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In 1994 Boyd derived a resurgence representation for the gamma function, exploiting
the 1991 reformulation of the method of steepest descents by Berry and Howls. Using
this representation, he was able to derive a number of properties of the asymptotic
expansion for the gamma function, including explicit and realistic error bounds, the
smooth transition of the Stokes discontinuities and asymptotics for the late
coefficients. The main aim of this paper is to modify Boyd’s resurgence formula,
making it suitable for deriving better error estimates for the asymptotic expansions
of the gamma function and its reciprocal. We also prove the exponentially improved
versions of these expansions complete with error terms. Finally, we provide new
(formal) asymptotic expansions for the coefficients appearing in the asymptotic series
and compare their numerical efficacy with the results of earlier authors.

1. Introduction and main results

It is well known that, as z → ∞ in the sector |arg z| � π − δ < π for any 0 < δ � π,
the gamma function and its reciprocal have the following asymptotic expansions:

Γ (z) ∼
√

2πzz−1/2e−z
∞∑

n=0

(−1)n γn

zn
, (1.1)

1
Γ (z)

∼ 1√
2π

z−z+1/2ez
∞∑

n=0

γn

zn
, (1.2)

respectively. Here the γn are the so-called Stirling coefficients, the first few being
γ0 = 1 and

γ1 = − 1
12 , γ2 = 1

288 , γ3 = 139
51 840 , γ4 = − 571

2 488 320 .

For a detailed discussion of the computation of these coefficients, see the appendix.
The first proof of the expansion (1.1) for z > 0 dates back to Laplace (see [10, p. 2]).
Since the 20th century, these expansions have become standard textbook examples
to illustrate various techniques, such as the method of Laplace itself or the method
of steepest descents (see, for example, [10, pp. 53–58, 70–72], [25, pp. 24–28] and [33,
pp. 60–62, 110–111]).
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Error bounds for the expansion (1.1) were derived by Olver [19,20], although the
application of these bounds requires the computation of extreme values of certain
implicitly defined functions. It was not, however, until the end of the 20th century
that simple, explicit error bounds for the asymptotic series (1.1) were found. Define
for any N � 1 the remainder RN (z) by

Γ (z) =
√

2πzz−1/2e−z

( N−1∑
n=0

(−1)n γn

zn
+ RN (z)

)
.

Boyd [6] (see also [23, p. 141]) showed that

|RN (z)| � (1 + ζ(N))Γ (N)
(2π)N+1|z|N

min(sec θ, 2
√

N) + 1
2

if |θ| � π

2
, (1.3)

where θ = arg z and ζ denotes Riemann’s zeta function. When N = 1, the quantity
ζ(N) has to be replaced by 3.

Boyd’s derivation of the error bound (1.3) is based on his resurgence formula
for the gamma function coming from a general theory for complex Laplace-type
integrals developed by Berry and Howls [2] (see also [5] and [25, pp. 94–99]). Boyd
discussed not only this error bound but also the smooth transition of the Stokes
discontinuities and the asymptotic behaviour of the coefficients γn by using the
resurgence formula.

The main goal of this paper is to modify Boyd’s resurgence formula, making it
suitable for deriving better error estimates for both (1.1) and (1.2) when Re(z) > 0.
We also prove exponentially improved expansions for the gamma function and its
reciprocal. Finally, we provide new (formal) asymptotic expansions for the Stirling
coefficients and compare their numerical efficacy with the earlier results of Dingle
and Boyd.

Similarly to RN (z), denote by R̃N (z) the relative remainder of the series (1.2)
after N � 1 terms, so that the last retained term is γN−1z

1−N . In the following
theorem, we give bounds for the error terms RN (z) and R̃N (z) when z is real and
positive.

Theorem 1.1. Suppose that z > 0 and N � 1. Then

(−1)Nγ2N−1 � 0 and (−1)N+1γ2N � 0, (1.4)

and

(−1)N+1R2N−1(z) = Θ1(z, N)(−1)N γ2N−1

z2N−1 + Θ2(z, N)(−1)N+1 γ2N

z2N
, (1.5)

(−1)N+1R2N (z) = Θ2(z, N)(−1)N+1 γ2N

z2N
− Θ3(z, N)(−1)N+1 γ2N+1

z2N+1 ,

(−1)N R̃2N−1(z) = Θ1(z, N)(−1)N γ2N−1

z2N−1 − Θ2(z, N)(−1)N+1 γ2N

z2N
,

(−1)N+1R̃2N (z) = Θ2(z, N)(−1)N+1 γ2N

z2N
+ Θ3(z, N)(−1)N+1 γ2N+1

z2N+1 .
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Here 0 < Θi(z, N) < 1 (i = 1, 2, 3) is a suitable number depending on z and N . In
particular, we have

|R2N−1(z)| = (−1)N+1R2N−1(z) < (−1)N γ2N−1

z2N−1 + (−1)N+1 γ2N

z2N
,

|R2N (z)| < max
(

(−1)N+1 γ2N

z2N
, (−1)N+1 γ2N+1

z2N+1

)
,

|R̃2N−1(z)| < max
(

(−1)N γ2N−1

z2N−1 , (−1)N+1 γ2N

z2N

)

and

|R̃2N (z)| = (−1)N+1R̃2N (z) < (−1)N+1 γ2N

z2N
+ (−1)N+1 γ2N+1

z2N+1 .

In the next theorem, we provide bounds for the remainders RN (z) and R̃N (z)
assuming that Re(z) > 0.

Theorem 1.2. For any N � 1, we have

|RN (z)|, |R̃N (z)| �
(

|γN |
|z|N +

|γN+1|
|z|N+1

)
×

{
|csc(2θ)| if 1

4π < |θ| < 1
2π,

1 if |θ| � 1
4π,

(1.6)

where θ = arg z.

An asymptotic series for the logarithm of the gamma function that is analogous
to (1.1) is given by

log Γ (z) ∼ (z − 1
2 ) log z − z + log

√
2π +

∞∑
n=1

B2n

2n(2n − 1)z2n−1 (1.7)

as z → ∞ in the sector |arg z| � π − δ < π for any 0 < δ � π. Here Bn stands for
the nth Bernoulli number. Denoting by rN (z) the remainder after N − 1 terms in
this series, Lindelöf showed that

|rN (z)| � |B2N |
2N(2N − 1)|z|2N−1 ×

{
|csc(2θ)| if 1

4π < |θ| < 1
2π,

1 if |θ| � 1
4π,

where θ = arg z (see [28, p. 67]). Also, if z > 0 is real, then rN (z) is less than, but
has the same sign as, the first neglected term (see, for example, [30, p. 65]). It is
seen that our error bounds in theorem 1.1 and theorem 1.2 are the analogues of
these results for the expansion (1.7).

From the above remark on rN (z), it follows that for any z > 0 we have 0 <
r1(z) < B2/2z = 1/12z, whence we obtain

1 <
Γ (z)√

2πzz−1/2e−z
< e1/12z = 1 +

1
12z

+
1

288z2 +
1

10 368z3 + · · · .

This is a well-known inequality (see, for example, [23, eqn 5.6.1, p. 138]). By theo-
rem 1.1 we can improve the upper bound to

1 <
Γ (z)√

2πzz−1/2e−z
< 1 +

1
12z

+
1

288z2
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for any z > 0; this is, as far as we know, a new identity. Thus, we have a simple
estimate for the gamma function on the positive real line.

