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1. Introduction

Noether’s problem [25] is one of the fundamental problems of invariant theory, and
asks as to whether the field of Q-invariant functions C(V )Q is purely transcendental
over C, where Q is a given finite group and V is a vector space over C (or, more
generally, over an algebraically closed field of characteristic zero) equipped with a
faithful linear generically free action of Q. Artin and Mumford [1] introduced an
obstruction H2

nr(C(V )Q, Q/Z) to this problem, called the unramified Brauer group
of the field extension C(V )Q/C. In his seminal work, Bogomolov [4] proved that
H2

nr(C(V )Q, Q/Z) is canonically isomorphic to the intersection of the kernels of
restriction maps H2(Q, Q/Z) → H2(A, Q/Z), where A runs through all abelian
subgroups of Q. A simplified description of H2

nr(C(V )Q, Q/Z) was found in [21]
by considering its dual B0(Q). Following Kunyavskĭı [18], we call the latter group
the Bogomolov multiplier of Q. The description of B0 is combinatorial and enables
efficient explicit calculations. Furthermore, it relates Bogomolov multipliers to the
commuting probability of a group [14], and shows that B0 plays a role in describ-
ing the so-called commutativity preserving central extensions of groups, which are
closely related to some problems in K-theory [21].

In this paper we develop a theory of commutativity preserving group extensions
with abelian kernel. Specifically, let Q be a group and let N be a Q-module. Denote
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by e = (χ, G, π) the extension

1 �� N
χ �� G

π �� Q �� 1

of N by Q. Following [21], we say that e is a CP extension if commuting pairs of
elements of Q have commuting lifts in G. In the first part of the paper we define a
subgroup H2

CP(Q, N) of the second cohomology group H2(Q, N) that classifies CP
extensions of N by Q up to equivalence. Then we focus on central CP extensions.
We prove a variant of the universal coefficient theorem by showing that, given a
trivial Q-module N , there is a split exact sequence

0 �� Ext(Qab, N) �� H2
CP(Q, N) �� Hom(B0(Q), N) �� 0.

In addition to that, we provide several characterizations of central CP extensions,
and prove that these are closed under isoclinism of extensions. Subsequently, we
show that the isoclinism classes of central CP extensions with a given factor group
Q are in bijective correspondence with the orbits of the action of AutQ upon the
subgroups of B0(Q).

In what follows, we consider stem central CP extensions of N by Q, where |N | =
|B0(Q)|. We call such extensions CP covers of Q. These are analogues of the usual
covers in the theory of Schur multipliers. We show that every finite group has a
CP cover, and that all CP covers of isoclinic groups are isoclinic. Furthermore,
we show how CP covers are, in a suitable sense, precisely the maximal central CP
extensions of Q. In the succeeding section we then also consider minimal central CP
extensions, i.e. those whose kernel is a cyclic group of prime order. Such extensions
are parametrized by H2

CP(Q, Fp). The main result in this direction is that this group
is an elementary abelian p-group of rank d(Q) + d(B0(Q)).

Applying the theory of CP covers, we derive some bounds for the order, rank and
exponent of the Bogomolov multiplier of a given finite group Q. We obtain bounds
for B0(Q) that correspond to those for Schur multipliers obtained by Jones and
Wiegold [16] and Jones [15]. On the other hand, a special feature of B0 is that it is
closely related to the commuting probability of the group in question, that is, the
probability that two randomly chosen elements of the group commute. This was
already explored in [14], where we proved that if the commuting probability of Q is
strictly greater than 1/4, then B0(Q) is trivial. Here we prove that if the commuting
probability of a finite group Q is strictly greater than a fixed ε > 0, then the order
of B0(Q) can be bounded in terms of ε and the maximum of minimal numbers of
generators of Sylow subgroups of Q. Furthermore, we show that expB0(Q) can be
bounded in terms of ε only.

2. CP extensions

The purpose of this section is to establish a cohomological object that encodes all
the information on CP extensions up to equivalence. We refer the reader to [5] for
an account of the theory of group extensions.

Lemma 2.1. The class of CP extensions is closed under equivalence of extensions.
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Proof. Let

0 �� N
µ1 �� G1

θ

��

ε1 �� Q �� 1

0 �� N
µ2 �� G2

ε2 �� Q �� 1

be equivalent extensions with abelian kernel. Suppose that G1 is a CP extension
of N by Q. Choose x1, x2 ∈ Q with [x1, x2] = 1. Then there exist e1, e2 ∈ G1 such
that [e1, e2] = 1 and ε1(ei) = xi, i = 1, 2. Take ēi = θ(ei). Then [ē1, ē2] = 1 and
ε2(ēi) = xi. This proves that G2 is a CP extension of N by Q.

As in the classical setting of group extensions, CP extensions can be interpreted
in a cohomological manner. Let Q and S be groups, and suppose that Q acts on
S via (x, y) �→ xy, where x ∈ Q and y ∈ S. A map ∂ : Q → S is a derivation (or
1-cocycle) from Q to S if ∂(xy) = x∂(y)∂(x) for all x, y ∈ Q. Let N be a Q-module
and fix a ∈ N . The map ∂a : Q → N , given by ∂a(g) = ga − a, is a derivation. The
maps of this type are called inner derivations.

A cocycle ω ∈ Z2(Q, N) is said to be a CP cocycle if for all commuting pairs
x1, x2 ∈ Q there exist a1, a2 ∈ N such that

ω(x1, x2) − ω(x2, x1) = ∂a1(x1) + ∂a2(x2). (2.1)

Denote by Z2
CP(Q, N) the set of all CP cocycles in Z2(Q, N).

Proposition 2.2. Z2
CP(Q, N) is a subgroup of Z2(Q, N) containing B2(Q, N).

Proof. It is clear that Z2
CP(Q, N) is a subgroup of Z2(Q, N). Now let β ∈ B2(Q, N).

Then there exists a function φ : Q → N such that

β(x1, x2) = x1φ(x2) − φ(x1x2) + φ(x1)

for all x1, x2 ∈ Q. Suppose that these two elements commute. Then β(x1, x2) −
β(x2, x1) = ∂φ(x2)(x1) + ∂−φ(x1)(x2), and hence β ∈ Z2

CP(Q, N).

