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SUMMARY

A CCC limb and a new 3CCC parallel mechanism have
been designed in this paper based on geometry analysis.
Their mobility and geometrical constraints are discussed by
using screw theory and geometrical equations separately.
Following that both the inverse and forward kinematics
of the 3CCC parallel mechanism are proposed, in which
Dixon’s resultant is used to get the forward solutions for
the orientation and a eighth-order polynomial equation
in one unknown is obtained, leading to the results for
the position analysis, numerical examples confirm these
theoretical results. A short comparison with the traditional
Stewart platforms is presented in terms of kinematics,
workspace and trajectory planning.

KEYWORDS: General Stewart platform; Cylinder;
Kinematics; Mobility; Workspace.

1. Introduction

The studies of parallel mechanisms started with the
conception of the general 6–6 Stewart–Gough structure,
proposed by Gough1 with a tire testing machine and Stewart2

with a flight simulator. Compared to serial mechanisms,
parallel mechanisms provide increased stiffness, resulting
in improved positional accuracy and strength. For the
past several decades, the Stewart–Gough platform and
its variants3–6 have been widely studied, including their
accuracy,7 workspace,8 stiffness,9 etc. Generally, the
Stewart–Gough platform consists of a moving platform, a
fixed base and six SPS (spherical joint, prismatic joint,
spherical joint) limbs and has mobility six.

One of the most important issues of a parallel mechanism
study is the kinematics analysis, generating results that form
the base for the application of the mechanism. The forward
kinematics problem, finding the position and orientation of
the moving platform given the actuator displacements, is
analytically complex, while the inverse positional problem
is much easier and the former usually leads naturally to a
system of highly nonlinear algebraic equations with multiple
solutions, which has been proved a very difficult task.
Angeles et al.10 gave the real-time direct kinematics of
general six degree of freedom (DOF) parallel manipulators
by using sensors. For the first time, Husty11 produced a
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40th-degree univariate equation for the general 6–6 Stewart
platform by finding the greatest common divisor of the
intermediate polynomials of degree 320. Lee and Shim12

developed an elimination method to solve the forward
kinematics of the general 6–6 Stewart platform by deriving
directly a univariate polynomial of degree 40 from a 15 × 15
matrix while Merlet13 proposed an efficient algorithm to deal
with the same type 6-DOF parallel mechanism based on
interval analysis.

The difficulty in solving the direct kinematics problem
is considered to be a major obstacle of using the Stewart–
Gough platform in many applications. From this point of
view, Chinese mathematician Gao Xiaoshan14 introduced the
generalized Stewart–Gough platform (GSP), which could be
considered as the most general form of parallel manipulators
with 6-DOF in certain sense. A GSP consists of two rigid
bodies connected with six distance or/and angular constraints
between six pairs of points, lines and/or planes in the base and
platform respectively. The traditional parallel platforms are
all special cases of the GSPs. Some of these new GSPs can
provide new parallel manipulators which have the stiffness
and lightness of the Stewart–Gough platform and easy to
solve direct kinematics.

Presented in this paper is the solution to a new 3CCC
parallel mechanism, which is one of the 3A3D GSPs that
have three angular and three distance constraints. Figure 1
shows a special case of the 3CCC parallel mechanism. This
new mechanism consists of cylindrical joints only, which are
better on stiffness than the traditional spherical joints. The
constraints of the 3-CCC are between three pairs of lines
in the base and platform, respectively. It is shown that the
position and orientation of the platform are decoupled and the
forward solutions of them are both eighth-order polynomial
equations. The equations are numerically solved, and two
numerical examples are given to confirm these theoretical
results.

2. Design of the CCC limb, the 3CCC Parallel

Mechanism and Its Mobility Analysis

2.1. Design of the CCC limb
Geometrically, the traditional SPS limb supports the platform
in variable configurations by changing the distance constraint
between the two spherical centres at the two ends as in Fig. 2.
Based on the study in ref. [14], the constraint can be a distance
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Fig. 1. A special 3CCC parallel mechanism.