By the leading-order behaviour of the Stirling coefficients (see [26, p. 33]), we
readily establish that the right-hand side of (1.6) is asymptotic to(

(1 + ζ(N))Γ (N)
(2π)N+1|z|N +

π

6N

(1 + ζ(N + 1))Γ (N + 1)
(2π)N+2|z|N+1

) {
|csc(2θ)| if 1

4π < |θ| < 1
2π,

1 if |θ| � 1
4π,

for odd N , and(
π

6N

(1 + ζ(N))Γ (N)
(2π)N+1|z|N +

(1 + ζ(N + 1))Γ (N + 1)
(2π)N+2|z|N+1

) {
|csc(2θ)| if 1

4π < |θ| < 1
2π,

1 if |θ| � 1
4π,

for even N . Since 1 < 1
2 (sec θ + 1) if 0 < |θ| � 1

4π, and |csc(2θ)| < 1
2 (sec θ + 1) if

1
4π < |θ| < 1

2π, we infer that our bounds (1.6) are better than the bound (1.3) of
Boyd if N and z are large and arg z is not too close to the imaginary axis.

When |arg z| is close to 1
2π, the error bound (1.3) becomes

|R1(z)| � 3
2π2|z| and |RN (z)| � (1 + ζ(N))Γ (N)

(2π)N+1|z|N
2
√

N + 1
2

for N � 2. (1.8)

Boyd does not actually prove these bounds, just mentions that the proof is similar
to the proof of his bound for the error term of the large argument asymptotics of
the Bessel function Kν(z) given in an earlier paper of his [4]. Up to the first few
steps we can indeed mimic the proof presented in [4], but at one point we need non-
trivial estimates for the gamma function along certain rays of the complex plane.
Nevertheless, we shall give a possible proof of (1.8) for N � 2. The case N = 1
remains unproved, though it is uninteresting for practical applications.

Theorem 1.3. Suppose that N � 2. If |arg z| � 1
2π, then

|RN (z)|, |R̃N (z)| � (1 + ζ(N))Γ (N)
(2π)N+1|z|N

2
√

N + 1
2

.

Throughout this paper we shall use frequently the concept of the scaled gamma
function Γ ∗(z), which is defined by

Γ ∗(z) =
Γ (z)√

2πzz−1/2e−z

for |arg z| < π. The asymptotic series (1.1), (1.2) and the error bounds can be
extended to other sectors of the complex plane via the continuation formulae

Γ ∗(z) =
1

1 − e±2πiz

1
Γ ∗(ze∓πi)

and Γ ∗(z) = −e±2πizΓ ∗(ze±2πi). (1.9)

Lines of the form arg z = (2m ± 1
2 )π, where m ∈ Z, are the Stokes lines for the

gamma function and its reciprocal.
In the next theorem we give exponentially improved asymptotic expansions for

the gamma function and its reciprocal. The expansion for the gamma function
can be viewed as the mathematically rigorous form of the terminated expansion of
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Dingle [13, pp. 461–462]. We express these expansions in terms of the terminant
function T̂p(w), whose definition and basic properties are given in § 3. Throughout
this paper, empty sums are taken to be zero.

Theorem 1.4. Suppose that − 3
2π � arg z � 3

2π, |z| is large and N = 2π|z| + ρ is
a positive integer with ρ being bounded. Then

RN (z) = e2πiz
M−1∑
m=0

(−1)m γm

zm
T̂N−m(2πiz)

− e−2πiz
M−1∑
m=0

(−1)m γm

zm
T̂N−m(−2πiz) + RN,M (z) (1.10)

and

R̃N (z) = −e2πiz
M−1∑
m=0

γm

zm
T̂N−m(2πiz)

+ e−2πiz
M−1∑
m=0

γm

zm
T̂N−m(−2πiz) + R̃N,M (z), (1.11)

with M � 0 being an arbitrary fixed integer, and

RN,M (z), R̃N,M (z) = OM,ρ

(
e−2π|z|

|z|M

)
(1.12)

for |arg z| � 1
2π, and

RN,M (z) = OM,ρ

(
e∓2π Im(z)

(
1

|1 − e∓2πiz| +
1

|z|M

))

and

R̃N,M (z) = OM,ρ

(
e∓2π Im(z)

|z|M

)

for 1
2π � ± arg z � 3

2π.

The expansion (1.10) without the error term RN,M (z) was also derived by Boyd,
but he mistakenly gave the sign of the factor e−2πiz as positive.

For exponentially improved asymptotic expansions using Hadamard series, see
[24] and [25, pp. 156–159].

While proving theorem 1.4 in § 3, we also obtain the following explicit bounds for
the remainders in (1.10) and (1.11). Note that in this theorem N may not depend
on z.
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Theorem 1.5. For any integers 2 � M < N , define the remainders RN,M (z) and
R̃N,M (z) by (1.10) and (1.11), respectively. Then we have

|RN,M (z)|, |R̃N,M (z)|

� (6M + 2)
ζ(M)Γ (M)Γ (N − M)

(2π)N+2|z|N + (2
√

M + 1)
ζ(M)Γ (M)

(2π)M+1|z|M

× (|e2πizT̂N−M (2πiz)| + |e−2πizT̂N−M (−2πiz)|), (1.13)

provided that |arg z| � 1
2π.

The rest of the paper is organized as follows. In § 2, we prove the error bounds
stated in theorems 1.1–1.3. In the first part of § 3, we prove the exponentially
improved expansions given in theorem 1.4 and the error bounds given in theo-
rem 1.5. In the second part, we reveal some interesting facts about the Stokes phe-
nomenon for the gamma function and its reciprocal. We also discuss the smooth
transition of the Stokes discontinuities. In § 4, we derive new asymptotic approxi-
mations for the Stirling coefficients γn and compare their numerical efficacy with
the earlier results of Dingle and Boyd.

2. Proofs of the error bounds

Recall that for any N � 1 the remainder terms RN (z) and R̃N (z) are defined by

Γ ∗(z) =
N−1∑
n=0

(−1)n γn

zn
+ RN (z) and

1
Γ ∗(z)

=
N−1∑
n=0

γn

zn
+ R̃N (z).

Suppose that Re(z) > 0. Boyd’s resurgence formulae [6, (2.14) and (4.2)] can be
written in the form

RN (z) =
1

2πi
iN

zN

∫ +∞

0

sN−1e−2πsΓ ∗(is)
1 − is/z

ds

− 1
2πi

(−i)N

zN

∫ +∞

0

sN−1e−2πsΓ ∗(−is)
1 + is/z

ds (2.1)

and

R̃N (z) =
1

2πi
(−i)N

zN

∫ +∞

0

sN−1e−2πsΓ ∗(is)
1 + is/z

ds

− 1
2πi

iN

zN

∫ +∞

0

sN−1e−2πsΓ ∗(−is)
1 − is/z

ds.

We remark that he stated the formula R̃N (z) only for N = 1, but the formula for
the general N follows easily from it. Using the property Γ ∗(z̄) = Γ ∗(z), we deduce
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that

(−1)N+1R2N−1(z) =
1

πz2N−1

∫ +∞

0

s2N−2e−2πs Re Γ ∗(is)
1 + (s/z)2

ds

− 1
πz2N

∫ +∞

0

s2N−1e−2πs Im Γ ∗(is)
1 + (s/z)2

ds, (2.2)

(−1)N+1R2N (z) = − 1
πz2N

∫ +∞

0

s2N−1e−2πs Im Γ ∗(is)
1 + (s/z)2

ds

− 1
πz2N+1

∫ +∞

0

s2Ne−2πs Re Γ ∗(is)
1 + (s/z)2

ds,

(−1)N R̃2N−1(z) =
1

πz2N−1

∫ +∞

0

s2N−2e−2πs Re Γ ∗(is)
1 + (s/z)2

ds

+
1

πz2N

∫ +∞

0

s2N−1e−2πs Im Γ ∗(is)
1 + (s/z)2

ds,

(−1)N+1R̃2N (z) = − 1
πz2N

∫ +∞

0

s2N−1e−2πs Im Γ ∗(is)
1 + (s/z)2

ds

+
1

πz2N+1

∫ +∞

0

s2Ne−2πs Re Γ ∗(is)
1 + (s/z)2

ds,

for any N � 1. These are the suitable forms of the remainders to obtain the realistic
error bounds stated in theorems 1.1 and 1.2. From these and the formula γN =
zN (R̃N (z) − R̃N+1(z)), we infer that

(−1)Nγ2N−1 =
1
π

∫ +∞

0
s2N−2e−2πs Re Γ ∗(is) ds (2.3)

and

(−1)N+1γ2N = − 1
π

∫ +∞

0
s2N−1e−2πs Im Γ ∗(is) ds, (2.4)

for all N � 1. To complete the proof of theorems 1.1 and 1.2, we need the following
lemma.