Now define H2
CP(Q, N) = Z2

CP(Q, N)/ B2(Q, N). This is a subgroup of the ordi-
nary cohomology group H2(Q, N).

Example 2.3. Let Q be an abelian group and let N be a trivial Q-module. Then
H2

CP(Q, N) coincides with Ext(Q, N).

Proposition 2.4. Let N be a Q-module. Then the equivalence classes of CP exten-
sions of N by Q are in bijective correspondence with the elements of H2

CP(Q, N).

Proof. Let e = (χ, G, π) be an extension of N by Q. Let ω : Q × Q → N be a
corresponding 2-cocycle. Then e is equivalent to the extension

1 �� N �� Q[ω] ε �� Q �� 1,

where Q[ω] is, as a set, equal to N × Q, the operation is given by (a, x)(b, y) =
(a + xb + ω(x, y), xy), and ε(a, x) = x. By lemma 2.1 it suffices to show that the
latter extension is CP if and only if ω ∈ Z2

CP(Q, N). Let x, y ∈ Q commute and let
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(a, x) and (b, y) be lifts of x and y in Q[ω]. Then (a, x) and (b, y) commute if and
only if ω(x, y) − ω(y, x) = (y − 1)a − (x − 1)b = ∂a(y) + ∂−b(x). Thus the existence
of commuting lifts of x and y is equivalent to ω ∈ Z2

CP(Q, N).

We now give some examples.

Example 2.5. Let Q be a group in which for every commuting pair x, y the sub-
group 〈x, y〉 is cyclic. This is equivalent to Q having all abelian subgroups cyclic.
In the case of finite groups, it is known [5, theorem VI.9.5] that such groups are
precisely the groups with periodic cohomology, and this furthermore amounts to
Q having cyclic Sylow p-subgroups for p odd, and cyclic or quaternion Sylow
p-subgroups for p = 2. Infinite groups with this property include free products
of cyclic groups (see [17]). Given such a group Q, it is clear that every commuting
pair of elements in Q has a commuting lift. Thus every extension of Q is CP, and
so H2(Q, N) = H2

CP(Q, N) for any Q-module N .

Example 2.6. Taking the simplest case Q = Cp in the previous example, we see
that every extension of a group by Cp is CP. Thus, in particular, every finite p-group
can be viewed as being composed from a sequence of CP extensions.

Example 2.7. There are many examples of extensions that are not CP. One may
simply take as G a group of nilpotency class 2 and factor by a subgroup generated
by a non-trivial commutator. In fact, in the case in which the extension is central,
it is more difficult to find examples of extensions that are CP. We will focus on
inspecting central CP extensions in the following section. Consider now only exten-
sions that are not central. Some small examples of extensions that fail to be CP are
easily produced by taking a non-trivial action of a non-cyclic abelian group on an
elementary abelian group. We give a concrete example. Take Q = 〈x1〉 × 〈x2〉 to be
an elementary abelian p-group of rank 2, and let it act on N = 〈a1〉 × 〈a2〉 × 〈a3〉,
an elementary abelian p-group of rank 3, via the following rules:

ax1
1 = a1, ax1

2 = a2, ax1
3 = a3, ax2

1 = a2, ax2
2 = a1, ax2

3 = a3.

Thus N is a Q-module. Now construct an extension G corresponding to this action
by specifying xx1

2 = x2a3. This extension is not CP because the commuting pair
x1, x2 in Q does not have a commuting lift in G.

3. Central CP extensions

From now on we focus on a special type of CP extension, namely, those with central
kernel. In terms of the cohomological interpretation, these correspond to the case
in which the relevant module is trivial.

The fundamental result here is a CP version of the universal coefficient theorem.
In other words, there exists a universal cohomological object that parametrizes all
central CP extensions. We show below that this object is the Bogomolov multiplier.
Let us first recall its definition in more detail [21]. Given a group Q, let Q ∧ Q be
the group generated by the symbols x ∧ y, where x, y ∈ Q, subject to the relations

xy ∧ z = (xy ∧ zy)(y ∧ z), x ∧ yz = (x ∧ z)(xz ∧ yz), x ∧ x = 1, (3.1)
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where x, y, z ∈ Q. The group Q ∧ Q is said to be the non-abelian exterior square
of Q, defined by Miller [20]. There is a surjective homomorphism Q ∧ Q → [Q, Q]
given by x ∧ y �→ [x, y]. Miller [20] showed that the kernel M(Q) of this map is nat-
urally isomorphic to the Schur multiplier H2(Q, Z) of Q. Finally, define B0(Q) =
M(Q)/ M0(Q), where M0(Q) = 〈x ∧ y | x, y ∈ Q, [x, y] = 1〉; this is the Bogomolov
multiplier. One can therefore consider B0(Q) as the kernel of the induced commu-
tator map from the non-abelian curly exterior square Q � Q = (Q ∧ Q)/ M0(Q)
to [Q, Q]. It was shown in [21] that H2

nr(C(V )Q, Q/Z) is naturally isomorphic to
Hom(B0(Q), Q/Z).

Theorem 3.1. Let N be a trivial Q-module. Then there is a split exact sequence

0 �� Ext(Qab, N)
ψ �� H2

CP(Q, N)
ϕ̃ �� Hom(B0(Q), N) �� 0, (3.2)

where the maps ψ and ϕ̃ are induced by the universal coefficient theorem.

