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Abstract. Let M be a closed, oriented, and connected Riemannian n-manifold, for
n ≥ 2, which is not a rational homology sphere. We show that, for a non-constant and
non-injective uniformly quasiregular self-map f : M→ M , the topological entropy h( f )
is log deg f . This proves Shub’s entropy conjecture in this case.
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1. Introduction
A well-studied problem in topological dynamics of continuous self-maps f : M→ M on
an n-manifold M is to relate the topological entropy h( f ) of f to the spectrum of its
induced linear map f∗ : H∗(M; R)→ H∗(M; R) in homology, see for example the survey
of Katok [18] for definitions and history of this problem. Shub conjectured [34, §V] that
the topological entropy h( f ) is bounded from below by log s( f∗), where s( f∗) is the
spectral radius of the action of f to the homology of M . The conjecture was proved for
holomorphic maps f : CPm

→ CPm by Gromov in a preprint [8] from 1977 and for C∞-
smooth maps by Yomdin [38] in 1987.

One direction in Gromov’s argument [8] is based on a general result of Misiurewicz
and Przytycki [26] that, for a C1-smooth self-map f : M→ M of a closed and oriented
Riemannian manifold M , the logarithm of the degree log |deg f | is a lower bound for the
topological entropy. The continuity of the derivative D f of the map f plays a crucial role in
the proof of Misiurewicz and Przytycki, which is based on the use of a continuous cochain
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x 7→ J f (x) given by the Jacobian J f of the map f . The continuity of the derivative plays
the same crucial role in the method of Yomdin [38], which is based on real-algebraic sets.

It is known that the smoothness assumptions on the map may be relaxed by additional
topological assumptions on the space M . For example, Misiurewicz and Przytycki proved
in [26] the entropy conjecture for all continuous maps f : Tn

→ Tn .
In this paper we consider the entropy conjecture in the quasiconformal category. The

mappings we consider are not C1-smooth but merely Sobolev regular. The distortion
assumption given by quasiconformality conditions together with methods from geometric
measure theory allow us to deal with the complications caused by the lack of pointwise
differentiability. Before stating the main theorem, we introduce the class of uniformly
quasiregular maps.

A continuous map f : M→ N between oriented Riemannian n-manifolds M and N ,
n ≥ 2, is K -quasiregular for K ≥ 1 if f belongs to the Sobolev space W 1,n

loc (M, N ) and
satisfies the distortion inequality

‖D f (x)‖n ≤ K J f (x) for Lebesgue a.e. x ∈ M; (1.1)

here ‖D f ‖ is the operator norm of the differential D f of f and J f is the
Jacobian determinant J f = det D f , that is, J f volM = f ∗ volM . In this terminology,
quasiconformal maps are quasiregular homeomorphisms, and 1-quasiregular maps
between Riemann surfaces are holomorphic; see e.g. Rickman [31, §I.2] and references
therein. As a technical point, we mention that by a theorem of Reshetnyak, a quasiregular
map is either a discrete and open map or constant. Note also that the degree of a non-
constant quasiregular map between closed and oriented Riemannian manifolds is positive.

A quasiregular self-map f : M→ M is uniformly K -quasiregular if all of its iterates
f k
= f ◦k = f ◦ · · · ◦ f for k ≥ 1 are K -quasiregular. Uniformly quasiregular maps admit

rich dynamics akin to dynamics of holomorphic maps of one complex variable. We refer
to a survey of Martin [23] for a detailed account on uniformly quasiregular maps, and
merely mention here that a uniformly quasiregular map f : M→ M induces a measurable
conformal structure on M in which the mapping f could be considered as a rational map
of M .

Our main theorem reads as follows: recall that an n-manifold M is a rational
cohomology sphere if H∗(M; R) is isomorphic to H∗(Sn

; R).

THEOREM 1.1. Let f : M→ M be a uniformly quasiregular self-map of degree at least 2
on a closed, connected, and oriented Riemannian n-manifold M, which is not a rational
cohomology sphere. Then

h( f )= log deg f.

It follows from [17] that s( f∗)= deg f for non-constant uniformly quasiregular self-
maps f : M→ M . Theorem 1.1 therefore yields the equality

h( f )= log s( f∗)

answering to Shub’s entropy conjecture to the positive in this case. Note that, for expanding
uniformly quasiregular mappings, Shub’s entropy conjecture follows from results of
Haı̈ssinsky and Pilgrim [9, Theorems 3.5.6 and 4.4.4].
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In the proof of Theorem 1.1 we obtain estimates h( f )≥ log deg f and h( f )≤
log deg f for the entropy by different methods. The lower bound employs Lyubich’s
variational method [19] and the properties [16, 27] of the equilibrium measure µ f

associated f . The upper bound is related to [8, (5.0)] in Gromov’s article and it follows
from isoperimetric arguments for Federer–Fleming currents [6]. As we will discuss shortly,
the cohomological assumption on M has no role in the proof of the upper bound. It remains
an open question whether the lower bound h( f )≥ log deg f holds also for uniformly
quasiregular mappings on rational cohomology spheres.

In order to obtain the lower bound h( f )≥ log deg f , the main obstacle is the lack of
continuity of the derivative D f . For this, we use the f -balanced measure µ f from [27]
and the integer valued cochain x 7→ i(x, f ) given by the local index of the map f in place
of cochain x 7→ J f (x), which is only measurable in this setting.

By [16, Theorem 1.2], the cohomological assumption on the manifold M yields that the
measure µ f is absolutely continuous with respect to the Lebesgue measure of M . Using
this fact, we show that the measure µ f satisfies hµ f ( f )= log deg f , where hµ f ( f ) is the
measure theoretic entropy of f with respect to the measure µ f . The variational principle
of the entropy now yields the required lower bound h( f )≥ hµ f ( f )= log deg( f ). We
thank Peter Haı̈ssinsky for pointing out a simplified version of the original proof based on
measure theoretic Jacobians.

We also note that, as a consequence of the method of proof, we also obtain the following
observation.

COROLLARY 1.2. Let f : M→ M be a uniformly quasiregular self-map of degree at least
2 on a closed, connected, and oriented Riemannian n-manifold M, which is not a rational
cohomology sphere. Then the measure µ f from [27] is a measure of maximal entropy.

Moreover, we note that the absolute continuity of µ f is only used in the proof to obtain
that the branch set of f has zero measure in µ f . Hence, the proof in fact also gives us the
following, more general version of Theorem 1.1.

THEOREM 1.3. Let f : M→ M be a uniformly quasiregular self-map of degree at least
2 on a closed, connected, and oriented Riemannian n-manifold M. Then, for every f -
balanced Borel probability measure µ on M, the measure-theoretic entropy of µ satisfies

hµ( f )≥ log deg f −
∫

M
log i(x, f ) dµ(x), (1.2)

where i(·, f ) denotes the local index of f . In particular, for any such measure µ, if the
branch set B f of f satisfies µ(B f )= 0, then

h( f )= log deg f,

and µ is a measure of maximal entropy for f .

For an estimate similar to (1.2) in the setting of non-Archimedean dynamics, see Favre
and Rivera-Letelier [5, §4].

The upper bound h( f )≤ log deg f follows from the inequality

h( f )≤ log deg f + n log K (1.3)
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for K -quasiregular self-maps f : M→ M ; see [8, (5.0)] and the ensuing isopetrimeric
argument on how to prove it. Since it seems to have gone unnoticed in the literature that
the isoperimetric argument in [8] yields a more general result, we discuss the proof of (1.3)
in detail using the language of the Federer–Fleming theory of currents. In the heart of the
proof of (1.3) is the following uniform Ahlfors regularity result for graphs of maps, whose
components are quasiregular.

THEOREM 1.4. Let M and N be closed, connected, and oriented Riemannian n-manifolds
for n ≥ 2, K ≥ 1, and let g = ( f1, . . . , fk) : M→ N k be a map from M to N k , k ∈ N,
where f1, . . . , fk are non-constant K -quasiregular maps M→ N. Then the image 0 =
0g := g(M) is Ahlfors n-regular. More precisely, there exists a constant C > 0 depending
only on n, M, N, and f1 with the property that, for y ∈ 0 and r ∈ (0, diam 0], we have

1

Ckn2/2 K n−1(min j deg f j )n
≤

Hn(B0(y, r))
rn ≤ Ckn/2 K max

j
deg f j ,

where B0(y, r)= 0 ∩ BN k (y, r) with distance in N k induced by the product Riemannian
metric.

Using this theorem we prove inequality (1.3) in §8; see Theorem 8.1. This completes
the proof of Theorem 1.1.

The proof of Theorem 1.4 consists of two parts. The upper estimate for the Hausdorff
measure reduces to the area formula for Sobolev mappings. The lower estimate is more
delicate. Since the mapping g is merely Sobolev regular, we consider an n-current
associated to 0g . The key step in the proof is to apply slicing and an isoperimetric
inequality to this n-current to obtain a local lower bound for the volume of 0g . It seems
to us that this is also the idea in the proof of [8, (5.0)], although it does not use currents
explicitly.

We finish this introduction with a discussion on the relation of our results to
open questions on uniformly quasiregular dynamics. In the case of Riemann surfaces,
holomorphic dynamics has a clear trichotomy into different cases: the sphere S2 carries a
rich theory with various examples, on the torus T2 the mappings are so-called Lattès maps,
and on higher-dimensional surfaces the theory collapses to dynamics of homeomorphisms.

On higher-dimensional Riemannian manifolds, a similar trichotomy seems to arise in
uniformly quasiregular dynamics. The sphere Sn and other spherical space forms admit a
rich theory, see e.g. Iwaniec and Martin [13], Peltonen [28], and Martin and Peltonen [22].
The torus Tn and its branched quotients admit uniformly quasiregular maps of Lattès
type, see e.g. Mayer [25] and Martin, Mayer and Peltonen [21]. Finally, the existence
of a uniformly quasiregular map M→ M on a closed manifold yields that the manifold
M is so-called quasiregularly elliptic, that is, there exists a non-constant quasiregular
map Rn

→ M ; see Kangaslampi [15] or Iwaniec and Martin [14, Theorem 19.9.3].
Thus, hyperbolic Riemannian manifolds and manifolds with large fundamental group
or cohomology do not carry uniformly quasiregular maps by results of Varopoulos [37,
Theorem X.11] and Bonk and Heinonen [3]. More precisely, the dimension of the
cohomology ring H∗(M; R) of M is at most 2n by the main theorem of [16]; see also
Prywes [29].
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To complete this picture, it becomes a question whether a general quasiregularly elliptic
manifold carries a uniformly quasiregular mapping of higher degree, and whether these
mappings are actually Lattès maps if the manifold in question is not a rational cohomology
sphere. Encouraged by results and conjectures of Martin and Mayer in [24] on uniformly
quasiregular self-maps of spheres, we expect the second question to have a positive answer.
The following conjecture is from [16]: Let M be a closed, oriented, and connected
Riemannian n-manifold for n ≥ 2, which is not a rational cohomology sphere. Then every
uniformly quasiregular self-map f of M comes from the Lattès construction.