Lemma 2.1. For any s > 0 it holds that Re Γ ∗(is) � 0 and − Im Γ ∗(is) � 0.

Proof. The proof is based on the following representation of Γ ∗(z) due to Stieltjes:

Γ ∗(z) = exp
( ∫ +∞

0

Q(t)
(z + t)2

dt

)
for |arg z| < π, (2.5)

where Q(t) = 1
2 (t− t− (t− t)2) (see, for example, [28, pp. 56–58]). We shall use the

fact that 0 � Q(t) � 1
8 . Substituting z = is with s > 0 gives

Γ ∗(is) = exp
(

−
∫ +∞

0

s2 − t2

(s2 + t2)2
Q(t) dt − i

∫ +∞

0

2st

(s2 + t2)2
Q(t) dt

)
,
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whence we obtain

Re Γ ∗(is) = exp
(

−
∫ +∞

0

s2 − t2

(s2 + t2)2
Q(t) dt

)
cos

( ∫ +∞

0

2st

(s2 + t2)2
Q(t) dt

)

and

− Im Γ ∗(is) = exp
(

−
∫ +∞

0

s2 − t2

(s2 + t2)2
Q(t) dt

)
sin

( ∫ +∞

0

2st

(s2 + t2)2
Q(t) dt

)
.

To prove the lemma, it is enough to show that the integral under the trigonometric
functions is non-negative and is at most 1

2π for any s > 0. As Q(t) is non-negative,
the integral is non-negative. On the other hand,∫ 1

0

2st

(s2 + t2)2
Q(t) dt =

s

2
log

(
s2

s2 + 1

)
+ 1

2 arctan
(

1
s

)
� π

4

and ∫ +∞

1

2st

(s2 + t2)2
Q(t) dt �

∫ +∞

1

2st

(s2 + t2)2
1
8

dt =
1
8

s

s2 + 1
� 1

16
,

whence we obtain ∫ +∞

0

2st

(s2 + t2)2
Q(t) dt � π

4
+

1
16

<
π

2
,

for any s > 0.

The inequalities in (1.4) follow from the lemma and the representations (2.3)
and (2.4). From theorem 1.1 we prove only the bound (1.5); the other results can
be proved similarly. First, we note that

0 <
1

1 + (s/z)2
< 1

for any s > 0 and z > 0. Employing this inequality in (2.2) leads to

(−1)N+1R2N−1(z) =
Θ1(z, N)
πz2N−1

∫ +∞

0
s2N−2e−2πs Re Γ ∗(is) ds

− Θ2(z, N)
πz2N

∫ +∞

0
s2N−1e−2πs Im Γ ∗(is) ds,

where Θ1(z, N) and Θ2(z, N) are some functions of z and N that satisfy 0 <
Θ1(z, N) < 1 and 0 < Θ2(z, N) < 1. Upon inserting (2.3) and (2.4) into this
representation we obtain (1.5).

As for theorem 1.2, we prove the result for R2N−1(z); the proofs of the other
bounds are similar. From (2.2) and lemma 2.1 it follows that

|R2N−1(z)| � 1
π|z|2N−1

∫ +∞

0

s2N−2e−2πs Re Γ ∗(is)
|1 + (s/z)2| ds

− 1
π|z|2N

∫ +∞

0

s2N−1e−2πs Im Γ ∗(is)
|1 + (s/z)2| ds. (2.6)

https://doi.org/10.1017/S0308210513001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001558


Asymptotics of the gamma function and its reciprocal 579

It is easy to show that, for any r > 0,

1
|1 + re−2θi| �

{
|csc(2θ)| if 1

4π < |θ| < 1
2π,

1 if |θ| � 1
4π.

Applying this inequality and (2.3) and (2.4) to (2.6) proves the estimate (1.6) for
the case of R2N−1(z).

To prove theorem 1.3, we shall use the lemma below.

Lemma 2.2. For any s > 0 and 0 < ϕ < 1
2π, we have∣∣∣∣Γ ∗

(
iseiϕ

cos ϕ

)∣∣∣∣ � 1√
1 − 2e−2πs cos(2πs tanϕ) + e−4πs

� 1
1 − e−2πs

. (2.7)

Proof. An application of the reflection formula (1.9) for the gamma function and
the relation Γ ∗(z) = Γ ∗(z̄) shows that

log
∣∣∣∣Γ ∗

(
iseiϕ

cos ϕ

)∣∣∣∣ = − 1
2 log(1 − 2e−2πs cos(2πs tanϕ) + e−4πs) − log

∣∣∣∣Γ ∗
(

− iseiϕ

cos ϕ

)∣∣∣∣
= − 1

2 log(1 − 2e−2πs cos(2πs tanϕ) + e−4πs) − log
∣∣∣∣Γ ∗

(
ise−iϕ

cos ϕ

)∣∣∣∣.
From this, we infer that∣∣∣∣Γ ∗

(
iseiϕ

cos ϕ

)∣∣∣∣ =
1√

1 − 2e−2πs cos(2πs tanϕ) + e−4πs

∣∣∣∣Γ ∗
(

ise−iϕ

cos ϕ

)∣∣∣∣
−1

� 1
1 − e−2πs

∣∣∣∣Γ ∗
(

ise−iϕ

cos ϕ

)∣∣∣∣
−1

. (2.8)

Let z = x + iy such that |arg z| < 1
2π. We show that |1/Γ ∗(z)| is bounded in

the right half-plane. Indeed, if z is not too close to the origin, then by Stieltjes’s
formula, (2.5),∣∣∣∣ 1

Γ ∗(z)

∣∣∣∣ � exp
(

1
8

∫ +∞

0

dt

|z + t|2

)

� exp
(

1
8 cos2( 1

2θ)

∫ +∞

0

dt

(|z| + t)2

)

= exp
(

1
8|z| cos2( 1

2θ)

)
� exp

(
1

4|z|

)
with θ = arg z.

To see the boundedness near the origin, we note that∣∣∣∣ 1
Γ ∗(z)

∣∣∣∣ =
∣∣∣∣zz+1/2

√
2π

ez

∣∣∣∣
∣∣∣∣ 1
Γ (z + 1)

∣∣∣∣
=

√
2πe−(π/2)|y|+y arctan(x/y)−x|z|x+1/2

∣∣∣∣ 1
Γ (z + 1)

∣∣∣∣
�

√
2πe−x|z|x+1/2

∣∣∣∣ 1
Γ (z + 1)

∣∣∣∣,
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and that the reciprocal gamma function is an entire function. Since 1/Γ ∗(z) is
holomorphic when |arg z| < 1

2π, continuous on its boundary and∣∣∣∣ 1
Γ ∗(±iy)

∣∣∣∣ =
√

1 − e−2πy � 1,

by the Phragmén–Lindelöf principle [31, p. 177],∣∣∣∣ 1
Γ ∗(z)

∣∣∣∣ � 1

holds for any z in the sector |arg z| � 1
2π. Employing this inequality with z =

ise−iϕ/ cos ϕ in (2.8) gives (2.7).