Proof. By the universal coefficient theorem, we have a split exact sequence

0 �� Ext(Qab, N)
ψ �� H2(Q, N)

ϕ �� Hom(M(Q), N) �� 0. (3.3)

Let [ω] belong to Ext(Qab, N). Then [2] the map ψ can be described as ψ([ω]) =
[ω ◦ (ab × ab)], where ab: Q → Qab. If x, y ∈ Q commute, then

ψ([ω])(x, y) = ω(x[Q, Q], y[Q, Q]) = ω(y[Q, Q], x[Q, Q]) = ψ([ω])(y, x),

and therefore ψ maps the group Ext(Qab, N) into H2
CP(Q, N). The map ϕ can be

described as follows. Suppose that [ω] ∈ H2(Q, N) represents a central extension

0 �� N �� Q̃
π �� Q �� 1. (3.4)

Let z =
∏

i(xi ∧ yi) ∈ M(Q), that is,
∏

i[xi, yi] = 1. Choose x̃i, ỹi ∈ Q̃ such that
π(x̃i) = xi and π(ỹi) = yi. Define z̃ =

∏
i[x̃i, ỹi]. Clearly, z̃ ∈ N , and it can be

verified that the map ϕ is well defined by the rule ϕ([ω]) = (z �→ z̃).
Suppose now that [ω] belongs to H2

CP(Q, N). Let z belong to M0(Q). Then z can
be written as z =

∏
i(xi ∧ yi), where [xi, yi] = 1 for all i. Since the extension (3.4)

is a central CP extension, we can choose commuting lifts (x̃i, ỹi) of the commuting
pairs (xi, yi). By the above definition, z̃ = 0, and hence ϕ is trivial when restricted
to M0(Q). Thus ϕ induces an epimorphism ϕ̃ : H2

CP(Q, N) → Hom(B0(Q), N) such
that the following diagram commutes:

H2(Q, N)
ϕ �� Hom(M(Q), N)

H2
CP(Q, N)

ϕ̃ ��

ι

��

Hom(B0(Q), N)

ρ∗

��

Here the map ρ∗ is induced by the canonical epimorphism ρ : M(Q) → B0(Q).
Therefore, it follows that ker ϕ̃ = ker ϕ|im ι = im ψ. This shows that the sequence
(3.2) is exact. Furthermore, the splitting of the sequence (3.3) yields that the
sequence (3.2) is also split. This proves the result.
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We offer a sample application of the above theorem. Recall that Schur’s theory
of covering groups originally arose in the context of projective representations
(see [27]). Schur showed that there is a natural correspondence between the ele-
ments of H2(Q, C×) and projective representations of Q. To every projective rep-
resentation ρ : Q → GL(V ) one can associate a cocycle α ∈ Z2(Q, C×) via the rule
ρ(x)ρ(y) = α(x, y)ρ(xy) for every x, y ∈ Q. Projectively equivalent representations
induce cohomologous cocycles, and a cocycle is a coboundary if and only if the
representation is equivalent to a linear representation. It is readily verified that CP
extensions integrate well into this setting.

Proposition 3.2. Projective representations ρ : Q → GL(V ) with the property that
[ρ(x1), ρ(x2)] = 1 whenever [x1, x2] = 1 correspond to cohomological classes of CP
cocycles α ∈ Z2(Q, C×), i.e. elements of B0(Q).

In particular, if B0(Q) is trivial, every projective representation of Q that pre-
serves commutativity is similar to a linear representation.

The maps that preserve commutativity have been studied in detail in other alge-
braic structures; see [29] for a survey. A connection between certain commutativity
preservers in groups and central CP extensions can be made along the following
lines. Let ρ : Q → S be a set-theoretical map from Q to a group S such that
ρ(1) = 1 and the induced map ρ : Q → S/Z(S) is a homomorphism. We may thus
write ρ(x)ρ(y) = α(x, y)ρ(xy) for some function α : Q × Q → Z(S). In view of the
associativity of multiplication, α is in fact a Z(S)-valued 2-cocycle. As above, such
maps ρ that preserve commutativity correspond to the elements of H2

CP(Q, Z(S)).
Given a group G, we define K(G) = {[x, y] | x, y ∈ G} to be the set of commuta-

tors in G. Next, we give a simple criterion for determining whether or not a given
central extension is CP. This result will later be used repeatedly.

Proposition 3.3. Let

e : 1 �� N
χ �� G

π �� Q �� 1

be a central extension. Then e is a CP extension if and only if χ(N) ∩ K(G) = 1.

Proof. Define M = χ(N). Suppose that M ∩ K(G) = 1. Choose x, y ∈ Q with
[x, y] = 1. We have x = π(g) and y = π(h) for some g, h ∈ G. Then π([g, h]) = 1,
and hence [g, h] ∈ M ∩ K(G) = 1. Thus g and h are commuting lifts of x and y,
respectively.

Conversely, suppose that e is a CP central extension. Choose [g, h] ∈ M ∩ K(G).
By assumption, there exists a commuting lift (g1, h1) ∈ G × G of the commuting
pair (π(g), π(h)). We can thus write g1 = ga, h1 = hb, where a, b ∈ M . It follows
that 1 = [g1, h1] = [ga, hb] = [g, h], and hence M is a CP subgroup of G.

It is clear from the proof above that the implication from right to left also holds
for non-central extensions. In the general case, however, the equivalence fails. For
example, when Q is a cyclic group and G non-abelian, we certainly have χ(N) ∩
K(G) = K(G) > 1, and the extension is CP.

We proceed with some further characterizations of central CP extensions. We
say that a normal abelian subgroup N of a group G is a CP subgroup of G if the
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extension
1 �� N �� G �� G/N �� 1

is a CP extension. In the case in which N is central in G, proposition 3.3 implies
that N is a CP subgroup if and only N ∩ K(G) = 1. The following lemma will be
needed.

Lemma 3.4. Let N be a central CP subgroup of G. Then the sequences

0 → B0(G) → B0(G/N) → N ∩ G′ → 0

and
N ⊗ Gab → M0(G) → M0(G/N) → 0

are exact.

Proof. Let G and N be given via free presentations, that is, G = F/R and N = S/R.
The fact that N is a central CP subgroup of G is then equivalent to 〈K(F ) ∩
S〉 � R. This immediately implies that 〈K(F ) ∩ S〉 = 〈K(F ) ∩ R〉. With the above
identifications and Hopf’s formula for the Bogomolov multiplier [21] we have that
B0(G) = (F ′ ∩R)/〈K(F )∩R〉, B0(G/N) = (F ′ ∩S)/〈K(F )∩S〉, M0(G) = 〈K(F )∩
R〉/[F, R], and M0(G/N) = 〈K(F ) ∩ S〉/[F, S]. By [2, p. 41] there is a Ganea map
N ⊗ Gab → M(G) whose image can be identified with [F, S]/[F, R]. As [F, S] �
〈K(F ) ∩ R〉, the Ganea map actually maps N ⊗ Gab into M0(G). The rest of the
proof is now straightforward.