We find the question interesting since, as pointed out in Martin and Mayer [24], it is
similar to the invariant line field conjecture of Mané, Sad, and Sullivan [20].

1.1. Organization of the article. The article consists of two parts; §2 discussing the
preliminaries on quasiregular maps is common to both of these. In the first part (§§3–4),
we prove the lower bound h( f )≥ log deg f for the topological entropy using Lyubich’s
method based on measure theoretic entropy.

In the second part (§§5–8) we recall first some results in the Federer–Fleming theory of
currents in §5. In §§6 and 7, we then discuss the proof of Theorem 1.4 based on Gromov’s
original argument. Finally, in §8, we show how the upper bound h( f )≤ log deg f follows
from Theorem 1.4.

2. Preliminaries on quasiregular maps
2.1. Quasiregular maps. Let n ≥ 2, and let M and N be oriented Riemannian n-
manifolds. By a theorem of Reshetnyak, a non-constant quasiregular map f : M→ N is
open and discrete, that is, f (W )⊂ N is open for any open set W ⊂ M and f −1

{y} ⊂ M is
discrete for every y ∈ N . Moreover, f satisfies the Lusin (N)-condition, that is, f (E)⊂ N
is Lebesgue null if E ⊂ M is a null set. The branch set B f of f is the set of points at
which f fails to be a local homeomorphism. The branch set B f has topological dimension
at most n − 2 by the Cernavskii–Väisälä theorem (see [36]) and Lebesgue measure zero.

For E ⊂ M and y ∈ N , the multiplicity N ( f, y, E) of f at y with respect to E is
#( f −1

{y} ∩ A). We set also N ( f, y) := N ( f, y, M), N ( f, E) := supy∈N N ( f, y, E), and

N ( f ) := sup
y∈N

N ( f, y)= N ( f, N ).

As a preliminary step for the definition of the local index of f at x , we denote by
BN (y, r) the metric ball of radius r > 0 centered at y ∈ N in N . Since f is discrete
and open, there exists, for each x ∈ M , a radius rx > 0 for which the x-component
U (x, f, rx ) of the preimage f −1 BN ( f (x), rx ) is a normal neighborhood of x , that is, we
have f U (x, f, rx )= BN ( f (x), rx ), ∂ f U (x, f, rx )= ∂BN ( f (x), rx ), and f −1( f (x)) ∩
U (x, f, rr )= {x}. In particular, f restricts to a proper map

f |U (x, f,rx ) : U (x, f, rx )→ BN ( f (x), rx )

and induces a homomorphism

( f |U (x, f,rx ))
∗
: Hn

c (BN (x, r); Z)→ Hn
c (U (x, f, rx ); Z)

in compactly supported cohomology.
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The local index i(x, f ) ∈ Z of f at x is the unique integer satisfying

( f |U (x, f,rx ))
∗cBN ( f (x),rx ) = i(x, f )cU (x, f,rx ),

where the cohomology classes cU (x, f,rx ) and cBN ( f (x),rx ) are generators of
Hn

c (BN (x, r); Z) and Hn
c (U (x, f, rx ); Z), respectively, induced by orientations of

M and N . The local index is independent on rx and hence well defined. Note that, if f is
non-constant, we have i(x, f )≥ 1 for each x ∈ M and we have the characterization that
x ∈ B f if and only if i(x, f ) > 1.

More globally, for a quasiregular map f : M→ N between closed, oriented, and
connected Riemannian n-manifolds M and N , the degree deg f ∈ Z of f is the integer
satisfying f ∗(cN )= (deg f )cM for generators cM and cN of Hn(M; Z) and Hn(N ; Z),
respectively. Again, if f is non-constant, then deg f ≥ 1 and∑

x∈ f −1{y}

i(x, f )= deg f for every y ∈ N .

In particular, we have N (y, f )= N ( f )= deg f for every y ∈ N \ f (B f ).
We refer to the monograph of Rickman [31, Ch. I] for a more detailed discussion on

these properties of quasiregular mappings.

2.2. Uniformly quasiregular self-maps. Let f : M→ M be a uniformly quasiregular
self-map of a closed, oriented, and connected Riemannian n-manifold M . The Fatou set
F( f ) of f is the region of normality of the family { f k

: k ∈ N}, that is, the set of all points
x ∈ M for which { f k

|U : k ∈ N} is normal on some open neighborhood U of x . The Julia
set J ( f ) of f is M \ F( f ).

The Julia set J ( f ) is non-empty if deg f > 1. In this case, there exists by [27] an f -
balanced probability measure µ f on M , that is,

f ∗µ f = (deg f )µ f .

Here, the pull-back measure is defined using the push-forward of continuous functions
under quasiregular maps; see Heinonen, Kilpeläinen, and Martio [12, §14]. In particular,
if η ∈ C(M, R) is a continuous function on the closed manifold M , then the formula

( f∗η)(x)=
∑

z∈ f −1{x}

i(z, f )η(z) (2.1)

for x ∈ M defines a continuous function f∗η ∈ C(M, R). Hence, given a finite Borel
measure µ on M , the Riesz representation theorem provides a unique regular Borel
measure f ∗µ satisfying ∫

M
η d f ∗µ=

∫
M

f∗η dµ

for every η ∈ C(M, R).
The measure µ f is the weak-∗ -limit of the measures (deg f k)−1( f k)∗ volM , where we

identify the volume form volM with the Lebesgue measure on M and tacitly assume that
volM (M)= 1, and the support of µ f is the Julia set J ( f ) of f . From now on, we use the
notation µ f to denote this particular measure.
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By [16, Theorem 1.2], the measure µ f is absolutely continuous with respect to the
Lebesgue measure if the manifold M is not a rational cohomology sphere. Thus, similarly
as in the holomorphic dynamics of one complex variable, we have that the branch set has
µ f -measure zero. We record this fact as a lemma for further use.

LEMMA 2.1. Let M be a closed, oriented, and connected Riemannian n-manifold for
which Hn(M;Q) 6∼= H∗(Sn

;Q), and let f : M→ M be a uniformly quasiregular self-
map of degree at least 2. Then

µ f ( f −1 f (B f ))= µ f ( f (B f ))= µ f (B f )= 0.

Proof. By Rickman [31, Proposition I.4.14] and an application of bilipschitz charts, the
sets f −1 f (B f ), f (B f ), and B f are Lebesgue null. Since µ f is absolutely continuous with
respect to Lebesgue measure by [16, Theorem 1.2] under the assumption H∗(M;Q) 6∼=
H∗(Sn

;Q), the claim follows. �

Finally, we point out an explicit formula for the measures of Borel sets under a pulled-
back measure f ∗µ. We first note that we may in fact define f∗η even for non-continuous
η using (2.1).

LEMMA 2.2. Let M be a closed, oriented, and connected Riemannian n-manifold, let
f : M→ M be a non-constant quasiregular self-map, and let µ be a finite Borel measure
on M. Then for every Borel set E ⊂ M, the function f∗XE is Borel, and moreover we have

f ∗µ(E)=
∫

M
f∗XE dµ,

where XE denotes the characteristic function of E.

Proof. The most involved part of the proof is showing that f∗XE is Borel; after that, the
rest is a standard measure theory argument. Indeed, suppose that f∗XE is Borel for every
Borel set E . Then we may define a Borel measure ν on M by

ν(E)=
∫

M
f∗XE dµ.

It is easily seen that ν is a finite Borel measure. Hence, it is also regular. Moreover, ν
satisfies by definition the formula∫

M
η dν =

∫
M

f∗η dµ (2.2)

for simple Borel functions η. Since the operator f∗ is bounded in the sup-norm, we
obtain (2.2) for continuous η by approximating with simple functions. Hence, ν = f ∗µ
by the uniqueness of the measure given by the Riesz representation theorem, and the
remainder of the claim holds.

It remains therefore to show that f∗XE is Borel whenever E is Borel. We partition
M into sets A1, . . . , Adeg f , where i(x, f )= j whenever x ∈ A j . The sets A j are Borel,
since the map i(·, f ) is upper semicontinuous; see e.g. [31, Proposition I.4.10] for the
argument.
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We begin by showing a special case. Suppose E ⊂ M is Borel, f |E is injective, and
E ⊂ A j for some j ∈ {1, . . . , deg f }. Then it is reasonably easily seen from the definition
of the push-forward that f∗XE = jX f (E). Since f is a continuous finite-to-one map, it
maps Borel sets to Borel sets: see e.g. [35, Theorem 4.12.4]. Therefore, in this case f∗XE

is Borel.
Next, we find a partition of M into countably many Borel sets Bi ⊂ M , such that f |Bi is

injective and Bi ⊂ A j for some j . Indeed, for a given j ∈ {1, . . . , deg f } if x ∈ A j and U
is a normal neighborhood of x with respect to f , then f is injective on A j ∩U . Since A j

is a subset of a second-countable metric space M , we may cover it with countably many
such sets A j ∩U . Hence, we obtain the desired Borel partition B j .

Finally, suppose that E ⊂ M is Borel. Then we may write XE as a countable sum of
functions XE∩B j . By the special case we covered, f∗XE∩B j is Borel for every j . Hence,
we may write f∗XE as a countable sum of non-negative Borel functions. Since pointwise
limits of Borel functions are Borel, we obtain that f∗XE Borel, which concludes the
proof. �

3. Preliminaries on entropy
3.1. Topological entropy. Let (X, d) be a metric space. For each k ∈ N, we denote
by dk,∞ the sup-metric, induced by d, on X k+1. That is, for any x = (x0, . . . , xk) and
x ′ = (x ′0, . . . , x ′k) ∈ X k+1,

dk,∞(x, x ′) := sup
j∈{0,...,k}

d(x j , x ′j ).