We prove the claimed bound only for RN (z); the proof for R̃N (z) is completely
analogous. Since RN (z̄) = RN (z), we can assume that 0 � θ = arg z � 1

2π. The
idea is to rotate the path of integration through an angle 0 < ϕ < 1

2π in the first
integral in (2.1), to find

RN (z) =
1

2πi
iN

zN

∫ +∞eiϕ

0

sN−1e−2πsΓ ∗(is)
1 − is/z

ds

− 1
2πi

(−i)N

zN

∫ +∞

0

sN−1e−2πsΓ ∗(−is)
1 + is/z

ds.

By analytic continuation, this expression is certainly valid when 0 � θ � 1
2π.

Substituting s = teiϕ/ cos ϕ into the first integral and using the inequalities∣∣∣∣ 1
1 + is/z

∣∣∣∣ � 1 and
∣∣∣∣ 1
1 − iteiϕ/ cos ϕz

∣∣∣∣ � sec(θ − ϕ),

we find

|RN (z)| � sec(θ − ϕ)
cosN ϕ

1
|z|N

1
2π

∫ +∞

0
tN−1e−2πt

∣∣∣∣Γ ∗
(

iteiϕ

cos ϕ

)∣∣∣∣ dt

+
1

|z|N
1
2π

∫ +∞

0
sN−1e−2πs|Γ ∗(−is)| ds.

The value ϕ = arctan(N−1/2) minimizes the function sec( 1
2π − ϕ) cos−N ϕ, and

sec(θ − arctan(N−1/2))
cosN (arctan(N−1/2))

�
sec( 1

2π − arctan(N−1/2))
cosN (arctan(N−1/2))

=
(

1 +
1
N

)(N+1)/2√
N,

for any 0 � θ � 1
2π with N � 1. Boyd [6, (3.9)] showed that

1
2π

∫ +∞

0
sN−1e−2πs|Γ ∗(−is)| ds � (1 + ζ(N))Γ (N)

(2π)N+1

1
2

for N � 2.

From lemma 2.2, we obtain

1
2π

∫ +∞

0
tN−1e−2πt

∣∣∣∣Γ ∗
(

iteiϕ

cos ϕ

)∣∣∣∣ dt � 1
2π

∫ +∞

0

tN−1e−2πt

1 − e−2πt
dt =

BNΓ (N)
(2π)N+1

1
2
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for N � 3 with BN = 2ζ(N), using formula 25.5.1 in [23, p. 604]. This estimate
also holds when N = 2, but for this case we derive a sharper bound using the first
inequality in lemma 2.2:

1
2π

∫ +∞

0
t2−1e−2πt

∣∣∣∣Γ ∗
(

iteiϕ

cos ϕ

)∣∣∣∣ dt

� 1
2π

∫ +∞

0

te−2πt√
1 − 2e−2πt cos(2πt tan(arctan(2−1/2))) + e−4πt

dt

=
B2Γ (2)
(2π)2+1

1
2

with B2 = 2.81944984 · · · < 2.82. Therefore,

|RN (z)| � 1
2

(
BN

1 + ζ(N)

(
1 +

1
N

)(N+1)/2√
N + 1

)
(1 + ζ(N))Γ (N)

(2π)N+1|z|N .

To complete the proof, we note that

BN

1 + ζ(N)

(
1 +

1
N

)(N+1)/2

< 2

for any N � 2.

3. Exponentially improved asymptotic expansions

We shall find it convenient to express our exponentially improved expansions in
terms of the (scaled) terminant function, which is defined by

T̂p(w) =
eπipw1−pe−w

2πi

∫ +∞

0

tp−1e−t

w + t
dt for p > 0 and |arg w| < π,

and by analytic continuation elsewhere. Olver [22, (4.5) and (4.6)] showed that
when p ∼ |w| and w → ∞, we have

T̂p(w) =

{
O(e−w−|w|) if |arg w| � π,

O(1) if − 3π < arg w � −π.
(3.1)

Concerning the smooth transition of the Stokes discontinuities, we shall use the
more precise asymptotics

T̂p(w) = 1
2 + 1

2 erf
(
c(ϕ)

√
1
2 |w|

)
+ O

(
e−|w|c2(ϕ)/2

|w|1/2

)
(3.2)

for −π + δ � arg w � 3π − δ, 0 < δ � 2π, and

e−2πipT̂p(w) = − 1
2 + 1

2 erf
(
−c(−ϕ)

√
1
2 |w|

)
+ O

(
e−|w|c2(−ϕ)/2

|w|1/2

)
(3.3)

for −3π + δ � arg w � π − δ, 0 < δ � 2π. Here ϕ = arg w and erf denotes the error
function. The quantity c(ϕ) is defined implicitly by the equation

1
2c2(ϕ) = 1 + i(ϕ − π) − ei(ϕ−π),
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and corresponds to the branch of c(ϕ) that has the following expansion in the
neighbourhood of ϕ = π:

c(ϕ) = (ϕ − π) + 1
6 i(ϕ − π)2 − 1

36
(ϕ − π)3 − i

270
(ϕ − π)4 + · · · . (3.4)

For complete asymptotic expansions, see [21]. We remark that Olver uses the
alternative notation Fp(w) = ie−πipT̂p(w) for the terminant function and the other
branch of the function c(ϕ). For further properties of the terminant function, see,
for example, [26, ch. 6].

3.1. Proof of the exponentially improved expansions

We start by proving the expansion (1.10) and the estimate (1.12) for the right
half-plane. Let 0 � M < N be integers. First suppose, in addition, that M � 2.
As in the proof of theorem 1.3, we rotate the path of integration by an angle
0 < ϕ < 1

2π in the first integral of Boyd’s resurgence formula (2.1) to find that, for
any s > 0,

Γ ∗(is) =
M−1∑
m=0

(−1)m γm

(is)m
+ RM (is)

with

RM (is) =
1

2πi
1

sM

∫ +∞eiϕ

0

tM−1e−2πtΓ ∗(it)
1 − t/s

dt

− 1
2πi

1
(−s)M

∫ +∞

0

tM−1e−2πtΓ ∗(−it)
1 + t/s

dt

=
1

2πi
1

(se−iϕ)M

∫ +∞

0

tM−1 exp(−2πteiϕ)Γ ∗(iteiϕ)
1 − teiϕ/s

dt

− 1
2πi

1
(−s)M

∫ +∞

0

tM−1e−2πtΓ ∗(−it)
1 + t/s

dt. (3.5)

A similar formula for Γ ∗(−is) can be obtained in the same way. First, we suppose
that |arg z| < 1

2π. Substitution into (2.1) yields

RN (z) =
M−1∑
m=0

(−1)m γm

zm

iN−mzm−N

2πi

∫ +∞

0

sN−m−1e−2πs

1 − is/z
ds

−
M−1∑
m=0

(−1)m γm

zm

(−i)N−mzm−N

2πi

∫ +∞

0

sN−m−1e−2πs

1 + is/z
ds + RN,M (z)

(3.6)

with

RN,M (z) =
1

2πi
iN

zN

∫ +∞

0

sN−1e−2πsRM (is)
1 − is/z

ds

− 1
2πi

(−i)N

zN

∫ +∞

0

sN−1e−2πsRM (−is)
1 + is/z

ds. (3.7)
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The integrals in (3.6) can be identified in terms of the terminant function since

(±i)N−mzm−N

2πi

∫ +∞

0

sN−m−1e−2πs

1 ∓ is/z
ds = e±2πizT̂N−m(±2πiz).