Proposition 3.5. Let N be a central subgroup of a group G. The following are
equivalent.

(a) N is a CP subgroup of G.

(b) The canonical map M0(G) → M0(G/N) is surjective.

(c) The canonical map ϕ : G � G → G/N � G/N is an isomorphism.

Proof. Let G = F/R and N = S/R be free presentations of G and N . Then the
image of the map M0(G) → M0(G/N) can be identified with 〈K(F ) ∩ R〉/[F, S].
Thus the above map is surjective if and only if 〈K(F ) ∩ R〉 = 〈K(F ) ∩ S〉. In
particular, 〈K(F )∩S〉 � R, and therefore N is a CP subgroup of G. This, together
with lemma 3.4, shows that (a) and (b) are equivalent. Furthermore, from [21]
it follows that kerϕ = 〈x � y | [x, y] ∈ N〉. Hence ϕ is injective if and only if
K(G) ∩ N = 1; hence (a) and (c) are equivalent.

We now discuss comparing different extensions. Let

e1 : 1 �� N1
χ1 �� G1

π1 �� Q1 �� 1

and

e2 : 1 �� N2
χ2 �� G2

π2 �� Q2 �� 1
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be central extensions. Following [2], we say that e1 and e2 are isoclinic if there exist
isomorphisms η : Q1 → Q2 and ξ : G′

1 → G′
2 such that the diagram

Q1 × Q1
c1 ��

η×η

��

G′
1

ξ

��
Q2 × Q2

c2 �� G′
2

commutes, where the maps ci, i = 1, 2, are defined by the rules ci(πi(x), πi(y)) =
[x, y]. Note that these are well defined, since the extensions are central.

Proposition 3.6. Let e1 and e2 be isoclinic central extensions. If e1 is a CP exten-
sion, then so is e2.

Proof. We use the same notation as above. Choose a commuting pair (x2, y2) of
elements of Q2. Define x2 = η(x1) and y2 = η(y1), where x1, y1 ∈ Q1. Clearly,
[x1, y1] = 1. As e1 is a CP central extension, we can choose commuting lifts g1, h1 ∈
G1 of x1 and y1, respectively. We can write x2 = π2(g2) and y2 = π2(h2) for some
g2, h2 ∈ G2. By definition, 1 = ξ([g1, h1]) = [g2, h2], and hence g2 and h2 are
commuting lifts in G2 of x2 and y2, respectively.

We now show how CP extensions up to isoclinism of a given group can be obtained
from an action of its Bogomolov multiplier.

Lemma 3.7 (Moravec [21]). Let N be a normal subgroup of a group G. Then the
sequence of groups

B0(G) → B0(G/N) → N

〈N ∩ K(G)〉 → Gab → (G/N)ab → 0

with canonical maps is exact.

Theorem 3.8. The isoclinism classes of central CP extensions with factor group
isomorphic to Q correspond to the orbits of the action of AutQ on the subgroups
of B0(Q) given by (ϕ, U) �→ B0(ϕ)U , where ϕ ∈ AutQ and U � B0(Q).

Proof. Let

e : 1 �� N
χ �� G

π �� Q �� 1

be a central CP extension. As χ(N) ∩ K(G) = 1, it follows from [2] and lemma 3.7
that we have the following commutative diagram with exact rows and columns:

0 �� B0(G)
B0(π) �� B0(Q)

θ̃(e) �� N
τ �� Gab �� Qab �� 0

M(G)
M(π) ��

����

M(Q)
θ∗(e) ��

����

N
τ �� Gab �� Qab �� 0

M0(G)
��

��

�� M0(Q)
��

��

https://doi.org/10.1017/S0308210517000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000270


CP extensions 583

By the exactness we have that the image of χθ̃(e) is equal to χ(N) ∩ G′, which
is equal to the image of χθ∗(e). Since χ is injective, it follows that θ̃(e) and θ∗(e)
have the same image. Furthermore, we claim that ker θ̃(e) = ker θ∗(e)/ M0(Q). To
this end, consider free presentations G = F/R, N = S/R and Q = F/S. Since the
extension e is CP, it follows that 〈K(F ) ∩ S〉 � R. With the above identifications
we have that ker θ∗(e) = (F ′ ∩ R)/[F, S] and ker θ̃(e) = (F ′ ∩ R)/〈K(F ) ∩ S〉. As
M0(Q) = 〈K(F ) ∩ S〉/[F, S], the equality follows.

Now let

ei : 1 �� Ni
χi �� Gi

πi �� Qi
�� 1 (i = 1, 2),

by central CP extensions, and let η : Q1 → Q2 be an isomorphism of groups. By [2,
proposition III.2.3] we have that η induces isoclinism between e1 and e2 if and only
if M(η) ker θ∗(e1) = ker θ∗(e2). By the above, this is equivalent to B0(η) ker θ̃(e1) =
ker θ̃(e2). The proof of [2, proposition III.2.6] can now be suitably modified to obtain
the result; we skip the details.

4. Maximal CP extensions

In this section, we deal with studying maximal central CP extensions of a given
group. Maximal here refers to the size of the kernel in a suitable representative
extension under isoclinism. Recall that an extension

1 �� N
χ �� G �� Q �� 1

is termed to be stem whenever χ(N) � [G, G]. The motivation comes from the
following lemma.

Lemma 4.1. Every central CP extension is isoclinic to a stem central CP extension.

Proof. The argument follows along the lines of [2, proposition III.2.6]. Let

e : 1 �� N �� G �� Q �� 1

be a central CP extension. Put U = ker θ̃(e), where θ̃(e) is the homomorphism
B0(Q) → N from the five-term exact sequence in lemma 3.7. The subgroup U
of B0(Q) determines a central CP extension ē of B0(Q)/U by Q via theorem 3.1
applied to the epimorphism B0(Q) → B0(Q)/U . Thus θ̃(ē) corresponds to the
natural projection B0(Q) → B0(Q)/U . Note that ē is a stem central CP extension
isoclinic to e (see the proof of theorem 3.8). The kernel of the extension ē is precisely
B0(Q)/U ∼= im θ̃(e) ∼= ker(N → G/[G, G]) = N ∩ [G, G].