For any ε > 0 and Y ⊂ X k+1, we also define the counting function

Nε(Y ) :=max
{

#E : E ⊂ Y, inf
x,x ′∈E,x 6=x ′

dk,∞(x, x ′)≥ ε
}

for the discrete volume of Y at scale ε.
A graph over X is by definition a subset of X2. For any 0 ⊂ X2, the k-chain of 0 is

defined by

Chaink(0) := {(x0, . . . , xk) ∈ X k+1
: (x j−1, x j ) ∈ 0 for any j ∈ {1, . . . , k}},

and for each ε > 0, we set

hε(0) := lim sup
k→∞

1
k

log(Nε(Chaink(0))).

The entropy h(0) of 0 is
h(0) := lim

ε→0
hε(0);

note that the limit on the right-hand side always exists.
The Bowen–Dinaburg definition of the topological entropy h( f ) of a continuous self-

map f on X is

h( f ) := h(0(idX , f )),

where 0(idX , f ) := (idX , f )(X)⊂ X2 is the graph of f . The topological entropy is a
topological invariant whenever (X, d) is compact [4].
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3.1.1. Entropy, volume, and density. Let M be a closed Riemannian n-manifold. For
each k ∈ N, we let Hn be the Hausdorff n-measure on the (nk)-dimensional product
Riemannian manifold Mk .

For each ε > 0, the ε-density Densε(Y ) of a Hn-measurable set Y ⊂ Mk+1 is defined
by

Densε(Y )= inf
x∈Y

Hn(Y ∩ Dk,∞(x, ε)),

where Dk,∞(x, ε) := {y ∈ Mk+1
: dk,∞(x, y) < ε}.

For any 0 ⊂ M2, the logarithmic volume lov(0) of 0 is defined by

lov(0)= lim sup
k→∞

1
k

log(Hn(Chaink(0))),

and the logarithmic density lodn(0) of 0 by

lodn(0)= lim sup
ε→0

lodnε(0),

where, for each ε > 0,

lodnε(0) := lim inf
k→∞

1
k

log(Densε(Chaink(0))).

For completeness, we include a proof of the following key estimate.

THEOREM 3.1. [8, (1.1)] Let M be a closed Riemannian n-manifold and let 0 ⊂ M2 be a
graph. Then

h(0)≤ lov(0)− lodn(0). (3.1)

Proof. Let k ≥ 2, ε > 0, and δ > 0, and let d be the induced Riemannian distance in M
and dk,∞ be the sup-metric on Mk+1 induced by d .

We show first that

Hn(Chaink(0))≥ N2ε(Chaink(0)) · Densε(Chaink(0)). (3.2)

Let N ∈ N and suppose that a set {y1, y2, . . . , yN } ⊂ Chaink(0) satisfies
infi 6=` dk,∞(yi , y`)≥ 2ε. Since the sets Dk,∞(yi , ε), for i = 1, . . . , N , are mutually
disjoint, we have

Hn(Chaink(0))≥Hn
(
(Chaink(0)) ∩

N⋃
i=1

Dk,∞(yi , ε)

)

=

N∑
i=1

Hn((Chaink(0)) ∩ Dk,∞(yi , ε))

≥

N∑
i=1

Densε(Chaink(0))= N · Densε(Chaink(0)).

Thus (3.2) follows.
Having (3.2) at our disposal, we observe that, for each ε > 0,

lov(0)= lim sup
k→∞

1
k

log(Hn(Chaink(0)))

2405

https://doi.org/10.1017/etds.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.51


I. Kangasniemi et al

≥ lim sup
k→∞

1
k
(log(N2ε(Chaink(0)))+ log(Densε(Chaink(0))))

≥ lim sup
k→∞

1
k

log(N2ε(Chaink(0)))+ lim inf
k→∞

1
k

log(Densε(Chaink(0)))

= h2ε(0)+ lodnε(0).

Thus, (3.1) holds. �

Remark 3.2. The use of the product Riemannian distance in the definition of the Hausdorff
n-measure stems from Theorem 1.4. The above considerations hold also for the Hausdorff
measures based on the metrics dk,∞.

3.2. Kolmogorov–Sinai entropy. In this section, we recall the necessary prerequisites
of measure-theoretic entropy. We focus on the approach to the subject using measurable
partitions. For a more in-depth discussion of this approach, see e.g. Przytycki and
Urbański [30, Ch. 2] or Rokhlin [33].

Let (X, 6, µ) be a complete probability Lebesgue space; for a precise definition, see
e.g. [30, §2.6]. Note that, for a complete separable metric space X and a Borel σ -algebra
BX in X , the completion (X, B∗X , µ

∗) of a probability space (X, BX , µ) is a Lebesgue
space; see e.g. [32, §2, No. 7]. As usual, we denote (X, 6, µ) by X for simplicity.

Let PX be the set of all partitions of X . For each ξ ∈ PX , and x ∈ X , we denote by ξ(x)
the unique element of ξ containing x . We say that a partition η ∈ PX refines the partition
ξ ∈ PX if η(x)⊂ ξ(x) for every x ∈ X . The refinement of partitions induces a partial order
≤ to the set PX of all partitions by ξ ≤ η if η refines ξ .

Given a partition ξ ∈ PX , we say that a subset A ⊂ X is a ξ -subset if A is a finite
union of elements of ξ ∈ PX . A partition ξ ∈ PX is measurable if there exists an at most
countable collection (Bα)α∈I of measurable ξ -subsets in X having the following property.

For any distinct C, C ′ ∈ ξ , there exists α ∈ I for which either

• C ⊂ Bα and C ′ ∩ Bα = ∅; or
• C ′ ⊂ Bα and C ∩ Bα = ∅.

Rokhlin’s disintegration theorem states that, if X is a Lebesgue probability space and
ξ ∈ PX is measurable, there exists a collection ((C, 6|C , µC ))C∈ξ of probability spaces
satisfying the following conditions:
(a) (ξ(x), 6|ξ(x), µξ(x)) is a Lebesgue space for µ-a.e. x ∈ X ; and
(b) for any non-negative 6-measurable function f : X→ [0,∞], the restriction f |ξ(x)

is (6|ξ(x))-measurable for µ-a.e. x ∈ X , the function x 7→
∫
ξ(x) f |ξ(x) dµξ(x) is 6-

measurable, and ∫
X

f dµ=
∫

X

(∫
ξ(x)

f |ξ(x) dµξ(x)

)
dµ(x).

For details, see e.g. [30, Theorem 6.2.7, Remark 6.2.10] and the surrounding discussion,
or [32, §3]. The collection ((C, 6|C , µC ))C∈ξ , or in short (µC )C∈ξ , is called a canonical
system of probability measures associated to the space X and partition ξ . The system
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(µC )C∈ξ is essentially unique, in the sense that if (νC )C∈ξ is another canonical system of
probability measures associates to X and ξ , then µξ(x) = νξ(x) for µ-a.e. x ∈ X .

Let ξ, η ∈ PX be measurable partitions. The conditional information function
Iµ(ξ |η) : X→ [0,∞] of ξ with respect to η is defined by

Iµ(ξ |η)(x)=−log(µη(x)(ξ(x) ∩ η(x)))

for µ-a.e. x ∈ X , where (µC )C∈η is a canonical system of probability measures associated
to X and η. The function Iµ(ξ |η) is 6-measurable, and defines the conditional entropy
Hµ(ξ |η) of ξ with respect to η by

Hµ(ξ |η) :=
∫

X
Iµ(ξ |η) dµ. (3.3)

For details, see e.g. [30, Definition 2.8.3 and (2.8.3)].
For a sequence of measurable partitions ξi ∈ PX , let

∨
∞

j=1 ξ j denote the least common
refinement of the partitions ξi , that is, the least partition ζ ∈ PX satisfying ξ j ≤ ζ for every
j ∈ Z+. This partition exists, and is measurable; see e.g. the discussion in [30, pp. 39–40].
Now, the measure-theoretic or Kolmogorov–Sinai entropy hµ( f ) of a measure-preserving
self-map f on a complete probability Lebesgue space (X, 6, µ) is defined by

hµ( f ) := sup
ξ∈PX : measurable

Hµ

(
ξ

∣∣∣∣ ∞∨
j=1

f − jξ

)
, (3.4)

where f − jξ = { f − j C : C ∈ ξ}. The Kolmogorov–Sinai entropy is already determined by
finite partitions, that is,

hµ( f )= sup
ξ∈PX : finite and measurable

Hµ

(
ξ

∣∣∣∣ ∞∨
j=1

f − jξ

)
. (3.5)

Recall that a partition ξ ∈ PX is finite if it has finitely many elements. For more details,
see e.g. [33, §§7 and 9].

Finally, we briefly comment on entropy in the case that (X, 6, µ) is not a complete
Lebesgue space. In this case, we still obtain a canonical system (µC )C∈ξ of probability
measures if ξ is a finite partition of X into 6-measurable sets. Hence, the Kolmogorov–
Sinai entropy of a measure-preserving f : X→ X can be defined by

hµ( f )= sup
ξ∈PX : finite and measurable

lim
k→∞

Hµ

(
ξ

∣∣∣∣ k∨
j=1

f − jξ

)
, (3.6)

where the
∨k

j=1-operator is defined similarly as its infinite counterpart. Indeed, the limit
in (3.6) always exists, and the result is equivalent with (3.5) for complete Lebesgue
spaces X ; see e.g. [30, §2.4 and Theorem 2.8.6]. Moreover, we note that if (X, 6, µ)
is a probability space with completion (X, 6∗, µ∗) and f : X→ X is a µ-preserving
transformation, then hµ( f )= hµ∗( f ).
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4. Proof of the lower bound hµ f ( f )≥ log deg f
In this section, we prove the entropy lower bound. We formulate this goal as a proposition.

PROPOSITION 4.1. Let f : M→ M be a uniformly quasiregular map of degree at least
2 on a closed, oriented, and connected Riemannian n-manifold M satisfying H∗(M) 6∼=
H∗(Sn). Then

hµ f ( f )≥ log deg f.

Recall that, by the variational principle, we have that

h( f )≥ sup
µ

hµ( f )

for the topological entropy h( f ) of f , where the supremum is over f -invariant Borel
probability measures µ. Thus, Proposition 4.1 yields the desired lower bound in
Theorem 1.1.

