E[Zt ] → 1

2 as
t → ∞. Thus, we have the following result.

Corollary 1. Let Zt and Zt(i) be as defined above. Then, for every i ∈ {1, 2, . . . , N},
Zt , Zt (i)

a.s.−−→ 1
2 .

3. Fluctuations

In his paper titled ‘Bernard Freidman’s urn’ [12], Freedman proved some crucial results for
fluctuations in the fraction of a particular colour of ball in a Friedman (two-colour) urn around
the limit 1

2 .
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The results obtained here reduce to the fluctuation results in [12] when N = 1. In the
case of interacting urns we need to look at fluctuations in each urn around the limit as well
as the fluctuation of the overall fraction, i.e. Zt . We use the notion of stable convergence
(see Appendix A as well as [7]) to obtain limit theorems for fluctuations of Zt − Zt(i) for a
fixed i. This gives us a stronger form of convergence than the convergence in distribution. The
fluctuation results are stated in Theorems 3, 4, and 5 below. Using the Cramér–Wold device,
this canonically extends to a limit theorem for the vector (Zt − Zt(1), . . . , Zt − Zt(N)). The
tools used here are similar to those used in [7]; however, the behaviour of Friedman urns is
different from that of Pólya urns. We first state the results and then proceed to prove them.

Theorem 3. Let ρ = (α − β)/(α + β). Then the following statements hold.

• For 0 < ρ < 1
2 ,

√
t

(
Zt − 1

2

)
stably−−−→ N

(
0,

ρ2

4N(1 − 2ρ)

)
.

• For ρ = 1
2 , √

t√
log t

(
Zt − 1

2

)
stably−−−→ N

(
0,

ρ2

4N

)
.

Theorem 4. Let ρ = (α − β)/(α + β). Then the following statements hold.

• For 0 < ρ < 1/2(1 − p),

√
t(Zt − Zt(i))

stably−−−→ N

(
0,

(1 − 1/N)ρ2

4[1 − 2ρ(1 − p)]
)

.

• For ρ = 1/2(1 − p),

√
t√

log t
(Zt − Zt(i))

stably−−−→ N

(
0,

(
1 − 1

N

)
ρ2

4

)
.

Theorem 5. Let ρ = (α − β)/(α + β). Then the following statements hold.

• For ρ > 1
2 and u = 1 − ρ,

tu
(
Zt − 1

2

) a.s./L1

−−−−→ Ṽ

for some real random variable Ṽ such that P(Ṽ �= 0) > 0.

• For ρ > 1/2(1 − p) and u = 1 − (1 − p)ρ,

tu(Zt − Zt(i))
a.s./L1

−−−−→ X̃

for some real random variable X̃ such that P(X̃ �= 0) > 0.

We now prove the above theorems, starting with Theorem 4. We write xt ≈ yt if
limt→∞ xt = limt→∞ yt .
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Proof of Theorem 4. Define Xk = Zk − Zk(i). Set

L0 = X0,

Lt = Xt −
t−1∑
k=0

(E[Xk+1 | Fk] − Xk)

= Xt −
t−1∑
k=0

[E[Zk+1 − Zk+1(i) | Fk] − (Zk − Zk(i))]

= Xt −
t−1∑
k=0

[
Nk + (α − β)(1 − p)

Nk+1
(Zk − Zk(i)) − (Zk − Zk(i))

]

= Xt −
t−1∑
k=0

[
Nk + (α − β)(1 − p)

Nk+1
− 1

]
(Zk − Zk(i))

= Xt −
t−1∑
k=0

(α − β)(1 − p) − (α + β)

Nk+1
(Zk − Zk(i))

= Xt −
t−1∑
k=0

(α + β)(ρ(1 − p) − 1)

Nk+1
Xk.

Then

Lt+1 − Lt = Xt+1 − Xt + (α + β)(ρ(1 − p) − 1)

Nt+1
Xt .

That is,

Xt+1 =
[

1 − (α + β)(1 − ρ(1 − p))

Nt+1

]
Xt + �Lt+1.