Up to isoclinism of extensions, it therefore suffices to consider stem central CP
extensions.

Given a group Q, any stem central CP extension of a group N by Q with |N | =
|B0(Q)| is called a CP cover of Q. The following theorem justifies the terminology.
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Theorem 4.2. Let Q be a finite group given via a free presentation Q = F/R. Set
H = F/〈K(F ) ∩ R〉 and A = R/〈K(F ) ∩ R〉.

(1) A is a finitely generated central subgroup of H and its torsion subgroup is
T (A) = ([F, F ] ∩ R)/〈K(F ) ∩ R〉 ∼= B0(Q).

(2) Let C be a complement to T (A) in A. Then H/C is a CP cover of Q.

(3) Let G be a stem central CP extension of a group N by Q. Then G is a
homomorphic image of H and in particular N is a homomorphic image of
B0(Q).

(4) Let G be a CP cover of Q with kernel N . Then N ∼= B0(Q) and G is isomor-
phic to a quotient of H by a complement of T (A) in A.

(5) CP covers of Q are precisely the stem central CP extensions of Q of maximal
order.

(6) CP covers of Q are represented by the cocycles ϕ̃−1(1B0(Q)) in H2(Q,B0(Q)),
where ϕ̃ is the mapping induced by the universal coefficients theorem 3.1.

Proof. This all follows from the arguments in [10, Hauptsatz V.23.5] in combination
with the Hopf formula for the Bogomolov multiplier from [21].

Using theorem 4.2, a fast algorithm for computing the Schur covering groups as
developed in [24] may be combined with an algorithm for determining F/〈K(F )∩R〉
from [13] to effectively determine the CP covers of a given group. It is straightfor-
ward to combine the two implementations in GAP [28].

Corollary 4.3. The number of CP covers of a group Q is at most |Ext(Qab,
B0(Q))|. In particular, perfect groups have a unique CP cover.

Example 4.4. Let Q be a 4- or 12-cover of PSL(3, 4). The group Q is a quasi-
simple group and it is shown in [18] that B0(Q) ∼= C2, so Q has a unique proper
CP cover.

We stress an important difference between Schur covering groups and CP covers,
indicating a more intimate connection of the latter with the theory of (universal)
covering spaces from algebraic topology [9].

Theorem 4.5. The Bogomolov multiplier of a CP cover is trivial.

Proof. Let G be a CP cover of Q with kernel N ∼= B0(Q) satisfying N � Z(G) ∩
[G, G] and N ∩K(G) = 1. Consider a CP cover H

π �� G with kernel M ∼= B0(G)
satisfying M � Z(H) ∩ [H, H] and M ∩ K(H) = 1. The group H is a central
extension of L = π−1(N) by Q, since π preserves commutativity. Moreover, we have
L � π−1([G, G]) = [H, H] since M � [H, H], and L ∩ K(H) � π−1(N ∩ K(G)) ∩
K(H) � M ∩ K(H) = 1. We conclude that H is a stem central CP extension of L
by Q; therefore |L| � |B0(Q)| by theorem 4.2, and so L ∼= B0(Q). This implies that
M = B0(G) = 1, as required.
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Note that a similar proof gives that the Bogomolov multiplier of a Schur covering
group is also trivial; see [8, lemma 2.4.1].

For further use of theorem 4.5, we record a straightforward corollary of lemma 3.4.

Lemma 4.6. Whenever N is a central CP subgroup of a group G with B0(G) = 0,
we have B0(G/N) ∼= N ∩ [G, G]. If in addition N � [G, G], then the group G is a
CP cover of G/N with kernel N ∼= B0(G/N).

It follows readily that central CP extensions behave much as topological covering
spaces.

Corollary 4.7. Let Q be a group and let G be a CP cover of Q. For every filtration
of subgroups 1 = N0 � N1 � · · · � Nn = B0(Q) there is a corresponding sequence of
groups Gi = G/Ni, where Gi is a central CP extension of Gj with kernel Nj/Ni

∼=
B0(Gj)/ B0(Gi) whenever i � j.

We now explore CP covers with respect to isoclinism. At first we list some aux-
iliary results.

Lemma 4.8. Let

e : 1 �� N
χ �� G

π �� Q �� 1

be a central CP extension. Then π(Z(G)) = Z(Q) and Z(G) ∼= N × Z(Q).

Proof. It is straightforward to see that if

ei : 1 �� N
χi �� Gi

πi �� Q �� 1

are equivalent central extensions for i = 1, 2, then π1(Z(G1)) = π2(Z(G2)). Thus
we may replace the extension e by the extension

1 �� N �� G[ω] ε �� Q �� 1,

which is obtained similarly to as in the proof of proposition 2.4. As ω ∈ Z2
CP(Q, N),

the condition that (n, q) ∈ Z(G[ω]) is equivalent to q ∈ Z(Q). Hence, ε(Z(G[ω])) =
Z(Q).

Lemma 4.9. Let G be a CP cover of Q. Then Z(G) ∼= Z(Q) × B0(Q), and G is
stem if and only if Q is stem.

Proof. The first part follows from lemma 4.8. The second part then follows from
the first and the fact that B0(Q) � [G, G].

It follows from the latter lemma that the central quotient of a CP cover is nat-
urally isomorphic to the central quotient of the base group, and so the nilpotency
class of a CP cover does not exceed that of the base group. This is all a special case
of the following observation.

Proposition 4.10. CP covers of isoclinic groups are isoclinic.
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Proof. Let G1 be a CP cover of a group Q1 with the covering projection p1 : G1 →
Q1 and let Q2 be isoclinic to Q1 via the compatible pair of isomorphisms

α : Q2/Z(Q2) → Q1/Z(Q1) and β : [Q2, Q2] → [Q1, Q1].