Moreover, recall that a function J f,µ : M→ R is a (strong) measure theoretic Jacobian
of f with respect to a (Borel or completed Borel) measure µ on M if, for every µ-
measurable set A ⊂ M for which f |A is injective, the set f (A) is µ-measurable and the
integral transformation formula ∫

A
J f,µ dµ= µ( f (A))

holds. For further information on measure theoretic Jacobians, see [30, §2.9].
We prove the entropy estimate hµ f ( f )≥ log deg f using the following lemma.

LEMMA 4.2. Let f : M→ M be a uniformly quasiregular map of degree at least 2 on a
closed, oriented, and connected Riemannian n-manifold M. Let µ be an f -balanced Borel
probability measure on M. Then the function

J f,µ(x)=
deg f

i(x, f )
is a measure-theoretic Jacobian of f with respect to µ.

Proof. Suppose that A ⊂ M is Borel and that f |A is injective. We decompose A into sets
A1, . . . , Adeg f , where i(x, f )= j for every x ∈ A j . These sets are again Borel due to the
upper semicontinuity of i(·, f ); see e.g. [31, Proposition I.4.10]. Similarly, the sets f (A j )

are Borel since f is continuous and finite-to-one; see e.g. [35, Theorem 4.12.4]. Finally,
since f |A is injective, the sets f (A j ) are disjoint.

Now, let j ∈ {1, . . . , deg f } and let x ∈ M . Note that, since f is injective on A j and
i(·, f )≡ j on A j , we have f∗XA j = jX f (A j ), where XA j again denotes the characteristic
function of a set E ⊂ M . By using the f -balanced property of µ and Lemma 2.2, it follows
that

(deg f )µ(A j )=

∫
M
(deg f )XA j dµ=

∫
M

f∗XA j dµ= jµ( f (A j )).

Finally, we conclude that∫
A

deg f
i(x, f )

dµ(x)=
deg f∑
j=1

(deg f )µ(A j )

j
=

deg f∑
j=1

µ( f (A j ))= µ( f (A)),

and the claim therefore follows. �
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Having Lemma 4.2 at our disposal, we may conclude the proof of Proposition 4.1 as
follows.

Proof of Proposition 4.1. For simplicity, we implicitly complete the measure µ f

throughout this proof, as the completed measure has the same entropy as the original.
Let

εM := {{x} : x ∈ M} ∈ PM

be the partition of M into points. The partition εM and the partitions f − jεM are µ f -
measurable for j ∈ N. Moreover, we note that f − jεM ≤ f −1εM for every j ∈ N, and
therefore

∞∨
j=1

f − jεM = f −1εM . (4.1)

By Lemma 4.2, we obtain a measure theoretic Jacobian of f with respect to µ f ,
given by J f,µ f (x)= (deg f )/ i(x, f ) for x ∈ M . We note that since µ f is f -balanced,
f maps µ f -null Borel sets to µ f -null Borel sets by Lemma 2.2. Therefore, J f,µ f remains
a measure-theoretic Jacobian for the completed measure.

By [30, Theorem 2.9.6], we hence obtain

Hµ f (εM | f −1εM )=

∫
M

log J f,µ f dµ f =

∫
M
(log(deg f )− log i(x, f )) dµ f (x).

Moreover, we have i(x, f )= 1 for every x /∈ B f . As previously discussed, due to [16,
Theorem 1.2], our assumption that M is not a rational cohomology sphere implies that
µ f (B f )= 0; see Lemma 2.1. Hence, we obtain that∫

M
(log(deg f )− log i(x, f )) dµ f (x)=

∫
M

log deg f dµ f = log deg f.

Thus, by (3.5) and (4.1), we have

hµ f ( f )≥ Hµ f

(
εM

∣∣∣∣ ∞∨
j=1

f −1εM

)
= Hµ f (ε | f −1ε)= log deg f. �

Moreover, we note that the only properties of µ f we used in the above proof are that µ f

is an f -balanced Borel probability measure and µ f (B f )= 0, and the latter assumption
was only used to conclude that log i(·, f ) vanishes µ f -almost everywhere. Hence, the
above proof also yields the lower bound part of Theorem 1.3.

5. Preliminaries on currents
We move now to the discussion of Gromov’s argument on the upper bound h( f )≤
log deg f of the topological entropy. As a technical tool in the proof, we use Federer–
Fleming currents and we recall some basic results in this section. We refer to Federer [6,
Ch. 4] for details.

5.1. Currents. Let U ⊂ Rn be open, and for each m ∈ {0, 1, . . . , n}, let C∞0 (∧
mU ) be

the space of all differential m-forms on U having coefficients in C∞0 (U ). An m-current
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on U is an R-linear functional T on C∞0 (∧
mU ), which is continuous in the sense of

distributions. The space of all m-currents on U is denoted by Dm(U ). We give Dm(U )
the topology of pointwise convergence.

The support of a current T ∈Dm(U ) is

spt T :=U \ ∪{V ⊂U : open, and T (ω)= 0 for any ω ∈ C∞0 (∧
m V )},

and the boundary ∂U T ∈Dm−1(U ) of an m-current T ∈Dm(U ) is the (m − 1)-current
defined by

∂U T (ω)= T (dω) for each ω ∈ C∞0 (∧
m−1U ).

Thus ∂U∂U T = 0 for any T ∈Dm(U ). For each c ∈ R, the multiplication cT is defined in
the obvious manner. Furthermore, for each l-form τ ∈ C∞(∧lU ) for l ∈ {0, . . . , m}, the
interior multiplication T xτ ∈Dm−l(U ) is the current defined by (T xτ)(ω)= T (τ ∧ ω)
for each ω ∈ C∞0 (∧

m−lU ).

5.2. The mass of currents, normal currents, and integral representations. Let W be
an n-dimensional R-vector space having an inner product 〈·, ·〉. For each m ∈ {1, . . . , n},
the mth exterior product space (the m-vector space) ∧m W of W is equipped with the
Grassmann inner product

〈v1 ∧ · · · ∧ vm, w1 ∧ · · · ∧ wm〉 = det(〈vi , w j 〉)i, j for vi , w j ∈W.

We denote the induced norm on ∧m W by | · |. The m-covector space ∧m W ∗ of W also has
a Grassmannian inner product and a norm induced by the duality isomorphism W →W ∗

given by v 7→ (w 7→ 〈v, w〉) for v, w ∈W .
The comass ‖ξ‖M of an m-covector ξ ∈ ∧m W ∗ is defined by

‖ξ‖M := sup{|ξ(w)| : w ∈ ∧m W is simple, |w| ≤ 1},

where we say an m-vector w ∈ ∧m W is simple if it can be written as w = w1 ∧ · · · ∧ wm .
Similarly, the mass ‖w‖M of an m-vector w ∈ ∧m W is defined by

‖w‖M := sup{|ξ(w)| : ξ ∈ ∧m W ∗, ‖ξ‖M ≤ 1}.

These are norms on ∧m W ∗ and ∧m W satisfying |ξ | ≥ ‖ξ‖M for any ξ ∈ ∧m W ∗ and |w| ≤
‖w‖M for any w ∈ ∧m W , respectively. For more details, see [6, §1.8].

Let U be an open set in Rn and m ∈ {0, 1, . . . , n}. For each open subset V ⊂U , the
mass of an m-current T ∈Dm(U ) over V is defined by

MV (T ) := sup
{
|T (ω)| : ω ∈ C∞0 (∧

m V ), sup
x∈V
‖ωx‖M ≤ 1

}
,

where C∞0 (∧
m V ) is embedded in C∞0 (∧

mU ) by means of zero extension on U \ V . An
m-current T ∈Dm(U ) is said to be normal if

spt T bU and MU (T )+MU (∂U T ) <∞;

here, and in what follows, we denote A b B if A is a subset compactly contained in B.
An m-current T ∈Dm(U ) is locally normal if MV (T )+MV (∂U T ) <∞ for any open

subset V bU . Let Nm(U ) (resp. Nloc
m (U )) be the space of all normal (resp. locally normal)

m-currents on U .
Currents of finite mass admit an integral representation.
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LEMMA 5.1. For every T ∈Dm(U ) satisfying MU (T ) <∞, there exist a measurable
tangent m-vector field ET on U and a Radon measure µT on U such that for every
ω ∈ C∞0 (∧

mU ),

T (ω)=
∫

U
〈ω, ET 〉 dµT . (5.1)

Moreover, µT (V )=MV (T ) for any open subset V ⊂U.

Let T ∈Dm(U ) be a current of finite mass on an open set U ⊂ Rn and let µT be a
Radon measure and ET an m-vector field representing T as in (5.1). Thus, for an open set
V ⊂U , we may define the m-current T xV = T xχV ∈Dm(U ) by

(T xV )(ω)=
∫

V
〈ω, ET 〉 dµT =

∫
U
χV · 〈ω, ET 〉 dµT (5.2)

for each ω ∈ C∞0 (∧
mU ), where χV is the characteristic function of V on U . Moreover,

MV (T )= µT (V )= (µT |V )(V )= (µT |V )(U )=MU (T xV ). (5.3)

For further details, we refer to [6, §§4.1.5 and 4.1.7]

5.3. Push-forward of currents. Let U ⊂ Rn1 and V ⊂ Rn2 be open, T ∈Dm(U ), and let
h : U → V be a smooth map such that the restriction h| spt T : spt T → V is proper; note
that, if spt T bU , then h|spt T is proper. The push-forward h∗T of T under the map h is the
m-current h∗T ∈Dm(V ) defined as follows. For every ω ∈ C∞0 (∧

m V ), let ψ ∈ C∞0 (U ) be
a function satisfying ψ ≡ 1 on some open neighborhood of (spt T ) ∩ (h−1 spt ω), and set

(h∗T )(ω)= T (ψ · h∗ω).

The values of h∗T are independent on the choice of ψ .
Since h∗dω = dh∗ω for any ω ∈ C∞(∧m V ), we have

h∗∂U T = ∂V h∗T for each T ∈Dm(U ).

If in addition h|spt T is L-Lipschitz for L ≥ 1, then for any T ∈Dm(U ),

MV (h∗T )≤ Lm MU (T ).

For more details, we refer to e.g. [6, sections 4.1.7 and 4.1.14].