Note that Lt is an F -martingale by construction. Iterating the above relation, we can write

Xt+1 = c1,tX1 +
t∑

k=1

ck+1,t�Lk+1,

where ct+1,t = 1 and ck,t = ∏t
h=k[1 − (α + β)(1 − ρ(1 − p))/Nh+1] for k ≤ t . Note that

c1,t =
t∏

h=1

(
1 − (α + β)(ρ(1 − p) − 1)

Nh+1

)

= exp

[ t∑
h=1

ln

(
1 − (α + β)(ρ(1 − p) − 1)

Nh+1

)]

∼ exp

[
−(1 − ρ(1 − p))

t∑
h=1

(α + β)

Nh+1

]
∼ exp[−(1 − ρ(1 − p))(α + β) ln(Nt+1)]
∼ t−(1−ρ(1−p)).
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Then
√

tc1,t ∼ t−(1−ρ(1−p))+1/2 → 0 for 0 < ρ < 1/2(1 − p). Observe that the same
argument gives

lim
k→∞ sup

t≥k

∣∣∣∣ ck,t

(k/t)1−ρ(1−p)
− 1

∣∣∣∣ = 0. (7)

So, it is enough to prove that
√

t
∑

kck+1,t�Lk+1 → N (0, ρ2/4[1 − 2ρ(1 − p)]).
This can be proved using Theorem 7 (see Appendix A) by verifying the following conditions

for Ut,k+1 = √
t
∑

kck+1,t�Lk+1.

(a) max1≤k≤t |Ut,k| → 0.

(b) E[max1≤k≤t U2
t,k] is bounded in t.

(c)
∑t

k=1 U2
t,k → ρ2/4[1 − 2ρ(1 − p)].

We will now verify these conditions. For (a), since �Lk+1 = Xt+1 −Xt + (α + β)(1 − ρ(1−
p))Xt/Nt+1, |�Lk+1| ∼ O(k−1).

For (b), use (7) and (a) to obtain

E

[
max

1≤k≤t
U2

t,k

]
≤ E

[ t∑
k=1

U2
t,k

]

= t

t∑
k=1

c2
k+1,tE[Y 2

k+1]

≈ t

t−1∑
k=1

(
k

t

)2(1−ρ(1−p))

O(k−2) + tO(k−2)

= 1

t1−2ρ(1−p)

t−1∑
k=1

k2O(k−2)

k2ρ(1−p)
+ t2O(k−2)

t
.

It follows that E[max1≤k≤t U2
t,k] is bounded in t .

Let us now consider (c). We have

t∑
k=1

U2
t,k = t

t∑
k=1

c2
k+1,t (�Lk+1)

2 ≈ 1

t1−2ρ(1−p)

t−1∑
k=1

k2(�Lk+1)
2

k2ρ(1−p)
+ t2(�Lt+1)

2

t
.

From (a) we obtain

(�Lk+1)
2 =

(
Xk+1 − Xk + (α + β)(1 − ρ(1 − p))

Nk+1
Xk

)2

=
(

(Zk+1 − Zk) − (Zk+1(i) − Zk(i)) + (α + β)(1 − ρ(1 − p))

Nk+1
(Zk − Zk(i))

)2

≈
(

(Zk+1 − Zk) − (Zk+1(i) − Zk(i)) + 1

k
(Zk − Zk(i))

)2

≈ [(Zk+1 − Zk) − (Zk+1(i) − Zk(i))]2 + 1

k2 (Zk − Zk(i))
2

+ 1

k
(Zk − Zk(i))[(Zk+1 − Zk) − (Zk+1(i) − Zk(i))].
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Since we know that Zt
a.s−→ Zt(i) and X2

k ∼ O(k−2), we can get rid of some the terms above.
We obtain

t∑
k=1

U2
t,k

a.s.−−→ t

t∑
k=1

c2
k+1,t [(Zk+1−Zk)

2+(Zk+1(i)−Zk(i))
2−2(Zk+1−Zk)(Zk+1(i)−Zk(i))].

To conclude, we use Lemma 1 given in Appendix A with bk = k1−2ρ(1−p) and ak = k2ρ(1−p).
Let Uk = k2[(Zk+1 − Zk)

2 + (Zk+1(i) − Zk(i))
2 − 2(Zk+1 − Zk)(Zk+1(i) − Zk(i))]. Then

it is easy to verify that
∑∞

k=1 E[U2
k ]/akb

2
k < ∞ as bk → ∞. We have

1

bt

t∑
k=1

1

ak

→ 1

1 − 2ρ(1 − p)
.