Therefore, we have the following expansion:

RN (z) = e2πiz
M−1∑
m=0

(−1)m γm

zm
T̂N−m(2πiz)

− e−2πiz
M−1∑
m=0

(−1)m γm

zm
T̂N−m(−2πiz) + RN,M (z). (3.8)

Taking z = reiθ, the representation (3.7) becomes

RN,M (z) =
1

2πi
1

(−ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (irτ)
1 − iτe−iθ dτ

− 1
2πi

1
(ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (−irτ)
1 + iτe−iθ dτ. (3.9)

We consider the first integral. Using the integral formula (3.5), RM (irτ) can be
written in the form

RM (irτ) =
1

2πi
1

(rτe−iϕ)M

∫ +∞

0

tM−1e−2πteiϕΓ ∗(iteiϕ)
1 − teiϕ/rτ

dt

− 1
2πi

1
(−rτ)M

∫ +∞

0

tM−1e−2πtΓ ∗(−it)
1 + t/rτ

dt

=
1

2πi
1

(rτe−iϕ)M

( ∫ +∞

0

tM−1e−2πteiϕΓ ∗(iteiϕ)
1 − teiϕ/r

dt

+ (τ − 1)
∫ +∞

0

tM−1 exp(−2πteiϕ)Γ ∗(iteiϕ)
(1 − rτ/teiϕ)(1 − teiϕ/r)

dt

)

− 1
2πi

1
(−rτ)M

( ∫ +∞

0

tM−1e−2πtΓ ∗(−it)
1 + t/r

dt

+ (τ − 1)
∫ +∞

0

tM−1e−2πtΓ ∗(−it)
(1 + rτ/t)(1 + t/r)

dt

)
.

Therefore, the first integral in (3.9) can be estimated as follows∣∣∣∣ 1
2πi

1
(−ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (irτ)
1 − iτe−iθ dτ

∣∣∣∣
� 1

2πrM

∣∣∣∣
∫ +∞

0

tM−1 exp(−2πteiϕ)Γ ∗(iteiϕ)
1 − teiϕ/r

dt

∣∣∣∣
∣∣∣∣ 1
2π

∫ +∞

0

τN−M−1e−2πrτ

1 − iτe−iθ dτ

∣∣∣∣
+

1
2πrM

∫ +∞

0
τN−M−1e−2πrτ

∣∣∣∣ τ − 1
τ + ieiθ

∣∣∣∣
×

∣∣∣∣ 1
2π

∫ +∞

0

tM−1 exp(−2πteiϕ)Γ ∗(iteiϕ)
(1 − rτ/teiϕ)(1 − teiϕ/r)

dt

∣∣∣∣ dτ
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+
1

2πrM

∣∣∣∣
∫ +∞

0

tM−1e−2πtΓ ∗(−it)
1 + t/r

dt

∣∣∣∣
∣∣∣∣ 1
2π

∫ +∞

0

τN−M−1e−2πrτ

1 − iτe−iθ dτ

∣∣∣∣
+

1
2πrM

∫ +∞

0
τN−M−1e−2πrτ

∣∣∣∣ τ − 1
τ + ieiθ

∣∣∣∣
×

∣∣∣∣ 1
2π

∫ +∞

0

tM−1e−2πtΓ ∗(−it)
(1 + rτ/t)(1 + t/r)

dt

∣∣∣∣ dτ.

Noting that∣∣∣∣ τ − 1
τ + ieiθ

∣∣∣∣ � 1,

∣∣∣∣ 1
1 + t/r

∣∣∣∣ � 1,

∣∣∣∣ 1
(1 + rτ/t)(1 + t/r)

∣∣∣∣ � 1

and ∣∣∣∣ 1
1 − teiϕ/r

∣∣∣∣ � csc ϕ,

∣∣∣∣ 1
(1 − rτ/teiϕ)(1 − teiϕ/r)

∣∣∣∣ � csc2 ϕ

for any positive r, t and τ , we deduce the upper bound∣∣∣∣ 1
2πi

1
(−ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (irτ)
1 − iτe−iθ dτ

∣∣∣∣
� csc ϕ

2πrM

∫ +∞

0
tM−1|exp(−2πteiϕ)Γ ∗(iteiϕ)| dt

∣∣∣∣ 1
2π

∫ +∞

0

τN−M−1e−2πrτ

1 − iτe−iθ dτ

∣∣∣∣
+

csc2 ϕ

2π

∫ +∞

0
tM−1|exp(−2πteiϕ)Γ ∗(iteiϕ)| dt

× 1
2πrM

∫ +∞

0
τN−M−1e−2πrτ dτ

+
1

2πrM

∫ +∞

0
tM−1e−2πt|Γ ∗(−it)| dt

∣∣∣∣ 1
2π

∫ +∞

0

τN−M−1e−2πrτ

1 − iτe−iθ dτ

∣∣∣∣
+

1
2π

∫ +∞

0
tM−1e−2πt|Γ ∗(−it)| dt

1
2πrM

∫ +∞

0
τN−M−1e−2πrτ dτ.

A straightforward computation shows that this upper bound simplifies to∣∣∣∣ 1
2πi

1
(−ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (irτ)
1 − iτe−iθ dτ

∣∣∣∣
�

(
csc ϕ

cosM ϕ

1
2π

∫ +∞

0
tM−1e−2πt

∣∣∣∣Γ ∗
(

iteiϕ

cos ϕ

)∣∣∣∣ dt

+
1
2π

∫ +∞

0
tM−1e−2πt|Γ ∗(−it)| dt

)
|e2πizT̂N−M (2πiz)|

|z|M

+
(

csc2 ϕ

cosM ϕ

1
2π

∫ +∞

0
tM−1e−2πt

∣∣∣∣Γ ∗
(

iteiϕ

cos ϕ

)∣∣∣∣ dt

+
1
2π

∫ +∞

0
tM−1e−2πt|Γ ∗(−it)| dt

)
Γ (N − M)

(2π)N−M+1|z|N .
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With the choice ϕ = arctan(M−1/2), we have

csc ϕ

cosM ϕ
=

(
M + 1

M

)(M+1)/2√
M < 2

√
M

and

csc2 ϕ

cosM ϕ
=

(
M + 1

M

)M/2+1

M < 3M.

By lemma 2.2, we obtain the estimate

1
2π

∫ +∞

0
tM−1e−2πt

∣∣∣∣Γ ∗
(

iteiϕ

cos ϕ

)∣∣∣∣ dt � 1
2π

∫ +∞

0

tM−1e−2πt

1 − e−2πt
dt =

ζ(M)Γ (M)
(2π)M+1 .

The other type of integral can be bounded by the same quantity since

1
2π

∫ +∞

0
tM−1e−2πt|Γ ∗(−it)| dt =

1
2π

∫ +∞

0

tM−1e−2πt

√
1 − e−2πt

dt <
ζ(M)Γ (M)
(2π)M+1 .

Therefore, we find∣∣∣∣ 1
2πi

1
(−ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (irτ)
1 − iτe−iθ dτ

∣∣∣∣
� (2

√
M + 1)

ζ(M)Γ (M)
(2π)M+1|z|M |e2πizT̂N−M (2πiz)|

+ (3M + 1)
ζ(M)Γ (M)Γ (N − M)

(2π)N+2|z|N .

Similarly, we have the following upper bound for the second integral in (3.9):∣∣∣∣ 1
2πi

1
(ieiθ)N

∫ +∞

0

τN−1e−2πrτRM (−irτ)
1 + iτe−iθ dτ

∣∣∣∣
� (2

√
M + 1)

ζ(M)Γ (M)
(2π)M+1|z|M |e−2πizT̂N−M (−2πiz)|

+ (3M + 1)
ζ(M)Γ (M)Γ (N − M)

(2π)N+2|z|N .