5.4. Slicing of currents. Let U ⊂ Rn be an open set, T ∈Dm(U ) an m-current
satisfying MU (T )+MU (∂U T ) <∞, and let h : U → R be an L-Lipschitz function for
L ≥ 1. For each t ∈ R, we set

Uh,t := h−1(−∞, t)⊂U,

which is open, and the slice of T by h at t is

〈T, h, t−〉 := ∂U (T xUh,t )− (∂U T )xUh,t ∈Dm−1(U ).

The following lemma gathers the key properties of the slices of currents used in the
forthcoming discussion. The argument in the proof is similar to that in [6, §4.2.1] and we
omit the details.
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PROPOSITION 5.2. Let U ⊂ Rn be open, let h be an L-Lipschitz function on U, L ≥ 1, and
let (a, b)⊂ R. If ∅ 6=Uh,t bU for every t ∈ (a, b), then for every T ∈Dm(U ) satisfying
MU (T )+MU (∂U T ) <∞,
(i) 〈T, h, t−〉 ∈ Nm−1(U ) for Lebesgue a.e. t ∈ (a, b), and
(ii) the function t 7→MU (〈T, h, t−〉) on (a, b) is lower semicontinuous, and

MUh,t (T )≥
1

mL

∫ t

a
MU (〈T, h, s−〉) ds for t ∈ (a, b).

6. The Ahlfors regularity of images in Euclidean spaces
As mentioned in the introduction, the upper bound for the entropy h( f ) follows from
an application of the uniform Ahlfors regularity estimate in Theorem 1.4 to the images
of maps (id, f, . . . , f k) : M→ Mk+1. We begin by proving a Euclidean counterpart of
Theorem 1.4. For the statement, given 0 ⊂ (Rn)k , we denote

0y,r = Bkn(y, r) ∩ 0

for y ∈ Rnk and r > 0.

PROPOSITION 6.1. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let
f1, . . . , fk : �→ Rn be non-constant K -quasiregular maps for some K ≥ 1 such
that max j∈{1,...,k} N ( f j ) <∞. Let g := ( f1, . . . , fk) : �→ (Rn)k = Rkn and 0 = 0g :=

g(�)⊂ Rkn . Then there exists a constant C = C(n) > 0, depending only on n, having the
property that, for each y ∈ 0 and any r > 0 satisfying g−1(0y,r )b�, we have

1
Ckn(n−1)/2 K n−1(min j N ( f j ))n

≤
Hn(0y,r )

rn ≤ Ckn/2 K max
j

N ( f j ). (6.1)

We prove Proposition 6.1 following Gromov’s argument in [8]. For the rest of this
section, let g : �→ Rkn be a map as in Proposition 6.1. The map g : �→ Rnk is
continuous and in W 1,n

loc (�, R
nk). As previously, we set

N (g, y, A) := #(g−1
{y} ∩ A)

for each y ∈ 0 and each A ⊂�, N (g, y) := N (g, y, �) for each y ∈ 0, and

N (g) := sup
y∈0

N (g, y)≤ min
j∈{1,...,k}

N ( f j ) <∞.

For each j ∈ {1, . . . , k}, let pr j : (Rn)k→ Rn be the j th projection (z1, . . . , zk) 7→ z j .
Then pr j ◦ g = f j .

We define a measurable function |Jg| on � by

|Jg|(x)= |(Dg(x)e1
x ) ∧ · · · ∧ (Dg(x)en

x )| for Lebesgue a.e. x ∈�,

where (e1
x , . . . , en

x ) is the standard basis of Tx�. Note that, for k > 1, the map g : �→
Rnk does not have a well-defined Jacobian determinant Jg . We call the function |Jg| the
n-Jacobian of g.
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6.1. The upper Ahlfors bound. The upper bound for Hn(0y,r ) follows from the
measures Hn(pr j (0y,r )) of the projections pr j (0y,r ) and the multiplicity of the restrictions
pr j |0y,r , which in turn can be estimated in terms of the multiplicity of the maps f j . We
formulate this as a lemma.

LEMMA 6.2. Let �⊂ Rn be an open subset, f1, . . . , fk : �→ Rn be K -quasiregular
mappings, g = ( f1, . . . , fk) : �→ Rnk , and 0 = g(�)⊂ Rnk . Then for every open
subset U ⊂ 0 satisfying g−1U b�, we have

Hn(U )≤ nn/2kn/2 K max
j∈{1,...,k}

N ( f j )Hn(pr j (U )). (6.2)

The upper bound in Proposition 6.1 follows now immediately. Indeed, since 0y,r is
open in 0, we have, by (6.2), that

Hn(0y,r )≤ nn/2kn/2 K max
j∈{1,...,k}

N ( f j )Hn(pr j (0y,r ))

≤ nn/2kn/2 K max
j∈{1,...,k}

N ( f j )Hn(Bn(pr j (y), r))

≤ C(n)kn/2 K
(

max
j∈{1,...,k}

N ( f j )

)
rn,

where C(n) > 0 depends only on n. Thus it suffices to prove Lemma 6.2.
We begin by showing that the map g has the Lusin property.

LEMMA 6.3. Let �⊂ Rn be an open subset, f1, . . . , fk : �→ Rn be K -quasiregular
mappings, g = ( f1, . . . , fk) : �→ Rnk , and 0 = g(�)⊂ Rnk . If E ⊂� is an Hn-null
subset, then g(E)⊂ Rnk is also an Hn-null subset.

Proof. For each j ∈ {1, . . . , k}, the j th component f j of g = ( f1, . . . , fk) is
quasiregular, and we may therefore fix an exponent p j > n of local higher integrability for
D f j . Then the proof of Bojarski and Iwaniec in [2, §8.1] shows that there is C(n, p j ) > 0
depending only on n, p j such that if Qi ⊂� are disjoint cubes, then∑

i

(diam f j (Qi ))
n
≤ C(n, p j )Hn

(⋃
i

Qi

)1−n/p j
(∫

⋃
i Qi

|D f j |
p j

)n/p j

.

Pick a common exponent p > n of higher integrability for all D f j , j ∈ {1, . . . , k}. Then
by Hölder’s inequality and standard estimates, there exists C(n, k, p) > 0 depending only
on n, k, p such that if Qi ⊂� are cubes with disjoint interiors, then∑

i

(diam g(Qi ))
n
≤ C(n, k, p)Hn

(⋃
i

Qi

)1−n/p( k∑
j=1

∫
⋃

i Qi

|D f j |
p
)n/p

.

Now the proof of the Lusin condition follows by intersecting the set of zero measure E
with a compact subset A ⊂�, covering E ∩ A with a collection of cubes with disjoint
interiors and arbitrarily small total measure, and using the above estimate to show that
g(E ∩ A) has arbitrarily small Hn measure. �

Since the maps f j : �→ Rn are K -quasiregular, we have the following estimate for the
n-Jacobian of g = ( f1, . . . , fk) : �→ Rnk .
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LEMMA 6.4. Let �⊂ Rn be an open subset, f1, . . . , fk : �→ Rn be K -quasiregular
mappings, g = ( f1, . . . , fk) : �→ Rnk , and 0 = g(�)⊂ Rnk . Then, for Lebesgue almost
every x ∈�, we have

|Jg|(x)≤ nn/2 K kn/2−1
k∑

j=1

J f j (x).

Proof. Since

|Jg|(x)=
√

det((Dg(x))T Dg(x)),

we have, by the distortion bound (1.1) for f j and Hölder’s inequality, that

|Jg|(x)=

√√√√√det
k∑

j=1

(D f j (x))T D f j (x)≤

√√√√√(1
n

tr
k∑

j=1

(D f j (x))T D f j (x)
)n

≤
1

nn/2

( k∑
j=1

tr((D f j (x))T D f j (x))
)n/2

≤
1

nn/2

( k∑
j=1

(n‖D f j (x)‖)2
)n/2

≤ nn/2 K ·
( k∑

j=1

(J f j (x)
2/n)n/2

)(2/n)·(n/2)

k(1−2/n)n/2

= nn/2 K kn/2−1
k∑

j=1

J f j (x)

for Lebesgue a.e. x ∈�. �

The last ingredient is the proof of Lemma 6.2 is an area formula for g. For more details,
see Hajłasz [10, Theorem 11].

LEMMA 6.5. Let �⊂ Rn be an open subset, f1, . . . , fk : �→ Rn be K -quasiregular
mappings, g = ( f1, . . . , fk) : �→ Rnk , and 0 = g(�)⊂ Rnk . Then, for every open
subset A ⊂�, ∫

A
|Jg| dHn

=

∫
g(A)

N (g, y, A) dHn(y). (6.3)

Proof. The map g is in W 1,n
loc (�, R

kn), and by Lemma 6.4, we have |Jg| ∈ L1
loc(�). Hence,

the Sobolev area formula [10, Theorem 11] implies that (6.3) holds for some g̃ in the
Sobolev equivalence class of g. Moreover, since g is Lusin (N) by Lemma 6.3, we have
g̃ = g by the discussion in [10, p. 239]. �

We are now ready for the proof of Lemma 6.2.

Proof of Lemma 6.2. Let U ⊂ 0 be an open set satisfying g−1U b�. Then, for each y ∈
U , we have N (g, y,U )≥ 1. Thus, by Lemmas 6.5 and 6.4, we have

Hn(U )≤
∫

U
N (g, y,U ) dHn(y)=

∫
g−1U
|Jg| dHn
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≤ nn/2 K kn/2−1
k∑

j=1

∫
g−1U

J f j (x) dHn(x).

Since f j = pr j ◦g, the change of variables for quasiregular mappings yields

k∑
j=1

∫
g−1U

J f j dHn
=

k∑
i=1

∫
pr j (U )

N ( f j , y j , g−1U ) dHn(y j )

≤

k∑
j=1

N ( f j )Hn(pr j (U ))≤ k max
j∈{1,...,k}

N ( f j )Hn(pr j (U )),

which completes the proof. �

6.2. The lower Ahlfors bound. In this section, we prove the lower estimate in
Proposition 6.1. The lower bound is obtained by considering a current [0y,r ] associated
to 0y,r and two estimates, which we combine in the following proposition. We define the
current [0y,r ] after the statement and devote the rest of this section for the proofs of the
estimates.

PROPOSITION 6.6. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let
f1, . . . , fk : �→ Rn be non-constant K -quasiregular maps for some K ≥ 1 such that
max j∈{1,...,k} N ( f j ) <∞. Let g = ( f1, . . . , fk) : �→ Rkn and 0 = g(�)⊂ Rkn . Then
there exists a constant C = C(n) > 0 depending only on n having the property that(

min
j∈{1,...,k}

N ( f j )

)
Hn(0y,r )≥MRkn ([0y,r ])≥

(
1

Ckn/2 K min j N ( f j )

)n−1

rn (6.4)

for each y ∈ 0 and r > 0 for which g−1(0y,r )b�.