This implies (by Lemma 1) that
∑t

k=1 U2
k converges to U/(1 − 2ρ(1 − p)) a.s., where U is

such that E[Uk | Fk] → U . We now verify that U is in fact deterministic. Note that

E[k2(Zk+1(i) − Zk(i))
2 | Fk] = k2

N2
k+1

E[(Yk+1(i) − (α + β)Zk(i))
2 | Fk]

= k2(α + β)2

N2
k+1

E

[(
Yk+1(i)

α + β
− Zk(i)

)2 ∣∣∣∣ Fk

]
a.s.−−→ ρ2

4
.

Similarly,

E[k2(Zk+1 − Zk)
2 | Fk] a.s.−−→ α2 + β2

2N(α + β)2 + N − 1

4N
− 1

4
= ρ2

4N

and

E[k2(Zk+1(i) − Zk(i))(Zk+1 − Zk) | Fk]

= k2(α + β)2

N2
k+1

E

[(
Yk+1(i)

α + β
− Zk(i)

)(∑N
i=1 Yk+1(i)

N(α + β)
− Zk

) ∣∣∣∣ Fk

]
a.s−→ ρ2

4N
.

Thus, we obtain Uk
a.s.−−→ (ρ2/4)(1 − 1/N). This concludes the proof of (1). The proof for the

second case with ρ = 1/2(1 − p) is essentially the same. �

The proof of Theorem 3 follows along the same lines as above. We sketch the essential
argument below.

Proof of Theorem 3. Let Vk = Zk − 1
2 . Denote by Lt the martingale

L0 = V0, Lt = Vt +
t−1∑
k=0

(E[Vk+1 | Fk] − Vk).
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Then

Vt+1 = �Lt+1 +
(

1 + (α + β)(1 − ρ)

Nt+1

)
Vt

or

�Lt+1 = Vt+1 −
(

1 + (α + β)(1 − ρ)

Nt+1

)
Vt . (8)

Writing

Vt+1 = c1,tV1 +
t∑

k=1

ck+1,t�Lk+1,

we have c1,t ∼ t−(1−ρ). Thus,
√

tc1,t → 0 for ρ < 1
2 . Following the same steps as in the

above proof, and using (8), it can be verified that limk→∞ supt≥k |ck,t /(k/t)1−ρ − 1| = 0, and
that (a) and (b) (as in proof of Theorem 4) hold. It boils down to showing that

∑t
k=1 Ut,k =∑t

k=1 tc2
k+1,t (�Lk+1)

2 → N (0, ρ2/4N(2ρ − 1)). We have

(�Lk+1)
2 =

(
Vk+1 −

(
1 + (α + β)(1 − ρ)

Nk+1

)
Vk

)2

=
(

Zk+1 − Zk − (α + β)(1 − ρ)

Nk+1
Vk

)2

≈
(

Zk+1 − Zk − (1 − ρ)

k
Vk

)2

.

Thus, since we know thatZt
a.s.−−→ 1

2 , the only relevant term isZk+1−Zk . That is,
∑t

k=1 U2
t,k

a.s.−−→
t
∑t

k=1 c2
k+1,t (Zk+1 − Zk)

2. We can now use Lemma 1 given in Appendix A with bk = k1−2ρ

and ak = k2ρ . Let Uk = k2(Zk+1 − Zk)
2. Then

∑t
k=1 U2

k converges to U/(2ρ − 1) a.s.,
where U is a such that E[Uk | Fk] → U . Since we completed this computation in the proof of
Theorem 4 above, we know that in this case U = ρ2/4N . This concludes the proof. The proof
for the case ρ = 1

2 follows similarly. �
We now prove Theorem 5.

Proof of Theorem 5. We first prove the second part. Define X̃k = tu(Zk −Zk(i)). It follows
from the computations carried out in the proof of Theorem 4 that E[X̃2

t ] < ∞. It is therefore
enough to show that X̃t is a quasimartingale. Indeed, we have∑

k

E[|E[X̃k+1 | Fk] − X̃k|] =
∑

k

E

[∣∣∣∣(k + 1)u
Nk + (α − β)(1 − p)

Nk+1
Xk − X̃k

∣∣∣∣]

=
∑

k

E

[∣∣∣∣(1 + 1

k

)u
Nk + (α − β)(1 − p)

Nk+1
X̃k − X̃k

∣∣∣∣]
=

∑
k

O

(
1

t2

)
uE[|X̃k|]