Thus, we conclude that

|RN,M (z)| � (2
√

M + 1)
ζ(M)Γ (M)

(2π)M+1|z|M

× (|e2πizT̂N−M (2πiz)| + |e−2πizT̂N−M (−2πiz)|)

+ (6M + 2)
ζ(M)Γ (M)Γ (N − M)

(2π)N+2|z|N .

By continuity, this bound holds in the closed sector |arg z| � 1
2π. Suppose that

N = 2π|z| + ρ, where ρ is a bounded quantity. Employing Stirling’s formula, we
find that

(6M + 2)
ζ(M)Γ (M)Γ (N − M)

(2π)N+2|z|N = OM,ρ

(
e−2π|z|

|z|M+1/2

)
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as z → ∞. Olver’s estimation (3.1) shows that

(2
√

M + 1)
ζ(M)Γ (M)

(2π)M+1|z|M (|e2πizT̂N−M (2πiz)| + |e−2πizT̂N−M (−2πiz)|)

= OM,ρ

(
e−2π|z|

|z|M

)

for large z. Therefore, we have that

RN,M (z) = OM,ρ

(
e−2π|z|

|z|M

)
(3.10)

as z → ∞ in the sector |arg z| � 1
2π. If M = 0 or 1, we define RN,M (z) by (3.8).

Consequently,

RN,1(z) =
e−2πizT̂N−1(−2πiz) − e2πizT̂N−1(2πiz)

12z
+ RN,2(z), (3.11)

RN,0(z) = e2πizT̂N (2πiz) − e−2πizT̂N (−2πiz) + RN,1(z). (3.12)

The proof of (1.12) for the cases M = 0, 1 now follows from these representations,
the bound (3.10) we have established and Olver’s estimate, (3.1).

The proof of the expansion (1.11) and the estimates (1.12), (1.13) for the remain-
der R̃N,M (z) is similar.

Consider now the sector 1
2π < arg z < 3

2π. Assume again that M � 2. When z
enters the sector 1

2π < arg z < 3
2π, the pole in the first integral in (3.7) crosses the

integration path. According to the residue theorem, we obtain

RN,M (z) = e2πizRM (z) +
1

2πi
iN

zN

∫ +∞

0

sN−1e−2πsRM (is)
1 − is/z

ds

− 1
2πi

(−i)N

zN

∫ +∞

0

sN−1e−2πsRM (−is)
1 + is/z

ds

= e2πizRM (z) + R̃N,M (ze−πi)

when 1
2π < arg z < 3

2π. To find the analytic continuation of RM (z) to this sector,
we apply the same argument but for the integral representation (2.1) to deduce

RM (z) = e2πizΓ ∗(z) +
1

2πi
iM

zM

∫ +∞

0

sM−1e−2πsΓ ∗(is)
1 − is/z

ds

− 1
2πi

(−i)M

zM

∫ +∞

0

sM−1e−2πsΓ ∗(−is)
1 + is/z

ds

= e2πizΓ ∗(z) + R̃M (ze−πi)

=
1

e−2πiz − 1
1

Γ ∗(ze−πi)
+ R̃M (ze−πi).

Here we have made use of the connection formula (1.9). Therefore, the analytic
continuation of the expansion (3.8) to the sector 1

2π < arg z < 3
2π can be obtained
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by setting

RN,M (z) =
e2πiz

e−2πiz − 1
1

Γ ∗(ze−πi)
+ e2πizR̃M (ze−πi) + R̃N,M (ze−πi).

In the proof of lemma 2.2 we showed that the reciprocal scaled gamma function is
bounded in the right half-plane; hence, by theorem 1.3 and the estimate (1.12) we
infer that

RN,M (z) = O
(

e−2π Im(z)

|1 − e−2πiz|

)
+ OM

(
e−2π Im(z)

|z|M

)
+ OM,ρ

(
e−2π|z|

|z|M

)

= OM,ρ

(
e−2π Im(z)

(
1

|1 − e−2πiz| +
1

|z|M

))

as z → ∞ in the closed sector 1
2π � arg z � 3

2π. The extension to the cases M = 0, 1
follows from (3.1), (3.11) and (3.12). Similarly, we find that

R̃N,M (z) = −e2πizRM (ze−πi) + RN,M (ze−πi)

for 1
2π < arg z < 3

2π, and therefore

R̃N,M (z) = OM

(
e−2π Im(z)

|z|M

)
+ OM,ρ

(
e−2π|z|

|z|M

)
= OM,ρ

(
e−2π Im(z)

|z|M

)

as z → ∞ in the sector 1
2π � arg z � 3

2π. The proof of the corresponding estimates
for the sector − 3

2π � arg z � − 1
2π is completely analogous.

3.2. Stokes phenomenon and Berry’s transition

It was shown by Paris and Wood [27, (3.2) and (3.4)] that the asymptotic expan-
sions

log Γ ∗(z) ∼
∞∑

n=1

B2n

2n(2n − 1)z2n−1 −

⎧⎪⎨
⎪⎩

0 if |arg z| < 1
2π,

1
2 log(1 − e±2πiz) if arg z = ± 1

2π,

log(1 − e±2πiz) if 1
2π < ± arg z < π,

(3.13)
hold as z → ∞. Expanding the logarithm into its Taylor series yields

log Γ ∗(z) ∼
∞∑

n=1

B2n

2n(2n − 1)z2n−1 +
∞∑

k=1

Sk(θ)e±2πikz (3.14)

as z → ∞ in the sector |arg z| � π − δ < π for any 0 < δ � π. Here

Sk(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
k

if 1
2π < |θ| < π,

1
2k

if θ = ± 1
2π,

0 if |θ| < 1
2π,

(3.15)

are the Stokes multipliers and θ = arg z. The upper or lower sign is taken in (3.14)
and (3.15) according to whether z is in the upper or lower half-plane. Taking the
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exponential of both sides in (3.14), we arrive at the expansions

Γ ∗(z) ∼
∞∑

n=0

(−1)n γn

zn
+ S1(θ)e±2πiz

∞∑
n=0

(−1)n γn

zn
+ · · ·

+ Sk(θ)e±2πikz
∞∑

n=0

(−1)n γn

zn
+ · · · (3.16)

and

1
Γ ∗(z)

∼
∞∑

n=0

γn

zn
+ S̃1(θ)e±2πiz

∞∑
n=0

γn

zn
+ · · · + S̃k(θ)e±2πikz

∞∑
n=0

γn

zn
+ · · · (3.17)

as z → ∞ in the sector |arg z| � π − δ < π, 0 < δ � π, with the Stokes multipliers

Sk(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 1
2π < |θ| < π,

1
k!

(
1
2

)
k

if θ = ± 1
2π,

0 if |θ| < 1
2π,

and

S̃1(θ) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if 1
2π < |θ| < π,

− 1
2 if θ = ± 1

2π,

0 if |θ| < 1
2π,

S̃k(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 1
2π < |θ| < π,

1
k!

(
−1

2

)
k

if θ = ± 1
2π,

0 if |θ| < 1
2π

for k � 2.

Here (x)k = Γ (x + k)/Γ (x) stands for the Pochhammer symbol [23, p. 136]. It
is seen that there is a discontinuous change in the coefficients of the exponential
terms when arg z changes continuously across arg z = ± 1

2π. We have encountered
a Stokes phenomenon with Stokes lines arg z = ± 1

2π. The formulae for S1(θ) and
S̃1(θ) are in agreement with Dingle’s non-rigorous ‘final main rule’ in his theory
of terminants [13, p. 414], namely that half the discontinuity occurs on reaching
the Stokes ray, and half on leaving it the other side. However, for the higher-order
Stokes multipliers this rule is no longer valid.