Fig. 2. The SPS limb and CCC limb.

between any two of a point, a line and a plane and can be an
angle between two lines or a line and a plane. The general
SPS can be taken as that has a distance constraint between
two points. Using this theory, we construct a new limb that
has both distance and angle constraints as in Fig. 2, which

consists of three cylindrical joints with two on the base and
platform separately and another one along the limb.

As in Fig. 2, set a fixed frame OXYZ, w1 and w2 denote
the unit vectors of the two cylindrical joints at the two ends,
expressed in OXYZ. The distance and angle constraints of
the limb will be the distance and angle between w1 and
w2, denoted as l and α separately, and can be operated by
changing the distance of and rotating the cylindrical joint
along the limb. In OXYZ, the constraint equations can be
given as

angle constraint:

cos(α) = wT
1 w2, (1)

distance constraint:

l2(w1 × w2) · (w1 × w2) = ((b − a) · (w1 × w2))2, (2)

where a and b are vectors of two arbitrary points on w1 and
w2 separately in OXYZ.

As the two-end cylindrical joints are perpendicular to the
limb, w1 and w2 are in parallel planes. α(−π, π) is under the
right-hand rule: holding the limb between w1 and w2 with
the thumb of the right hand pointing to w1, rotating the other
four fingers from w1 to w2, if α is the same side it is plus,
otherwise it is minus. When w1 and w2 are parallel, a = 0
and Eq. (2) will be identically equal, thus this case should be
avoided.

2.2. Design of the 3CCC parallel mechanism and Its
mobility analysis
The 3-CCC parallel platform is shown in Fig. 3. There are
three cylindrical limbs which are connected to the three
cylindrical joints in the moving platform and to the three
cylindrical joints in the base. In general case, the shapes
of both moving platform and base are arbitrarily chosen in
three-dimensional space which means for both moving and
fixed platform, the cylindrical joints are not restricted to lie in
a plane or intersect at one point. Thus Fig. 1 shows a special

Fig. 3. A 3CCC parallel mechanism and the CCC limb.
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3CCC parallel mechanism with the three cylindrical joints
perpendicular and intersecting each other on the platform.

As all the limbs of the 3CCC parallel mechanism
have the same structure by analysing one of them in a
common configuration and expanding the result to others, the
constraints to the moving platform can be obtained and the
mobility of the whole mechanism is known. Figure 3 shows
a CCC limb in the general case. Using a local coordinate
system 1O1X1Y1Z at the centre of the lower cylindrical joint
with 1X-axis along the same line with the cylindrical joint
and 1Z-axis perpendicular to the base plane, the limb twist
system can be obtained as

{1 S1}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 S11 = [
1 0 0 0 0 0

]
1 S12 = [

0 0 0 1 0 0
]

1 S13 = [
0 cos γ sin γ 0 0 0

]
1 S14 = [

0 0 0 0 cos γ sin γ
]

1 S15 = [
cos β sin α sin β −cos α sin β

−lsin β lcos βsin γ −lcos βcos γ
]

1 S16 x= [
0 0 0 cos β sin αsin β −cos αsin β

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where the first two are for the lower C joint, the third and
forth are for the middle C joint and the last two are for the
upper C joint, γ is the angle between 1 S13 and 1Y, β is the
angle between 1 S15 and its projection on 1Y1O1Z plane, l
is the distance between the centres of the upper and lower
cylindrical joint in the limb.

Calculating the reciprocal screws to Eq. (3), the limb
constraint system can be obtained as{1 Sr

1

} = 1 Sr
11 = [

0 0 0 0 0 0
]
. (4)

Thus the six twists in Eq. (3) form a six-system,15 and there
is no constraint to the platform with this kind of CCC limb,
there are also no local degrees of freedom within the limb as
there is no redundant twist in Eq. (3).

Thus the 3CCC parallel mechanism should have six
degrees of freedom in the three-dimensional space as all the
three CCC limbs do not supply any constraints to the moving
platform. A distance actuator and an angular actuator can
be attached to each CCC limb. The lengths of three limbs
(l1, l2, l3) and the angles (α1, α2, α3) between three pairs of
cylindrical lines are the inputs. The system outputs are the
position and orientation of the moving platform.