< ∞.
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Now the almost-sure convergence follows from the fact that a bounded quasimartingale con-
verges a.s. and in L1. It remains to prove that P(X̃ �= 0) > 0. For this, it suffices to prove that
X̃2

t is bounded in Lp for a suitable p > 1. Indeed, this implies that E[X̃2] = limt→∞ E[X̃2
t ] =

limt→∞ t2u
E[X2

t ] > 0.
The proof is similar to that of Theorem 3.5 of [7]. We only sketch the proof and illustrate

the important steps for the sake of completion. The idea is to again obtain a recurrence relation
as follows. For ε > 0, let xt = E[|Xt |2+ε]. We know that

Xt+1 = Nt

Nt+1
Xt + 1

Nt+1

(∑N
j=1 Yt+1(j)

N
− Yt+1(i)

)
.

So, using the binomial expansion and collecting higher-order terms,

xt+1 =
(

Nt

Nt+1

)2+ε

E[|Xt |2+ε]

+ (2 + ε)

(
Nt

Nt+1

)1+ε 1

Nt+1
E

[
|Xt |1+εsgn(Xt )

(∑N
j=1 Yt+1(j)

N
− Yt+1(i)

)]
+ O

(
1

t2

)
.

Recall that u = 1 − ρ(1 − p). This gives

xt+1 =
(

1 − (α − β)(2 + ε)(1 − ρ(1 − p))

Nt+1

)
xt + g(t)

=
(

1 − (α − β)(2 + ε)u

Nt+1

)
xt + g(t),

where x0 = 0 and g(t) = O(1/t2). Then, for sufficiently small ε > 0, using the method used
in the proof of Theorem 1, we obtain E[|Xt |2+ε] = O(1/t(2+ε)u). This implies that X̃2 is
bounded in L1+ε/2.

Now, for the first part, from Proposition 1, we already know that Zt − 1
2 is a quasimartingale.

Define Ṽk = tu(Zk − 1
2 ) for u = 1 − ρ. Then E[Ṽ 2

t ] < ∞ and Ṽt is a quasimartingale.
This implies that it converges a.s. and in L1 to some real random variable Ṽ . To prove that
P(Ṽ �= 0) > 0, following a similar computation as above, for xt+1 = E[|Zt − 1

2 |2+ε], we
obtain

xt+1 = 1 − (2 + ε)u

Nt+1/(α + β)
,

where u = 1 − ρ. Thus, we have E[|Vt |2+ε] = O(1/t(2+ε)u) for u = 1 − ρ. This concludes
the proof. �

Note that we have not said anything about the fluctuations in the fraction of white balls in
each urn, i.e. Zt(i), around the limit 1

2 . Since in the case of Pólya urns, Zt is a martingale, it
is possible to prove a stronger fluctuation result for Zt (see Theorem 3.1 of [7]). This leads to
a stable convergence result for Zt(i) − 1

2 . However, in the case of Friedman urns we do not
have the martingale property at our disposal. We, therefore, prove a convergence in distribution
fluctuation result for Zt(i) using stochastic approximation techniques.
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3.1. Stochastic approximation approach

Stochastic approximation schemes are heavily used in optimization problems and reinforce-
ment learning (see [4]). Naturally, the method is very well suited to handling urn model problems
as well. We reformulate the problem in terms of stochastic approximation theory. Define
Z̃t = (Z1(i), . . . , ZN(i)) and Ỹt = (Yt (1), . . . , Yt (N)). Then, according to our reinforcement
model, we have

Z̃t+1 = Nt

Nt+1
Z̃t + 1

Nt+1
Ỹt+1

≈ Z̃t + 1

t + 1

(
−Z̃t + Ỹt+1

(α + β)

)
≈ Z̃t − 1

t + 1
(Z̃t − g(Z̃t )) + 1

t + 1

(
Ỹt+1

(α + β)
− g(Z̃t )

)
, (9)

where g(Z̃t ) = E[Ỹt+1/(α + β) | Ft ] = (1 − ρ)/2 + ρ(pZt + (1 − p)Z̃t ). Recall that Zt

denotes the overall fraction of white balls given by (1/N)
∑

i Zt (i). Equation (9) corresponds
to the classical stochastic approximation scheme,

xt+1 = xt − a(t)h(xt ) + a(t)Mt+1, (10)

where a(t) = 1/(t + 1) and Mt+1 = Ỹt+1 − g(Z̃t ) is an N -dimensional martingale difference
sequence. It can be easily verified that h(xt ) = Z̃t − g(Z̃t ) is a Lipschitz function from
R

N to R
N . Conditions (C1)–(C4) given in Section A.2 can also be verified. According to

the ‘ordinary differential equation (ODE) approach’ of the theory of stochastic approximation
(see [4]), the scheme in (10) will a.s. converge to the equilibria of the limiting ODE given by
ẋ = h(x(t)). In other words, Z̃t converges to the set {h = 0}. It is easy to check that this
implies that Zt(i)

a.s.−−→ 1
2 for every i ∈ {1, . . . , N}.