The interesting behaviour of the asymptotic series for the reciprocal gamma func-
tion is worth noting. On the Stokes lines arg z = ± 1

2π, infinitely many subdominant
exponential terms appear in the expansion and, as arg z passes through the values
± 1

2π, all but one of them disappear.
In the important paper [1], Berry provided a new interpretation of the Stokes

phenomenon; he found that, assuming optimal truncation, the transition between
compound asymptotic expansions is of error-function type, thus yielding a smooth,
although very rapid, transition as a Stokes line is crossed.
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Using the exponentially improved expansions given in theorem 1.4, we show that
the asymptotic expansions of the gamma function and its reciprocal exhibit the
Berry transition between the two asymptotic series across the Stokes lines arg z =
± 1

2π. More precisely, we shall find that the first few terms of the series in (3.16)
and (3.17), corresponding to the subdominant exponentials e±2πiz, ‘emerge’ in a
rapid and smooth way as arg z passes through ± 1

2π.
From theorem 1.4, we conclude that if N ≈ 2π|z|, then for large z, |arg z| < π,

we have

Γ ∗(z) ≈
N−1∑
n=0

(−1)n γn

zn
+ e2πiz

∑
m=0

(−1)m γm

zm
T̂N−m(2πiz)

− e−2πiz
∑
m=0

(−1)m γm

zm
T̂N−m(−2πiz)

and

1
Γ ∗(z)

≈
N−1∑
n=0

γn

zn
− e2πiz

∑
m=0

γm

zm
T̂N−m(2πiz) + e−2πiz

∑
m=0

γm

zm
T̂N−m(−2πiz),

where
∑

m=0 means that the sum is restricted to the first few terms of the series.
In the upper half-plane the terms involving T̂N−m(−2πiz) are exponentially small,
the dominant contribution comes from the terms involving T̂N−m(2πiz). Under the
above assumptions on N , from (3.2) and (3.4), the terminant functions have the
asymptotic behaviour

T̂N−m(2πiz) ∼ 1
2 + 1

2 erf((θ − 1
2π)

√
π|z|)

provided that arg z = θ is close to 1
2π, z is large and m is small in comparison

to N . Therefore, when θ < 1
2π, the terminant functions are exponentially small;

for θ = 1
2π, they are asymptotically 1

2 up to an exponentially small error; when
θ > 1

2π, the terminant functions are asymptotic to 1 with an exponentially small
error. Thus, the transition across the Stokes line arg z = 1

2π is effected rapidly and
smoothly. Similarly, in the lower half-plane, the dominant contribution is controlled
by the terms involving T̂N−m(−2πiz). From (3.3) and (3.4), we have

T̂N−m(−2πiz) ∼ − 1
2 + 1

2 erf((θ + 1
2π)

√
π|z|)

under the assumptions that arg z = θ is close to − 1
2π, z is large and m is small

in comparison with N ≈ 2π|z|. Thus, when θ > − 1
2π, the terminant functions are

exponentially small; for θ = − 1
2π, they are asymptotic to − 1

2 with an exponentially
small error; and when θ < − 1

2π, the terminant functions are asymptotically −1 up
to an exponentially small error. Therefore, the transition through the Stokes line
arg z = − 1

2π is carried out rapidly and smoothly.
We remark that the smooth transition of the subdominant exponential e2πiz was

also discussed by Boyd [6], though he used a slightly different approximation for
the terminant functions.
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4. The asymptotics of the late coefficients

The asymptotic form of the Stirling coefficients γn is well known. Their leading-
order behaviour was investigated by Watson [32] using the method of Darboux,
and by Diekmann [12] using the method of steepest descents. Murnaghan and
Wrench [16] gave higher approximations by employing Darboux’s method. Com-
plete asymptotic expansions were derived by Dingle [13, pp. 158–159], though his
results were obtained by methods that were formal and interpretive, rather than
rigorous. His expansions may be written, in our notation, as

γ2n−1 ≈ (−1)n2
(2π)2n

∞∑
k=0

(−1)kγ2k(2π)2kΓ (2n − 2k − 1)ζ(2n − 2k) (4.1)

and

γ2n ≈ (−1)n2
(2π)2n

∞∑
k=0

(−1)kγ2k+1(2π)2kΓ (2n − 2k − 1)ζ(2n − 2k). (4.2)

Finally, Boyd [6] gave expansions similar to Dingle’s, complete with error bounds,
using truncated forms of the approximations

Γ ∗(z) ∼
∞∑

k=0

(−1)k γk

zk
and Γ ∗(z) ∼ 1

1 − e2πiz

∞∑
k=0

(−1)k γk

zk

with z = is (s > 0) and his resurgence formula for the gamma function. Although
both expansions are valid along the positive imaginary axis in Poincaré’s sense,
from (3.13) it is seen that the first one is more suitable when |arg z| < 1

2π and the
second one is more suitable when 1

2π < arg z < π. In our notation, Boyd’s results
can be written as

γ2n−1 =
(−1)n2
(2π)2n

K−1∑
k=0

(−1)kγ2k(2π)2kΓ (2n − 2k − 1) + MK(2n − 1), (4.3)

γ2n =
(−1)n2
(2π)2n

K−1∑
k=0

(−1)kγ2k+1(2π)2kΓ (2n − 2k − 1) + MK(2n) (4.4)

and

γ2n−1 =
(−1)n2
(2π)2n

K−1∑
k=0

(−1)kγ2k(2π)2kΓ (2n − 2k − 1)ζ(2n − 2k − 1) + M̂K(2n − 1),

(4.5)

γ2n =
(−1)n2
(2π)2n

K−1∑
k=0

(−1)kγ2k+1(2π)2kΓ (2n − 2k − 1)ζ(2n − 2k − 1) + M̂K(2n).

(4.6)

Here 1 � K < n and the truncation errors MK and M̂K can be bounded explicitly
and realistically.
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Boyd observed that estimating the error term MK(2n − 1) in (4.3) via the expo-
nentially improved expansion of the gamma function (1.10) along the imaginary
axis leads to an improved version of the late coefficient formula, (4.3). His improved
expansion [6, (3.42)] also shed some light on the idea behind Dingle’s formula, (4.1),
especially on the appearance of Riemann’s zeta function in the approximation and
its numerical superiority over Boyd’s formula (4.3).

The main goal of this section is to derive new asymptotic series for the Stirling
coefficients using the representations (2.3) and (2.4) and an exponentially improved
asymptotic expansion for the gamma function. These new expansions use all the
exponentially small terms in (3.16) and provide a full explanation of the remarkable
accuracy of Dingle’s series (4.1) and (4.2). From (3.13), we see that

Γ ∗(is) ∼ 1√
1 − e−2πs

∞∑
k=0

(−1)k γk

(is)k
(4.7)

as s → +∞. Consequently, we have

Re Γ ∗(is) ∼ 1√
1 − e−2πs

∞∑
k=0

(−1)k γ2k

s2k

and

Im Γ ∗(is) ∼ 1√
1 − e−2πs

∞∑
k=0

(−1)k γ2k+1

s2k+1

as s → +∞. Substituting these expansions into (2.3) and (2.4) yields the formal
asymptotic series

γ2n−1 ≈ (−1)n2
(2π)2n

∞∑
k=0

(−1)kγ2k(2π)2kΓ (2n − 2k − 1)ξ(2n − 2k − 1) (4.8)

and

γ2n ≈ (−1)n2
(2π)2n

∞∑
k=0

(−1)kγ2k+1(2π)2kΓ (2n − 2k − 1)ξ(2n − 2k − 1) (4.9)

for large n. Here, the function ξ(r) is given by the Dirichlet series

ξ(r) =
(2π)r

Γ (r)

∫ +∞

0

sr−1e−2πs

√
1 − e−2πs

ds

=
∞∑

m=0

(1/2)m

m!(m + 1)r

= 1 +
1
2

1
2r

+
3
8

1
3r

+
5
16

1
4r

+
35
128

1
5r

+ · · · ,

provided that r > 1
2 . The formal expansions in (4.8) and (4.9) can be turned into

exact results by constructing error bounds for the series (4.7), but we do not pursue
the details here. We shall assume that optimal truncation of these series provides
good approximations for the Stirling coefficients γn.
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Table 1. Approximations for γ101, using optimal truncation.