3. Kinematics Analysis

3.1. Inverse kinematics
Figure 4 shows the kinematics model of the 3CCC parallel
mechanism. Locate a fixed frame OXYZ on the base and
attach a moving frame O′X′Y′Z′ to the upper platform. (v1,
v2, v3) and (u1, u2, u3) are the unit orientation vectors of
the cylindrical joints on the platform and base, separately
described in the moving frame and fixed frame. Let ai denote
the vector expressed in the fixed frame from the origin of the
moving frame to an arbitrary point Ai on the line ui , bi

denote the vector from the origin of the moving frame to
an arbitrary point Bi on the line vi . P denotes the vector

Fig. 4. Kinematics model of the 3CCC parallel mechanism.

from O to O′ expressed in the fixed frame, li denotes the ith
limb length, αi(−π, π) denotes the angle between the two
cylindrical joints vi and ui . R is the 3 × 3 rotational matrix
denoting the orientation of the moving frame with respect to
the fixed frame. When the lengths of three limbs (l1, l2, l3)
and the angles (α1, α2, α3) between three pairs of cylindrical
lines are given, the corresponding constraint equations of the
3CCC parallel mechanism are as follows:

angle constraints:

cos(αi) = (Rvi)
T ui (i = 1, 2, 3), (5)

distance constraints:

l2
i (Rvi × ui) · (Rvi × ui)

= ((Rbi + P − ai) · (Rvi × ui))
2 (i = 1, 2, 3). (6)

The problem of inverse kinematics is that orientation R and
position P of the platform are known to solve the actuation
of the limbs. Thus from Eqs. (5) and (6), the actuation (l1, l2,
l3, α1, α2, α3) of the three limbs can be solved directly as

αi = ArcCos((Rvi)
T ui), (i = 1, 2, 3), (7)

li =
√

((Rbi + P−ai) · (Rvi × ui))2/(Rvi × ui) · (Rvi × ui),

(i = 1, 2, 3). (8)

3.2. Forward kinematics
From Fig. 4, without loss of generality, assume that

P = (x, y, z)T ,

ui = (ui1, ui2, ui3)T ,

vi = (vi1, vi2, vi3)T ,

ai = (ai1, ai2, ai3)T ,

bi = (bi1, bi2, bi3)T ,

(i = 1, 2, 3).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(9)

In the three-dimensional coordinate system, a rigid body
rotates an angle θ about an axis K (kx, ky, kz), the rotation
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matrix R can be given as follows:16

Rk(θ ) =
⎡
⎣

k2
xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ k2
yvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ k2
z vθ + cθ

⎤
⎦,

(10)

where cθ = cos θ , sθ = sin θ , vθ = 1 − cos θ

Set:

c1 = kx tan(θ/2),
c2 = ky tan(θ/2),
c3 = kz tan(θ/2),
cos(θ) = (1 − tan2(θ/2))/(1 + tan2(θ/2)),
sin(θ) = 2 tan(θ/2)/(1 + tan2(θ/2)),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)

where c1, c2 and c3 are the Rodriguez–Hamilton parameters.
As usually θ is less than π , (11) can avoid the singularity and
be used in following procedure.

Substituting Eq. (11) into (10) yields

R = �−1

⎡
⎣

1 + c2
1 − c2

2 − c2
3 2(c1c2 − c3) 2(c1c3 + c2)

2(c1c2 + c3) 1 − c2
1 + c2

2 − c2
3 2(c2c3 − c1)

2(c1c3 − c2) 2(c2c3 + c1) 1 − c2
1 − c2

2 + c2
3

⎤
⎦,

(12)

where � = 1 + c2
1 + c2

2 + c2
3, (12) is the Cayley17 formula.

Substituting Eqs. (9) and (12) into Eqs. (5) and (6),
simplifying and taking the numerator, we have

Eqe(c1, c2, c3) =
2∑

i,j,k=0
i+j+k≤2

ge−ijkc
i
1c

j

2c
k
3 = 0, (e = 0, 1, 2),

(13)

(zri1 + yri2 + xri3)2 − l2
i ri4 = 0, (i = 1, 2, 3), (14)

where ge−ijk are real constants depending on input data only,
rij are functions in c1, c2, c3 and other input data.