Let G2 be a CP cover of Q2 with the covering projection p2 : G2 → Q2. We show
that G2 is isoclinic to G1. To this end, let p̄i : Gi/Z(Gi) → Qi/Z(Qi) be the nat-
ural homomorphisms induced by pis. Lemma 4.1 implies that p̄i is in fact an iso-
morphism. Define α̃ : G2/Z(G2) → G1/Z(G1) as α̃ = (p̄1)−1αp̄2. This is clearly
an isomorphism. Next, observe that theorem 4.2 shows that the covering projec-
tions pi also induce isomorphisms pi � pi : [Gi, Gi] → Qi � Qi defined as [x, y] �→
pi(x) � pi(y). Furthermore, it was shown in [22] that α induces an isomorphism
α� : Q2 � Q2 → Q1 � Q1 via α�(x1 � x2) = y1 � y2, where yiZ(Q1) = α(xiZ(Q2)).
Now define β̃ : [G2, G2] → [G1, G1] as β̃ = (p1 �p1)−1α�(p2 �p2). This is clearly an
isomorphism, and it readily follows from the compatibility relations between α and
β that the isomorphisms α̃ and β̃ are also compatible. These induce an isoclinism
between the CP covers G1 and G2.

As a corollary, the derived subgroup of a CP cover is uniquely determined. Note
that given a group Q and its CP cover G, we have [G, G] ∼= Q�Q by theorem 4.2. In
particular, groups belonging to the same isoclinism family have naturally isomorphic
curly exterior squares, and therefore also Bogomolov multipliers.

Let Φ be an isoclinism family of finite groups, referred to as the base family, and
let G be an arbitrary group in Φ. By proposition 4.10, CP covers of G all belong
to the same isoclinism family. We denote this family by Φ̃ and call it the covering
family of Φ.

Proposition 4.11. Every group in a covering family is a CP cover of a group in
the base family.

Proof. Let G1 be a CP cover of a group Q1 with the covering projection p1 : G1 →
Q1 and let G2 be isoclinic to G1 via the compatible pair of isomorphisms

α : G2/Z(G2) → G1/Z(G1) and β : [G2, G2] → [G1, G1].

By theorem 4.5, we have B0(G1) = 0, and so B0(G2) = 0 by proposition 4.10. The
commutator homomorphism κi : Gi � Gi → [Gi, Gi] is therefore an isomorphism,
and we implicitly identify the two groups. Consider the group N = β−1 B0(Q1) �
[G2, G2]. Note that N is central in G2. Furthermore, whenever [x1, x2] ∈ N for
some x1, x2 ∈ G2 with α(xiZ(G2)) = yiZ(G1), we have [y1, y2] = β([x1, x2]) ∈
B0(Q1), and so [x1, x2] = β−1([y1, y2]) = 1 since the covering projection G1 → Q1
is commutativity preserving. Now put Q2 = G2/N . By lemma 4.6, the group G2
is a CP cover of Q2 with kernel N ∼= B0(Q2). Finally, it is straightforward that
the isomorphisms α and β naturally induce an isoclinism between the groups Q2 =
G2/β−1(B0(Q1)) and G1/ B0(Q1) ∼= Q1.

Note that lemma 4.9 now implies that CP covers of the stem of the base family
form the stem of the covering family.

The following examples show that a given isoclinism family can be a covering
family for more than one base family. Moreover, a group in a covering family can
be a CP cover of non-isomorphic groups belonging to the same base family.
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Example 4.12. Consider the isoclinism family that contains groups of smallest
possible order having non-trivial Bogomolov multipliers [6]. This is the family Φ16
of [11]. Its stem groups are of order 64, and its covering family Φ̃16 is precisely the
isoclinism family Φ36 of [11], whose stem groups are of order 128.

Example 4.13. Let G be a Schur covering group of the abelian group C4
4 , generated

by g1, g2, g3, g4. Put w = [g1, g2][g3, g4] and set G1 = G/〈w〉, G2 = G/〈w2〉. It
is readily verified that neither w nor w2 is a commutator in G. Since B0(G) = 0,
it follows that G is a CP cover of both G1 and of G2. Applying lemma 3.7 gives
B0(G1) ∼= C4 and B0(G2) ∼= C2, so G1 and G2 do not belong to the same isoclinism
family.

Example 4.14. Let Q be a stem group in the family Φ30 of [11] and let G be
a CP cover of Q. It is shown in [13] that B0(Q) = 〈w1〉 × 〈w2〉 ∼= C2 × C2 for
some w1, w2 ∈ G. Set G1 = G/〈w1〉 and G2 = G/〈w2〉. The groups G1 and G2
are isoclinic and non-isomorphic groups of order 256, and G is a CP cover of both
of them. Is can be verified using the algorithm for computing CP covers that the
groups G1, G2 in fact have exactly two non-isomorphic CP covers in common.

It is well known that Schur covering groups of a given group are all isoclinic;
see, for example, [10, Satz V.23.6]. Neither proposition 4.10 nor proposition 4.11,
however, have a counterpart in the theory of Schur covering groups, as the following
simple example shows.

Example 4.15. Let Φ be the isoclinism family of all finite abelian groups. We
plainly have Φ̃ = Φ. Let p be an arbitrary prime. The Schur cover of Cp2 is Cp2 ,
and the Schur cover of Cp × Cp is isomorphic to the unitriangular group UT3(p).
The two covers are not isoclinic. Note also that the group Cp × Cp is not a Schur
covering group of any group.

5. Minimal CP extensions

In this section, we focus on central CP extensions of a cyclic group of prime order
by some given group Q. We call such extensions minimal CP extensions. By corol-
lary 4.7, every central CP extension is built from a sequence of such minimal exten-
sions. As in the classical theory of central extensions, this corresponds to considering
Fp-cohomology. We thus set H2

CP(Q) = H2
CP(Q, Fp), the action of Q on Fp being

trivial. Relying on theorem 4.2, the heart of the matter here is relating a given
presentation of Q with the object H2

CP(Q). The following result is obtained.

Theorem 5.1. The group H2
CP(Q) is elementary abelian of rank d(Q)+d(B0(Q)).

Proof. Let Q = F/R be a presentation of Q. Consider first the canonical central
CP extension H = F/〈K(F ) ∩ R〉 of Q. The kernel of this extension is the group
A = R/〈K(F ) ∩ R〉.