Furthermore, using concepts from [15], it is possible to obtain fluctuation results too. Let
B� denote the transpose of a matrix B. Using Theorem A.2 of [15], we can prove the following
result.

Theorem 6. Let δ0 = ( 1
2 , . . . , 1

2 ) be an N -dimensional vector, and let A denote the N × N

matrix given by⎛⎜⎜⎜⎝
1
2 − ρ(1 − p) − ρp/N −ρp/N . . . −ρp/N

−ρp/N 1
2 − ρ(1 − p) − ρp/N . . . −ρp/N

...
...

. . .
...

−ρp/N −ρp/N . . . 1
2 − ρ(1 − p) − ρp/N

⎞⎟⎟⎟⎠ .

Then the following statements hold.

• For ρ < 1
2 ,

√
n(Z̃t − δ0)

d−→N (0, A−1ρ2/8(1 − 2ρ)).

• For ρ = 1
2 ,

√
n(Z̃t − δ0)/

√
log n

d−→N (0, 
) for some N × N positive semidefinite
matrix 
.

• For ρ > 1
2 , n1−ρ(Z̃t − δ0) converges a.s. and in L1 towards a finite random variable.
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Proof. We can write the stochastic approximation scheme as

Z̃t+1 = Z̃t − 1

t + 1
h(Z̃t ) + 1

t + 1
Mt+1,

where h(Z̃t ) = [1 − ρ(1 − p)]Z̃t − (1 − ρ)/2 − ρpZt and Mt+1 is an Ft -adapted martingale
difference sequence. As mentioned above, conditions (C1)–(C4) given in Section A.2 can be
easily verified. Note that the Jacobian of h, Dh, is a constant diagonalizable matrix given by⎛⎜⎜⎜⎝

1 − ρ(1 − p) − ρp/N −ρp/N . . . −ρp/N

−ρp/N 1 − ρ(1 − p) − ρp/N . . . −ρp/N
...

...
. . .

...

−ρp/N −ρp/N . . . 1 − ρ(1 − p) − ρp/N

⎞⎟⎟⎟⎠ .

Thus, Dh = [1 − ρ(1 − p)]I − (ρp/N)J , where I denotes an N × N identity matrix and J

denotes an N × N matrix of 1s. It is easy to see that the smallest eigenvalue of Dh is given by
λmin = 1 − ρ. Then the first case, ρ < 1

2 , directly follows from Theorem A.2 of [15], such that
the variance is given by 
/(2λmin − 1), where


 =
∫ ∞

0
(e−Au)��e−Au du

with A as defined in the statement of the theorem (A = Dh − I/2) and � the almost-sure limit
of E[M�

t+1Mt+1 | Ft ] as t → ∞. It is easy to verify that � = ρ2/4. For the case in which
ρ = 1

2 , the matrix 
 cannot be simplified in terms of A, as A is not invertible for ρ = 1
2 .

Finally, the case in which ρ > 1
2 also follows from Theorem A.2 of [15]. This concludes the

proof. �

Remark 4. The matrix A is not invertible for ρ = 1/2(1 − p) as well. However, since,
1/2(1 − p) > 1

2 , this is not relevant in the regime {ρ < 1
2 }.

Convergence in distribution versions of Theorems 3, 4, and 5 can also be proved using the
stochastic approximation method.

Appendix A

We state some auxiliary results.

Lemma 1. (LemmaA.1 of [7].) Let G be an (increasing) filtration, and let (Yk) be a G-adapted
sequence of real random variables such that E[Yk | Gk−1] → Y a.s. for some real random
variable Y . Moreover, let (ak) and (bk) be two sequences of strictly positive real numbers such
that

bk → ∞,

∞∑
k=1

E[Y 2
k ]

akb
2
k

< ∞.