The lower bound in (6.1) follows immediately from this lemma and hence the proof of
this proposition completes the proof of Proposition 6.1.

6.2.1. Current [0y,r ]. Although the notation may suggest otherwise, we do not define
the current [0y,r ] as integration over 0y,r but a push-forward of the integration over
g−1(0y,r ).

Let y ∈ 0 and r > 0 be such that �y,r = g−1(0y,r )b�. In this case, g|�y,r : �y,r →

Bnk(y, r) is a proper map. Indeed, let S ⊂ Bnk(y, r) be compact. Then g−1S is a closed
subset of �. Moreover g−1S ⊂ g−1 Bnk(y, r)=�y,r ⊂�y,r . Since �y,r ⊂�, we have
that g−1S = g−1S ∩�y,r is a closed subset of �y,r by relative topology. Since �y,r is
compact, g−1S is compact.

Since g ∈W 1,n
loc (�, R

nk), the linear functional [0y,r ] : C∞0 (∧
nRkn)→ R,

ω 7→

∫
�y,r

g∗ω, (6.5)

where g∗ω is a measurable n-form in �, is well defined.
To show that [0y,r ] is a current, denote, for every ω ∈ C∞0 (∧

nRkn),

λω := sup
x∈Rkn
‖ωx‖M <∞.
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Then, for Lebesgue a.e. x ∈�,

|(g∗ω)x | = |〈(g∗ω)x , volRn (x)〉|

= |ωg(x) ∧ ((Dg(x)e1
x ) ∧ · · · ∧ (Dg(x)en

x ))|

≤ ‖ωg(x)‖M|Jg(x)| ≤ λω|Jg(x)|. (6.6)

We are now ready to prove the upper bound in Proposition 6.6.

LEMMA 6.7. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let

f1, . . . , fk : �→ Rn

be non-constant K -quasiregular maps for some K ≥ 1 such that max j∈{1,...,k} N ( f j ) <∞.
Let g = ( f1, . . . , fk) : �→ Rkn and 0 = g(�)⊂ Rkn . Let y ∈ 0 and r > 0 be such that
g−1(0y,r )b�. Then the functional [0y,r ] is a current in Dn(Rkn) and

MRkn ([0y,r ])≤

(
min

j∈{1,...,k}
N ( f j )

)
Hn(0y,r ) <∞. (6.7)

Proof. For every ω ∈ C∞0 (∧
nRkn), we have, by (6.6) and Lemma 6.5, that∣∣∣∣ ∫

�y,r

g∗ω
∣∣∣∣≤ λω ∫

�y,r

|Jg| dHn
= λω

∫
0y,r

N (g, y′) dHn(y′)

≤ λωN (g)Hn(0y,r )≤ λω

(
min

j∈{1,...,k}
N ( f j )

)
Hn(0y,r ).

To show that [0y,r ] is a current it suffices now to observe that, for a converging sequence
ω j → 0 in C∞0 (∧

nRkn), we have

|[0y,r ](ω j )| ≤ λω j

(
min

j∈{1,...,k}
N ( f j )

)
Hn(0y,r ). (6.8)

Since differential forms are sections of covectors, we have the point-wise estimate
‖(ω j )x‖M ≤ |(ω j )x | for almost every x ∈�. Thus λω j → 0 as j→∞. Since
Hn(0y,r ) <∞ by (6.2), [0y,r ] is continuous and hence a current. Moreover, the mass
estimate (6.7) follows from the estimate (6.8). �

We move now to prove the lower bound in Proposition 6.6. We begin by proving that
the current [0y,r ] is locally normal.

LEMMA 6.8. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let

f1, . . . , fk : �→ Rn

be non-constant K -quasiregular maps for some K ≥ 1 such that max j∈{1,...,k} N ( f j ) <∞.
Let g = ( f1, . . . , fk) : �→ Rkn and 0 = g(�)⊂ Rkn . Let y ∈ 0 and r > 0 be such that
g−1(0y,r )b�. Then

∂Bkn(y,r)[0y,r ] = 0.
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Proof. Since �y,r = g−1(0y,r )b�, the map g|�y,r is also in W 1,n(�y,r , Rkn). Hence,
by e.g. [7, Proposition 4.1], for every ω ∈ C∞0 (∧

n−1 Bkn(y, r)), we have dg∗ω = g∗ dω ∈
L1(∧n�y,r ) and g∗ω ∈ Ln/(n−1)(∧n−1�y,r ), where dg∗ω is defined in the weak sense,
that is, ∫

�y,r

ψ dg∗ω =−
∫
�y,r

dψ ∧ g∗ω

for every ψ ∈ C∞0 (�y,r ).
Since g∗ω is compactly supported in �y,r , there exists, by a standard convolution

argument, a sequence (ω j ) of (n − 1)-forms in C∞0 (∧
n−1�y,r ) for which ω j → g∗ω in

Ln/(n−1)(∧n−1�y,r ) and dω j → dg∗ω = g∗ dω in L1(∧n�y,r ) as j→∞. Thus

∂Bkn(y,r)[0y,r ](ω)= [0y,r ]( dω)=
∫
�y,r

g∗ dω = lim
j→∞

∫
�y,r

dω j = 0,

that is, the boundary ∂Bkn(y,r)[0y,r ] vanishes. �

Currents [0y,r ] restrict naturally to currents [0y,t ] for t ∈ (0, r).

LEMMA 6.9. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let

f1, . . . , fk : �→ Rn

be non-constant K -quasiregular maps for some K ≥ 1 such that max j∈{1,...,k} N ( f j ) <∞.
Let g = ( f1, . . . , fk) : �→ Rkn and 0 = g(�)⊂ Rkn . Let y ∈ 0 and r > 0 be such that
g−1(0y,r )b�. Then, for every t ∈ (0, r),

[0y,r ]xBkn(y, t)= [0y,t ].

Proof. Let t ∈ (0, r) and let (Ai ) be an increasing sequence of compact subsets exhausting
Bkn(y, t), that is, Bkn(y, t)=

⋃
∞

j=1 Ai . For every i ∈ N, let ψi ∈ C∞0 (B
kn(y, t)) be a

function for which 0≤ ψi ≤ 1 and ψi |Ai = 1. Then

([0y,r ]xBkn(y, t))xψi = [0y,r ]xψi .

Let
[0y,r ](·)=

∫
�y,r

〈·, ET 〉 dµT

be an integral representation of T = [0y,r ] as in (5.1).
For any ω ∈ C∞0 (∧

nRkn), by �y,t b� and the inner regularity of the Radon measure
µT , we have

|(([0y,r ]xBkn(y, t))xψi )(ω)− ([0y,r ]xBkn(y, t))(ω)|

≤ |〈ω, ET 〉|µT (�y,t \ g−1(Ai ))→ 0

as i→∞.
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Since J f j ∈ L1
loc(�) and �y,t b�, we have for every ω ∈ C∞0 (∧

nRkn), by (6.6) and
Lemma 6.4, that

|([0y,r ]xψi )(ω)− [0y,t ](ω)| =

∣∣∣∣∫
�y,t\g−1 Ai

g∗ω
∣∣∣∣

≤ λωnn/2kn/2−1 K
k∑

j=1

∫
�y,t\g−1 Ai

J f j dHn
→ 0

as i→∞.
Having these estimates at our disposal, we conclude that, for each ω ∈ C∞0 (∧

nRkn), we
have

([0y,r ]xBnk(y, t))(ω)= lim
i→∞

(([0y,r ]xBkn(y, t))xψi )(ω)

= lim
i→∞

([0y,r ]xψi )(ω)= [0y,t ](ω).

This completes the proof. �

6.2.2. Slicing and isoperimetric estimates for [0y,r ]. The first step towards the lower
Ahlfors bound is the following slicing estimate for [0y,r ]—this is one of the key estimates
in the proof of the lower Ahlfors bound.

LEMMA 6.10. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let

f1, . . . , fk : �→ Rn

be non-constant K -quasiregular maps for some K ≥ 1 such that max j∈{1,...,k} N ( f j ) <∞.
Let g = ( f1, . . . , fk) : �→ Rkn and 0 = g(�)⊂ Rkn . Let y ∈ 0 and r > 0 be such that
g−1(0y,r )b�. Then, for every t ∈ (0, r),

MRkn ([0y,t ])≥
1
n

∫ t

0
MRkn (∂Rkn [0y,s]) ds.

Proof. Let t ∈ (0, r). By Lemma 6.9 and (5.3), we have that

MRkn ([0y,t ])=MBkn(y,t)([0y,r ]).

Similarly, by Lemmas 6.8 and 6.7, we have

MBkn(y,r)([0y,r ])+MBkn(y,r)(∂Bkn(y,r)[0y,r ])=MBkn(y,r)([0y,r ]) <∞.

Let now hy : Rnk
→ R be the 1-Lipschitz function x 7→ |x − y|. Then h−1

y (−∞, t)=
Bnk(y, t) and, by Proposition 5.2, we have

MBkn(y,t)([0y,r ])≥
1
n

∫ t

0
MRkn (〈[0y,r ], hy, s−〉) ds.

Since

〈[0y,r ], hy, s−〉 = ∂Bkn(y,r)([0y,r ]xBkn(y, s))− (∂Bkn(y,r)[0y,r ])xBkn(y, s)

= ∂Bkn(y,r)[0y,s] − (∂Bkn(y,r)[0y,r ])xBkn(y, s)= ∂Bkn(y,r)[0y,s]

and ∂Bkn(y,r)[0y,s] = ∂Rkn [0y,s] for all 0< s ≤ t < r , we have

MRkn ([0y,t ])≥
1
n

∫ t

0
MRkn (∂Rkn [0y,s]) ds

as claimed. �
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We finish this section with an isoperimetric estimate for the currents [0y,r ]—this is the
other key estimate in the proof of the lower Ahlfors bound.