Values of n and K n = 51, K = 26
Exact numerical −0.718920823005286472090671337669485196245× 1077

value of γ2n−1

Dingle’s approximation −0.718920823005286472090671337669485196372× 1077

(4.1) to γ2n−1

Error 0.127 × 1041

Boyd’s approximation −0.718920823005286472090671337669343420137× 1077

(4.3) to γ2n−1

Error −0.141776108 × 1047

Boyd’s approximation −0.718920823005286472090671337669626972607× 1077

(4.5) to γ2n−1

Error 0.141776362 × 1047

Approximation (4.8) −0.718920823005286472090671337669485196372× 1077

to γ2n−1

Error 0.127 × 1041

For large n and fixed k, we have

ζ(2n − 2k) ≈ 1 +
1

22n−2k
+

1
32n−2k

,

ζ(2n − 2k − 1) ≈ 1 + 2
1

22n−2k
+ 3

1
32n−2k

and

ξ(2n − 2k − 1) ≈ 1 +
1

22n−2k
+

9
8

1
32n−2k

.

These approximations explain Boyd’s observation, namely that, assuming optimal
truncation, Dingle’s expansions provide better approximations than Boyd’s original
series. We also get a numerical explanation of the appearance of Riemann’s zeta
function in Dingle’s expansions.

We remark that Boyd’s improved series [6, (3.42)] for γ2n−1 is (4.8) with the
approximate values

ξ(2n − 2k − 1) ≈
{

1 + 2−2n if k = 0,

1 if k > 0.

In our calculations we truncated the expansions of Dingle (like Boyd did) and
our expansions at k = K − 1 and chose the value of K optimally. Optimality here
means that we choose K in terms of n such that the last term of the remaining
series is asymptotically the smallest in absolute value for large n. It can be shown
that the optimal choice of K for both the expansions of γ2n−1 and γ2n is K = 	 1

2n
,
i.e. in the sums k runs from 0 to 	 1

2n
 − 1. Tables 1 and 2 display the numerical
results obtained for the coefficients γ101 and γ100 by using the optimally truncated
approximations of Dingle, Boyd and ourselves.

It can be seen from the numerical computations that our expansions provide
better approximations than that of Boyd’s and are comparable with the expansions
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Table 2. Approximations for γ100, using optimal truncation.

Values of n and K n = 50, K = 25
Exact numerical −0.238939789661593595677447537129753012× 1074

value of γ2n

Dingle’s approximation −0.238939789661593595677447537129753175× 1074

(4.2) to γ2n

Error 0.163 × 1041

Boyd’s approximation −0.238939789661593595677447537129564608× 1074

(4.4) to γ2n

Error −0.188403 × 1044

Boyd’s approximation −0.238939789661593595677447537129941741× 1074

(4.6) to γ2n

Error 0.188729 × 1044

Approximation (4.9) to γ2n −0.238939789661593595677447537129753175× 1074

Error 0.163 × 1041

of Dingle. We remark that the approximate numerical value of γ100 arising from
Boyd’s formula (4.6) was given incorrectly in [6, table 4].
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Appendix A. Computation of the Stirling coefficients

In this appendix we have collected some known recurrence representations of the
Stirling coefficients, γn. The exact values of γn up to γ30 can be found in [29, 34].
Explicit formulae for the Stirling coefficients are given by Boyd [7], Brassesco and
Méndez [8], Comtet [9, p. 267], De Angelis [11], López et al . [15], Nemes [17] and
Wrench [34].

A.1. Recurrence relations

Based on the Lagrange inversion formula, Brassesco and Méndez [8] find recursive
formulae for the computation of the Stirling coefficients. Define the sequence bn by
the recurrence relation

bn =
2 − n

3n + 3
bn−1 − 1

n + 1

n−3∑
k=2

(k + 1)bk+1bn−k (A 1)

for n � 4 with b1 = 1, b3 = 1
36 . Then the coefficients γn can be computed as

γn = (−1)n (2n + 1)!
2nn!

b2n+1.

This recurrence was also given by Borwein and Corless [3].
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Upon replacing k by n − k − 1 in the sum, we see that the recurrence relation
(A 1) may be written in the form

bn =
2 − n

3n + 3
bn−1 − 1

2

n−3∑
k=2

bk+1bn−k.

This formula was also found by Copson [10, p. 56].
Wrench [34] found recurrence formulae in terms of the Bernoulli numbers Bk,

since

γ2n−1 = − 1
2n − 1

n∑
k=1

B2k

2k
γ2n−2k and γ2n = − 1

2n

n∑
k=1

B2k

2k
γ2n−2k+1

for n � 1 with γ0 = 1. To derive these results, he used the formal generating
function

exp
( ∞∑

n=1

B2n

2n(2n − 1)
x2n−1

)
= exp

( ∞∑
n=1

Bn+1

n(n + 1)
xn

)
=

∞∑
n=0

(−1)nγnxn, (A 2)

which follows from (1.7). We derive here another type of recurrence formula using
the generating function (A 2). Differentiating both sides of (A 2) with respect to x
and dividing each side by the exponential expression on the left-hand side of (A 2),
we find

∞∑
n=1

B2n

2n
x2n−2 = exp

(
−

∞∑
n=1

B2n

2n(2n − 1)
x2n−1

) ∞∑
n=1

(−1)nnγnxn−1.

Noting that

exp
(

−
∞∑

n=1

B2n

2n(2n − 1)
x2n−1

)
= exp

( ∞∑
n=1

B2n

2n(2n − 1)
(−x)2n−1

)
=

∞∑
n=0

γnxn

(A 3)
and equating the coefficients of equal powers of x, we deduce the recursive formulae

γ2n−1 = − B2n

2n(2n − 1)
+

1
2n − 1

2n−2∑
k=1

(−1)kkγkγ2n−k−1,

γ2n = − 1
2n

2n−1∑
k=1

(−1)kkγkγ2n−k

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 4)

for n � 1 with γ0 = 1. From (A 2) and (A 3) we can immediately obtain the known
expression

n∑
k=0

(−1)kγkγn−k = 0

for n � 1 (see, for example, [26, p. 33]). When n is odd, this is a simple identity;
for n � 2 even it gives

γn = −1
2

n−1∑
k=1

(−1)kγkγn−k,

which is equivalent to the second recurrence in (A 4).
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A.2. Representations using polynomial sequences

In 1952, Lauwerier [14] showed that the coefficients in asymptotic expansions of
Laplace-type integrals can be calculated by means of linear recurrence relations. As
an illustration of his method, he considered, inter alia, the Stirling coefficients γn.
Define the sequence of polynomials P0(x), P1(x), P2(x), . . . via the recurrence

Pn(x) = −Pn−1(x) + 1
2x−n/2

∫ x

0
tn/2Pn−1(t) dt

for n � 1 with P0(x) = 1. Then the coefficients γn can be recovered from the
formula

γn =
(−1)n

√
2π

∫ +∞

0
e−t/2tn−1/2P2n(t) dt.

It is known that the Stirling coefficients are related to certain polynomials Un(x)
appearing in the uniform asymptotic expansions of the modified Bessel functions.
These polynomials satisfy the following recurrence:

Un(x) = 1
2x2(1 − x2)U ′

n−1(x) + 1
8

∫ x

0
(1 − 5t2)Un−1(t) dt

for n � 1 with U0(x) = 1. The coefficients γn are then given by γn = Un(1) (see,
for example, [18]).
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