Then

• if (1/bt )
∑t

k=1 1/ak → γ for a constant γ , (1/bt )
∑t

k=1 Yk/ak → γ Y ;

• if bt

∑
k≥t 1/akb

2
k → γ for a constant γ , bt

∑
k≥t Yk/akb

2
k → γ Y .

https://doi.org/10.1017/jpr.2016.76 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.76


Interacting Friedman urns 1237

A.1. Stable convergence

The notion of stable convergence was introduced by Rényi [23] and is in a sense a stronger
version of convergence in distribution. There has been quite a lot of work on the concept and
application of the notion of stable convergence. We only state some results concerning stable
convergence from [3] and [14] that are relevant to this paper. The interested reader can refer to
these and [1], [8], [10], and [20] for more details. For generalizations such as the strong form
of stable convergence and almost-sure conditional convergence, we refer the reader to [6] and
[8], respectively. For sake of completeness, we first define the concept of stable convergence
as in [7].

Let (�, A, P) be a probability space, and let S be a Polish space, endowed with its Borel
σ -field. A kernel on S, or a random probability measure on S, is a collection K = {K(ω) : ω ∈
�} of probability measures on the Borel σ -field of S such that, for each bounded Borel real
function f on S, the map

ω 
→ K(f )(ω) =
∫

f (x) K(ω)(dx)

is A-measurable.
On (�, A, P), let (Yt ) be a sequence of S-valued random variables and let K be a kernel

on S. Then we say that Yt converges stably to K , and we write Yt
stably−→ K , if

P(Yt ∈ · | H)
weakly−→ E[K(·) | H ] for all H ∈ A with P(H) > 0.

Clearly, if Yt
stably−→ K then Yt converges in distribution to the probability distribution E[K(·)].

In fact, if {Yn} is a sequence of random variables on the probability space (�, A, P) converging
in distribution to Y , then we say that this convergence is stable if, for all continuity points y of Y

and all events A ∈ A, the limit limn→∞ P({Yn ≤ y}∪A) = Qy(A) exists and Qy(A) → P(A)

as y → ∞.
Moreover, the convergence in probability of Yt to a random variable Y is equivalent to the

stable convergence of Yt to a special kernel, which is the Dirac kernel K = δY (see Corollary 4
of [8]).

Theorem 7. (Theorem 3.2 of [14].) Let {Sn,k, Fn,k : 1 ≤ k ≤ kn, n ≥ 1} be a zero-mean,
square-integrable martingale array with differences Yn,k , and let η2 be an a.s. finite random
variable. Suppose that

• max1≤k≤kn |Yn,k| → 0;

• E[max1≤k≤kn ] is bounded in n;

• ∑kn

k=1 Y 2
n,k → η2,

and that the σ -fields are nested, i.e. Fn,k ⊆ Fn+1,k for 1 ≤ k ≤ kn, n ≥ 1. Then Sn,k converges
stably to a random variable with characteristic function φ(u) = E[exp(−η2u2/2)], i.e. to the
Gaussian kernel N (0, η2). (Here, the notation N (0, 0) denotes the Dirac distribution ε0.)

A.2. Stochastic approximation

The martingale method, the method of moments, and stochastic approximation are all popular
methods for analysing random processes with reinforcement (see [21]). Stochastic approxima-
tion has been used extensively in urn models. A classical stochastic approximation scheme in

https://doi.org/10.1017/jpr.2016.76 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.76


1238 N. SAHASRABUDHE

R
k is given by

xn+1 = xn − a(n)h(xn) + a(n)Mn+1 (11)

with the initial point x0. The solutions of the above scheme asymptotically track the solutions
of the ODE given by

ẋ(t) = −h(x(t))

under the following conditions.

(C1) The map h : R
k → R

k is Lipschitz.

(C2) Step sizes {a(n)} are positive, satisfying
∑

n a(n) = ∞ and
∑

n a(n)2 < ∞.

(C3) {Mn} is a martingale difference sequence with respect to Fn = σ(xm, Mm; m ≤ n).
Furthermore, the Mn are square integrable with E[‖Mn+1‖2 | Fn] ≤ K(1 + ‖x‖2) a.s.
for n ≥ 0 and some constant K > 0.

(C4) The trajectories (or the iterates) of (11) remain bounded a.s., i.e. supn ‖xn‖ < ∞ a.s.

A detailed analysis of convergence and stability can be found in [4].
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