We first claim that H2
CP(H) = 0. By lemma 3.7, we have B0(H) = 0, and it then

follows from theorem 3.1 that H2
CP(H) = Ext(Hab, Fp) = 0.

Next we show that the minimal CP extensions are precisely the kernel of the
inflation map from Q to H:

H2
CP(Q) = ker(infH

Q : H2(Q) → H2(H)).
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Indeed, it follows from the above claim that H2
CP(Q) � ker infH

Q . Conversely, let
ω ∈ ker infH

Q . Hence there is a function φ : H → Fp such that infH
Q (ω)(x1, x2) =

φ(x1) + φ(x2) − φ(x1x2). Pick any commuting pair u, v ∈ Q. Then there exists a
commuting lift ũ, ṽ ∈ H of these elements. Therefore, ω(u, v) = infH

Q (ω)(ũ, ṽ) =
infH

Q (ω)(ṽ, ũ) = ω(v, u), and so ω ∈ H2
CP(Q).

Let us now restrict ourselves to choosing the presentation Q = F/R to be minimal
in the sense that d(Q) = d(F ). In this case, we invoke the inflation-restriction
cohomological exact sequence for the surjection H → Q with kernel A. Together
with the above, it immediately follows that H2

CP(Q) ∼= Hom(A, Fp). Finally, we
have by theorem 4.2 that the torsion T (A) ∼= B0(Q) in A has a free complement of
rank d(F ) = d(Q). The proof is complete.

We present a corollary of the above proof.

Corollary 5.2. Let Q = F/R be a presentation with d(Q) = d(F ). Let r(F, R) be
the minimal number of relators in R that generate R as a normal subgroup of F ,
and let rK(F, R) be the number of relators among these that belong to K(F ). Then
d(B0(Q)) � r(F, R) − rK(F, R) − d(Q).

Proof. Going back to the proof of theorem 5.1, it is clear that rankA � r(F, R) −
rK(F, R). The claim follows immediately.

The corollary may be applied to show that the Bogomolov multiplier of a group
is trivial. This works with classes of groups that may be given by a presentation
with many simple commutators among relators. As an example, the group of unitri-
angular matrices UTn(p) has a presentation in which all relators are commutators
(see [3]), whence immediately B0(UTn(p)) = 0. The same holds for lower central
quotients of UTn(p). This was already proved in [19]; see also [12]. Another example
is the braid group Bn with n − 1 generators and n − 2 braid relators that are not
commutators, thereby again B0(Bn) = 0.

6. Bounds for B0

Using the theory of CP covers, we now show how one can produce bounds on
the number of isoclinism classes of central CP extensions in terms of the internal
structure of the given group. Equivalently, we bound the size of the Bogomolov
multiplier. The first result is an adaptation of the argument from [15].

Proposition 6.1. Let Q be a finite group and let S be a normal subgroup such that
Q/S is cyclic. Then |B0(Q)| divides |B0(S)| · |Sab|, and d(B0(Q)) � d(B0(S)) +
d(Sab).

Proof. Let G be a CP cover of Q. Thus G contains a subgroup N � [G, G] ∩ Z(G)
such that G/N ∼= Q and N ∼= B0(Q). Choose X in G such that X/N ∼= S.
We may write G = 〈u, X〉 for some u. There is thus an epimorphism θ : X →
[G, G]/[X, X] given by θ(x) = [u, x][X, X]. Therefore, |B0(Q)| = |N | = |N/(N ∩
[X, X])| · |N ∩ [X, X]|. Now, since NX ′ � ker θ, it follows that |N/(N ∩ [X, X])| �
|[G, G]/[X, X]| � |X/N [X, X]| = |Sab|. Observe that the CP covering extension G
of Q induces a central CP extension X of S with kernel N . Whence, by lemma 4.1,
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we have that N ∩ [X, X] is the kernel of the associated stem extension. It now
follows from theorem 4.2 that |N ∩ [X, X]| � |B0(Q)|. This completes the proof
of the first claim. For the second one, we similarly have d(B0(Q)) = d(N) �
d(N/(N ∩ [X, X])) + d(N ∩ [X, X]). The result follows from d(N/(N ∩ [X, X])) �
d([G, G]/[X, X]) � d(Sab).

Next, we also provide a bound for the exponent. This is an analogy of [16].

Proposition 6.2. Let Q be a finite group and let S be a subgroup. Then B0(Q)|Q:S|

embeds into B0(S).

Proof. Let G be a CP cover of Q. Again, G contains a subgroup N � [G, G]∩Z(G)
such that G/N ∼= Q and N ∼= B0(Q). Choose X in G such that X/N ∼= S. Consider
the transfer map θ : G → X/[X, X]. Since N is central in G, we have θ(n) =
n|Q:S|[X, X] for all n ∈ N . But as N � [G, G], we must also have that N � ker θ.
Therefore, N |Q:S| � N ∩ [X, X]. As in the proof of the previous proposition, we
have that N ∩ [X, X] embeds into B0(S). This completes the proof.

These results may be applied in various ways, depending on the structural prop-
erties of the group in question, to provide some absolute bounds on the order, rank
or exponent of the Bogomolov multiplier. As an example, consider a p-group Q
that has a maximal subgroup M with B0(M) = 0. The above propositions imply
that for such groups, B0(Q) is elementary abelian of rank at most d(M). Such
groups include B0-minimal groups, the building blocks of groups with non-trivial
Bogomolov multipliers, and were inspected to some extent in [13]. It was shown
that every B0-minimal group can be generated by at most 4 elements. Schreier’s
index formula d(M) − 1 � |Q : M |(d(Q) − 1) (see [26, theorem 6.1.8]) then gives
an absolute upper bound on the number of generators of a maximal subgroup M .
Whence, we have the following corollary.

Corollary 6.3. The Bogomolov multiplier of a B0-minimal p-group is an elemen-
tary abelian group of rank at most 3p + 1.

Another direct application is to consider any abelian subgroup A of a given group
Q. Since B0(A) = 0, we have the following.