LEMMA 6.11. Let �⊂ Rn be an open subset for n ≥ 2, k ∈ N, and let

f1, . . . , fk : �→ Rn

be non-constant K -quasiregular maps for some K ≥ 1 such that max j∈{1,...,k} N ( f j ) <∞.
Let g = ( f1, . . . , fk) : �→ Rkn and 0 = g(�)⊂ Rkn . Let y ∈ 0 and r > 0 be such that
g−1(0y,r )b�. Then there is a constant C = C(n) > 0 depending only on n such that, for
Lebesgue almost every t ∈ (0, r), we have

(MRkn (∂Rkn [0y,t ]))
n/(n−1)

≥
MRkn ([0y,t ])

C(n)kn/2 K min j N ( f j )
.

Proof. For every t ∈ (0, r), by Lemmas 6.7, 6.5, and 6.4, we have

MRkn ([0y,t ])≤ nn/2 K kn/2−1
(

min
j∈{1,...,k}

N ( f j )

) k∑
j=1

∫
�y,t

J f j dHn,

where �y,t = g−1(0y,t ).
Let ψt ∈ C∞0 (∧

nRn) be a function satisfying 0≤ ψt ≤ 1 and ωt |�y,t =Hn
|�y,t as

measures, where ωt = ψt volRn . Let also j ∈ {1, . . . , k}. Then∫
�y,t

J f j dHn
≤

∫
�y,t

ψt ( f j (x))J f j (x) dHn(x)=
∫
�y,t

f ∗j ωt =

∫
�y,t

g∗ pr∗j ωt

= [0y,t ](pr∗j ωt )= ((pr j )∗[0y,t ])(ωt )≤MRn ((pr j )∗[0y,t ]).

Thus

MRkn ([0y,t ])≤ nn/2 K kn/2−1
(

min
j∈{1,...,k}

N ( f j )

) n∑
j=1

MRn ((pr j )∗[0y,t ]).

Since

MRn (∂Rn ((pr j )∗[0y,t ]))=MRn ((pr j )∗∂Rn [0y,t ])≤MRkn (∂Rn [0y,t ]),

it suffices to, for almost every t ∈ (0, r), verify the isoperimetric inequality

MRn ((pr j )∗[0y,t ])≤ C(n)(MRn (∂Rn ((pr j )∗[0y,t ])))
n/(n−1) (6.9)

for each j ∈ {1, . . . , k}. We show that (pr j )∗[0y,t ] satisfies the assumptions for the
isoperimetric inequality for n-currents in [6, 4.5.9(31)]. More precisely, we show that
(pr j )∗[0y,t ] is locally normal and satisfies (pr j )∗[0y,t ] = Lnxg, where g : Rn

→ Z is
measurable and compactly supported and Ln is the Lebesgue measure in Rn .

Let j ∈ {1, . . . , k}. Since pr j is 1-Lipschitz, we have

MRn ((pr j )∗[0y,t ])≤MRkn ([0y,r ]) <∞.

By Lemma 6.10, we also have that MRkn ([0y,t ]) <∞ for almost every t ∈ (0, r). Thus

MRn (∂Rn ((pr j )∗[0y,t ]))=MRn ((pr j )∗∂Rn [0y,t ])≤MRkn (∂Rn [0y,t ]) <∞.
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Hence (pr j )∗[0y,t ] is a normal current for almost every t ∈ (0, r).
Let ω ∈ C∞0 (∧

nRn). Then, by the change of variables,

((pr j )∗[0y,t ])(ω)= [0y,t ](pr∗j ω)=
∫
�y,t

g∗ pr∗j ω =
∫
�y,t

f ∗j ω

=

∫
f j (�y,t )

N ( f j , z, �y,t )ω(z)

=

∫
Rn

N ( f j , z, �y,t )χ f j (�y,t )ω(z).

Thus
(pr j )∗[0y,t ] = Lnxut ,

where ut : Rn
→ N is the function z 7→ N ( f j , z, �y,t )χ f j (�y,t ). Since ut has compact

support, we conclude that, by the isoperimetric inequality for n-currents [6, 4.5.9(31)],
there exists C = C(n) > 0, depending only on n, for which (6.9) holds. The claim
follows. �

6.2.3. Proof of Proposition 6.6. The final ingredient in obtaining the proof of
Proposition 6.6 is a variant of the Bihari–LaSalle inequality [1], which in turn is a nonlinear
generalization of Grönwall’s inequality.

LEMMA 6.12. Let n > 1 be an integer, a > 0, and C > 0. Let also g ∈ L(n−1)/n
loc ([0, a]) be

a function for which g > 0 Lebesgue almost everywhere on (0, a) and

g(t)≥ C
∫ t

0
g(n−1)/n(s) ds

for almost every t ∈ (0, a). Then

g(t)≥
(

C
n

)n

tn

for almost every t ∈ (0, a).

Proof. Let G : [0, a] → R be the function

t 7→ C
∫ t

0
g(n−1)/n(s) ds.

Then G is absolutely continuous, non-decreasing on [0, a], and positive on (0, a). Thus,

(G1/n)′ =
G ′

nG(n−1)/n =
Cg(n−1)/n

nG(n−1)/n ≥
C
n

almost everywhere on [0, a]. Since G(0)= 0, we have for almost every t ∈ (0, a) that

g1/n(t)≥ G1/n(t)− G1/n(0)≥
∫ t

0
(G1/n)′(s) ds ≥

∫ t

0

C
n

ds =
C
n

t. �
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Proof of Proposition 6.6. By Lemmas 6.10, 6.11, and 6.12, there exists a constant C =
C(n) > 0, depending only on n, for which

MRkn ([0y,r ])≥

(
1

Ckn/2 K min j N ( f j )

)n−1

n−2nrn .

Since (
min

j∈{1,...,k}
N ( f j )

)
Hn(0y,r )≥MRkn ([0y,r ])

by Lemma 6.7, we conclude that

Hn(0y,r )≥

(
1

Ckn/2 K min j N ( f j )

)n−1 1
n2n

1
min j N ( f j )

rn

=

(
1

C ′kn(n−1)/2 K n−1(min j N ( f j ))n

)
rn,

where C = C(n) > 0 and C ′ = C ′(n) > 0 depend only on n. The proof is complete. �

7. Proof of Theorem 1.4
In this section, we prove Theorem 1.4 using Proposition 6.1. We use the same notation as
before. Given a Riemannian n-manifold N , k ∈ N, and a subset 0 ⊂ N k , we denote

0y,r = BN k (y, r) ∩ 0

for y ∈ N k and r > 0.
Our first goal is to prove a small-scale version of Theorem 1.4.

LEMMA 7.1. Let M and N be closed, connected, oriented Riemannian n-manifolds, and
let f1, . . . , fk : M→ N be non-constant K -quasiregular maps M→ N. Let also g =
( f1, . . . , fk) : M→ N k and 0 = g(M). Then there exists λ > 0 depending only on N
and f1 and having the property that, for all y ∈ 0 and r ∈ (0, λ/4), we have

1
(C(n)kn/2 K )n−1(min j deg f j )n

≤
Hn(0y,r )

rn ≤ C(n)kn/2 K
(

max
j

deg f j

)
.

Proof. Let M be a finite cover of M by smooth 2-bilipschitz charts (U, ϕ) of M . For
each x ∈ M , there exists a radius rx > 0 having the property that, for each r ∈ (0, rx ),
U ( f1, x, rx ) is a normal neighborhood of x with respect to f1 satisfying f (U ( f1, x, r))=
BN ( f (x), r). Thus there exists a finite cover N of N by smooth 2-bilipschitz charts (V, ψ)
with the property that, for each (V, ψ) ∈N , each component of f −1

1 V is contained in an
element of M.

Let λ > 0 be a Lebesgue number of N , that is, for every y ∈ N , we have Bn(y, λ)⊂ V
for some (V, ψ) ∈N . Note that λ depends only on the first map f1, and neither on k nor
the remaining maps f j .

Let x ∈ M , y = g(x), and 0< r < λ/4. We first consider the cube of balls
Qλ = BN ( f1(x), λ)× . . .× BN ( fk(x), λ). Then BN k (y, r)⊂ Qλ and, for every j ∈
{1, . . . , k}, we may fix a chart (V j , ψ j ) ∈N for which BN ( f j (x), λ)⊂ V j . Let also
σ = ψ1 × . . .× ψk : Qλ→ Rkn be a 2-bilipschitz embedding.
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We note that g−1 Qλ ⊂ f −1
1 V1. Since every component of f −1

1 V1 is contained in a
chart of M, there exists a partition {Wi }i∈I of g−1 Qλ into open sets Wi ⊂Ui , where
(Ui , ϕi ) ∈M for each i ∈ I . Since we may further assume that the images of ϕi : Ui → Rn

are mutually disjoint, the map ϕ : g−1 Qλ→ Rn , defined by ϕ|Wi = ϕi |Wi for each open
set Wi , is a locally 2-bilipschitz embedding.

We set now �= ϕ(g−1 Qλ) and let g′ = ( f ′1, . . . , f ′k) : �→ Rkn be the map g′ = σ ◦
g ◦ ϕ−1. Then f ′j = ψ j ◦ f j ◦ ϕ

−1 for each j ∈ {1, . . . , k}. Since ϕ−1 and each ψ j is
locally 2-bilipschitz, the maps f ′j are 24n K -quasiregular.

We are therefore in position to apply Proposition 6.1 on g′. We denote 0′y,t = σ(0 ∩
Qλ) ∩ Bkn(σ (y), t) for t > 0, and obtain a constant C = C(n) > 0 depending only on n
for which

Hn(0′y,t )≤ C(n)kn/2 K
(

max
i

deg fi

)
tn

and

Hn(0′y,t )≥

(
1

mini deg fi

)n( 1
C(n)kn/2 K

)n−1

tn

for each t > 0 satisfying (g′)−1 Bkn(σ (y), t)b�.
Since σ is a 2-bilipschitz embedding, we have

Bkn(σ (y), r/2)⊂ σ(BN k (y, r))⊂ Bkn(σ (y), 2r).

Therefore,
2−nHn(0′y,r/2)≤Hn(0y,r )≤ 2nHn(0′y,2r ).

It suffices now to show that (g′)−1 Bkn(σ (y), 2r) is compactly contained in ϕ(U ). For
this, note first that σ−1 Bkn(σ (y), 2r)⊂ B N k (y, 4r). Since g−1 B N k (y, 4r) is a closed
subset of the closed manifold M , it is compact. Since B N k (y, 4r)⊂ Qλ, we have that
g−1 B N k (y, 4r)⊂ g−1 Qλ. Thus (g′)−1 Bkn(σ (y), 2r) is contained in the compact subset
ϕ(g−1 B N k (y, 4r)) of �. �

7.1. Large-scale estimates. In order to prove Theorem 1.4, it remains to extend the
estimate of Lemma 7.1 to the radii r satisfying λ/4≤ r ≤ diam 0.