Corollary 6.4. Let Q be a finite group and let A be an abelian subgroup. Then
exp B0(Q) divides |Q : A|.

7. Commuting probability

A probabilistic approach to the study of Bogomolov multipliers was been under-
taken in [14], where the impact of the commuting probability on the Bogomolov
multiplier was explored. Here the commuting probability cp(G) of a finite group
G is defined to be the probability that two randomly chosen elements of G com-
mute, and is equal to cp(G) = |{(x, y) ∈ G × G | [x, y] = 1}|/|G|2. It turns out
that CP extensions provide a natural setting for both commuting probability and
Bogomolov multipliers. This is based on the following observation.

Proposition 7.1. An extension N �� G
π �� Q is a central CP extension if

and only if cp(G) = cp(Q).
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Proof. Consider the homomorphism π2 : G × G → Q × Q. Note that commuting
pairs in G map to commuting pairs in Q, and hence

(π2)−1({(x, y) ∈ Q × Q | [x, y] = 1}) ⊇ {(x, y) ∈ G × G | [x, y] = 1}. (7.1)

The containment (7.1) is an equality if and only if the extension is CP and N is a
central subgroup of G. On the other hand, notice that the fibres of π2 are of order
|N |2, and therefore cp(G) = |{(x, y) ∈ G × G | [x, y] = 1}|/|G|2 � |N |2|{(x, y) ∈
Q × Q | [x, y] = 1}|/|G|2 = cp(Q) with equality precisely when (7.1) is an equality.
This completes the proof.

Remark 7.2. Consider a central extension 〈z〉 �� G
π �� Q . It follows from

the above proof that this extension is a CP extension if and only if all conjugacy
classes of Q lift with respect to π to exactly p different conjugacy classes in G.

The study of central CP extensions is thus equivalent to the study of extensions
that preserve commuting probability. This may be exploited in providing a connec-
tion between the Bogomolov multiplier and commuting probability based on CP
extensions. We give a simple example illustrating this.

Corollary 7.3. For every number p in the range of the commuting probability
function, there exists a group G with cp(G) = p and B0(G) = 0.

Proof. Let Q be an arbitrary group with cp(Q) = p, and let G be a CP cover of Q.
Then cp(G) = p by proposition 7.1 and B0(G) = 0 by theorem 4.5.

Another way to look at this relation is on the level of isoclinism families. As
a direct consequence of corollary 4.7, we have that for every isoclinism family Φ
and every subgroup N of B0(Φ), there is a family Φ′ with cp(Φ′) = cp(Φ) and
B0(Φ′) = N .

Example 7.4. Consider the isoclinism family Φ16 as given in example 4.12. We
have cp(Φ16) = cp(Φ36) = 1/4, while B0(Φ16) ∼= C2 and B0(Φ36) = 0.

This connection also sheds new light on the results of [14]. There, we observed the
structure of the Bogomolov multiplier while fixing a large commuting probability.
First of all, those results can be applied in the context of CP extensions.

Corollary 7.5. Let Q be a finite group with cp(Q) > 1/4. Then every central CP
extension of Q is isoclinic to an extension with a trivial kernel.

Proof. The Bogomolov multiplier of Q is trivial by [14, corollary 1.2]. Every central
CP extension of Q is isoclinic to a stem extension by lemma 4.1, and the kernel of
the latter extension must be trivial by theorem 4.2.

Secondly, the bounds for the Bogomolov multiplier from § 6 can be applied in the
setting of commuting probability. This is, in a way, a non-absolute version of the
main result of [14].

Theorem 7.6. Let ε > 0, and let Q be a group with cp(Q) > ε. Then |B0(Q)| can
be bounded in terms of a function of ε and max{d(S) | S a Sylow subgroup of Q}.
Moreover, exp B0(Q) can be bounded in terms of a function of ε.
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Proof. Since the p-part of B0(Q) embeds into the Bogomolov multiplier of a p-Sylow
subgroup of Q, we are immediately reduced to considering only p-groups. It follows
from [7, 23] that Q has a subgroup K of nilpotency class 2 with |Q : K| and
|[K, K]| both bounded by a function of ε. Applying proposition 6.1 repeatedly on a
sequence of subgroups from Q to K, each of index p in the previous one, it follows
that d(B0(Q)) can be bounded in terms of ε and d(B0(K)). Now, d(B0(K)) �
d(M(K)), and we can use the Ganea map [K, K] ⊗ K/[K, K] → M(K), whose
cokernel embeds into M(K/[K, K]). Note that d([K, K] ⊗ K/[K, K]) � d(K)2 and
d(M(K/[K, K])) �

(d(K)
2

)
. Whence we obtain a bound for d(B0(Q)) in terms of ε

and d(Q). For the exponent, use proposition 6.2 to bound exp B0(Q) by a function
of |Q : K| and exp B0(K). If K is abelian, then we are done. If not, then choose a
commutator z in K. Set Jz = 〈x � y | [x, y] = z〉 � Q � Q, and denote by X the
kernel of the map B0(K) → B0(K/〈z〉). Then it follows from [14] that there is a
commutative diagram as follows:

1

��

1

��

1

��
1 �� X

��

�� B0(K)

��

�� B0(K/〈z〉)

��

�� 1

1 �� Jz

��

�� K � K

��

�� K/〈z〉 � K/〈z〉

��

�� 1

1 �� 〈z〉

��

�� [K, K]

��

�� [K, K]/〈z〉

��

�� 1

1 1 1

Observe that expJz = p, and so expX = p. It then follows that exp B0(K) is
at most p · exp B0(K/〈z〉). Repeating this process with K/〈z〉 instead of z until we
reach an abelian group, we conclude that exp B0(K) divides |[K, K]|. The latter is
bounded in terms of ε alone. The proof is now complete.

We end with an intriguing corollary concerning the exponent of the Schur multi-
plier.

Corollary 7.7. Given ε > 0, there exists a constant C = C(ε) such that for every
group Q with cp(Q) > ε we have exp M(Q) � C · exp Q.

Proof. We have that expM(Q) � exp B0(Q) · exp M0(Q) and expM0(Q) � exp Q.
Now apply theorem 7.6.
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