The following lemma completes the proof of the Ahlfors lower bound in Theorem 1.4.

LEMMA 7.2. Let M and N be closed, connected, oriented Riemannian n-manifolds,
and let f1, . . . , fk : M→ N be non-constant K -quasiregular maps M→ N. Let
also g = ( f1, . . . , fk) : M→ N k and 0 = g(M). Then there exists a constant C =
C(n, f1, M, N ) > 0, depending only on n, f1, M, and N, with the property that, for each
y ∈ 0 and all r ∈ (0, diam 0),

Hn(0y,r )≥
1

(Ckn/2 K )(n−1)(min j deg f j )n
rn .

Proof. Let λ > 0 be as in Lemma 7.1. It suffices to consider radii λ/4≤ r ≤ diam 0.
Since diam 0 ≤ diam N k

= k1/2 diam N , we have that r/(k1/2 diam N )≤ 1
and 4r/λ≥ 1. Now, by Lemma 7.1, there exist constants C = C(n, λ) > 0 and
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C ′ = C ′(n, λ, diam N ) > 0 for which

Hn(0y,r )≥Hn(0y,λ/8)

≥ C(n, λ)−1k−n(n−1)/2 K−(n−1)
(

min
i

deg fi

)−n

≥ C ′(n, λ, diam N )−1k−n(n−1)/2 K−(n−1)
(

min
i

deg fi

)−n

rn .

Hence, we have obtained the lower bound of Theorem 1.4. Moreover, since λ only depends
on f1 and the Riemannian metrics on M and N , we have that C ′(n, λ, diam N ) only
depends on n, f1, M , and N , and not on k or the other maps fi . �

For the upper bound, a similar observation as in the proof of the lower bound yields

Hn(0y,r )≤Hn(0)≤
4n

λn H
n(0)rn .

Hence, the problem of the upper bound reduces to estimating the Hausdorff measure Hn

of the entire set 0, and hence to a global counterpart of Lemma 6.2 on closed manifolds.
We state this as follows.

LEMMA 7.3. Let M and N be closed, connected, oriented Riemannian n-manifolds,
and let f1, . . . , fk : M→ N be non-constant K -quasiregular maps M→ N. Let also
g = ( f1, . . . , fk) : M→ N k and 0 = g(M). Then there exists a constant C = C(n) > 0,
depending only on n, for which

Hn(0)≤ Ckn/2 K
(

max
j

deg f j

)
Hn(N ). (7.1)

The upper bound for the Hausdorff measure in Theorem 1.4 follows now almost
immediately using Lemma 7.3 and the same observation as in the proof of the lower bound.
We record the final piece of the proof of Theorem 1.4.

Proof of Theorem 1.4. By Lemma 7.2, it remains to show that, there exists a constant
C > 0 depending only on n, M , N , and f1 for which

Hn(0(y, r))≤ Ckn/2 K
(

max
j

deg f j

)
rn . (7.2)

Let λ > 0 be as in Lemma 7.1.
We consider two cases. By Lemma 7.1, there exists a constant C ′ = C ′(n) > 0

depending only on n for which (7.2) holds with C ′ for r ∈ (0, λ/4).
Suppose now that r ≥ λ/4. Then by Lemma 7.3 there exists a constant C ′′ = C ′′(n),

depending only on n, for which

Hn(0y,r )≤Hn(0)≤
4n

λn H
n(0) · rn

≤
4n

λn · C
′′
·Hn(N ) · kn/2 K

(
max

j
deg f j

)
· rn

= C ′′′kn/2 K
(

max
j

deg f j

)
· rn,
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where the constant C ′′′ depends only on n, λ, and N . Since λ depends only on f1 and the
Riemannian metrics on M and N , it suffices to take the maximum of the obtained constants
C ′ and C ′′′. This completes the proof of Theorem 1.4. �

It remains to prove Lemma 7.3. Since we were unable to locate a suitable version of the
area formula for continuous Sobolev maps between closed manifolds, we give a hands-on
proof based on the area formula for Sobolev functions in charts. For this reason, we begin
by recalling a version of the Vitali covering theorem.

THEOREM 7.4. Let M be a Riemannian n-manifold and, for every x ∈ M, let rx > 0.
Then there exists an at most countable collection of disjoint open balls B = {B1, B2, . . .}

for which every ball Bi = BM (xi , ri ) in the collection satisfies ri < rxi and the set M \ ∪B
has Hn-measure zero.

Proof. A version for closed balls follows from Federer [6, Theorem 2.8.18 and §2.8.9]
(see also Heinonen [11, Example 1.15(c) and (f)]). An open ball version follows since
every small enough closed ball on M has a boundary of measure zero. �

We are now ready for the proof of Lemma 7.3.

Proof of Lemma 7.3. For each x ∈ M , let

rx = sup{r > 0 : g(BM (x, r))⊂ BN k (g(x), λ/4)}.

Since g is continuous, we have rx > 0 for every x ∈ M . Let B be a countable family of
balls as in the Vitali covering theorem 7.4.

Let B ∈ B. By the same construction as in Lemma 7.1, we obtain 2-bilipschitz
embeddings ϕ : B→ Rn and σ = ψ1 × · · · × ψk : g(B)→ Rkn , where mappings ψ j are
smooth 2-bilipschitz charts on N . Let also again g′ = ( f ′1, . . . , f ′k) : ϕ(B)→ Rkn be the
map with 24n K -quasiregular component functions f ′j = ψ j ◦ f j ◦ ϕ

−1 for j ∈ {1, . . . , k}.
Hence, we may use Lemmas 6.5 and 6.4 to obtain a constant C = C(n) > 0, depending

only on n, for which

Hn(σ (g(B)))≤
∫
σ(g(B))

N (g′, y′, ϕ(B)) dHn(y′)

≤ C(n)kn/2−1 K
k∑

j=1

∫
ϕ(B)

J f ′j
(x ′) dHn(x ′).

Since σ is a 2-bilipschitz embedding, we have

Hn(g(B))≤ 2nHn(σ (g(B))).

Moreover, we may also estimate∫
ϕ(B)

J f ′j
(x ′) dHn(x ′)=

∫
ϕ(B)

Jψ j◦ f j (ϕ
−1(x ′))Jϕ−1(x ′) dHn(x ′)

=

∫
B

Jψ j◦ f j (z) dHn(z)=
∫

B
Jψ j ( f j (z))J f j (z) dHn(z)

≤ 2n
∫

B
J f j (z) dHn(z).
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Now, by combining these estimates for all B ∈ B and absorbing the constants into C(n),
we obtain

Hn(g(∪B))≤ C(n)kn/2−1 K
k∑

j=1

∫
∪B

J f j dHn

≤ C(n)kn/2 K
(

max
j

∫
M

J f j dHn
)

= C(n)kn/2 K
(

max
j

deg f j

)
Hn(N ).

Finally, since g satisfies the Lusin condition, we have that g(∪B) has full Hn-measure in
0, and the claim follows. �

8. The entropy upper bound: Proof of Theorem 1.1
In this section, we conclude the proof of the entropy equality h( f )= log deg f . We give
first the entropy upper bound in the case of quasiregular self-maps and then finish the proof
of Theorem 1.1. The argument is otherwise the same as in [8, Ch. 5].

In the following theorem, we use the notation K ( f ) for the smallest distortion constant
of the quasiregular map f : M→ M .

THEOREM 8.1. Let f : M→ M be a K -quasiregular self-map on a closed, oriented, and
Riemannian n-manifold M. Then

h( f )≤ log deg f + n · lim sup
k→∞

log K ( f k)

k
≤ log deg f + n log K .

Proof. Let M be a closed, connected, and oriented Riemannian n-manifold, n ≥ 2,
K ≥ 1, and let f : M→ M be a non-constant K -quasiregular self-map. Recall that, by
Theorem 3.1,

h( f )= h(0(idM , f ))≤ lov(0(idM , f ))− lodn(0(idM , f )),

where 0(idM , f ) = (idM , f )(M)⊂ M2 is the graph of f . For each k ∈ N, let gk :=

(idM , f, f 2, . . . , f k) : M→ Mk+1 and

0gk := gk(M)= Chaink(0(idM , f )).

By Theorem 1.4, there exists C = C(n) > 0, depending only on n, such that, for each
y ∈ Chaink(0(idM , f )) and ε ∈ (0, diam M), we have

Hn(Chaink(0(idM , f )) ∩ Dk,∞(y, ε))≥Hn(Chaink(0(idM , f )) ∩ BMk+1(y, ε))

≥
εn

C · (k + 1)n2/2(K ( f k))n−1
.

Thus

−lodn(0(idM , f )) ≤ lim inf
ε→0

lim sup
k→∞

log(C · (k + 1)n
2/2(K ( f k))n−1ε−n)

k

= lim inf
ε→0

lim sup
k→∞

(
n − 1

k
log K ( f k)

)
= (n − 1) lim sup

k→∞

log K ( f k)

k
. (8.1)
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On the other hand, we have either by Theorem 1.4 or by Lemma 7.3, that

Hn(Chaink(0(idM , f )))≤ C · (k + 1)n K ( f k)(deg f )k · (diam M)n .

Thus

lov(0(idM , f )) ≤ lim sup
k→∞

1
k

log(C · (k + 1)n K ( f k)(deg f )k(diam M)n)

= log deg f + lim sup
k→∞

log K ( f k)

k
. (8.2)

Combining the estimates (8.1) and (8.2), we obtain the upper bound

h( f )≤ lov(0(idM , f ))− lodn(0(idM , f ))≤ log deg f + n
log(K ( f k))

k
.

Since K ( f k)≤ K k , the proof is complete. �

Proof of Theorem 1.1. The lower bound h( f )≥ log deg f follows from the variational
principle and the lower bound hµ f ( f )≥ log deg f in Proposition 4.1 for the invariant
measure µ f . Thus it remains to prove the upper bound using the variant of Gromov’s
argument we discussed in the previous section. Since K ( f k)≤ K for each k ∈ N, the
upper bound h( f )≤ log deg f follows immediately from Theorem 8.1. �
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