The forward displacement analysis of the 3CCC parallel
mechanism can be described as: solve the six unknown (x,
y, z, c1, c2, c3) when the three lengths li and the three angles
αi are given with the six equations in Eqs. (13) and (14).
Observing Eqs. (13) and (14), it can be found that that
the position and orientation of the moving platform of the
3CCC parallel mechanism are decoupled as Eq. (13) are three
equations in c1, c2, c3 only. Thus the procedure of solving
the forward displacement problem can be: First, solving c1,
c2, c3 using Eq. (13) and giving the results of orientation R;
second, substituting results of c1, c2, c3 into Eq. (14) to get
corresponding results of position P .

3.2.1. Solving the orientation R: (1) Solutions of c3 rewrite
Eq. (13) as the function of c1, c2 by putting the products of
power in c3 into the coefficients

Qe(c1, c2) =
2∑

i,j=0
i+j≤2

Ge−ij c
i
1c

j

2 = 0, (e = 0, 1, 2), (15)

where Ge−ij are function of ge−ijk and the products of power
in c3

According to Dixon’s resultant principle,18,19 a 3 × 3
matrix D can be obtained using Eq. (15) after executing
the following algorithm:

Construct the following matrix

�(c1, c2, t1, t2) =
∣∣∣∣∣∣
Q0(c1, c2) Q1(c1, c2) Q2(c1, c2)
Q0(t1, c2) Q1(t1, c2) Q2(t1, c2)
Q0(t1, t2) Q1(t1, t2) Q2(t1, t2)

∣∣∣∣∣∣
,

(16)

where t1, t2 are intermediate parameters only. By developing
the above equation, �(c1, c2, t1, t2) is a polynomial of degree
2 in c1, 3 in c2, 3 in t1, 2 in t2. Dixon observed that � vanishes
when t1, t2 substitute for c1, c2, implying that (c1 − t1)(c 2 -
t 2) is a factor of �. Therefore, the expression

δ(c1, c2, t1, t2) = �(c1, c2, t1, t2)

(c1 − t1)(c2 − t2)
= 0 (17)

is a polynomial of degree 1 in c1, 2 in c2, 2 in t1, 1 in t2.
δ vanishes when Q0(c1, c2), Q1(c1, c2) and Q2(c1, c2) have
common zeros no matter what t1, t2 are. The coefficients
of each power product t i1t

j

2 (i = 0, 1, 2; j = 0, 1) of δ have
common zeros which are also the common zeros of equations
Q0, Q1, Q2. This gives five equations in power product of c1

and c2, whereas the number of the power product ci
1c

j

2(i =
0, 1; j = 0, 1, 2) is also five. Therefore, the coefficients of
each power product ci

1c
j

2 in these five equations form a 5 × 5
matrix D. All the above algorithm can be expressed as

δ(c1, c2, t1, t2) = �(c1, c2, t1, t2)

(c1 − t1)(c2 − t2)
= T • D • CT = 0,

(18)

where T = [1 t1 t2
1 t2 t1t2], C = [1 c2 c2

2 c1 c2c1] and
D is a matrix whose elements are polynomials in c3.

Dixon also proved that Eq. (15) have common zeros if the
determinant of the matrix D equals 0. Thus an equation in c3

can be got:

det = |D| = 0, (19)

where det is the determinant of matrix D.
By expanding each elements of matrix D, the degrees in

c3 can be shown as below:

⎡
⎢⎢⎢⎢⎢⎣

2 3 3 2 2
3 2 2 1 1
2 1 1 0 0
3 2 2 1 1
2 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (20)
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Therefore expanding Eq. (19) there is an equation of the
highest degree 3 + 3 + 2 + 0 = 8 in c3:

+8∑
i=0

hic
i
3 = 0, (21)

where hi are real constants depending on input data only.
This implies that an univariate equation in c3 of degree 8

is obtained.
(2) Solutions of c1, c2

Solving Eq. (21), all the solutions for c3 can be obtained.
Then substitute c3 into the following equation:

D • CT = 0. (22)

According to the Crame’s rule, the solutions of c1, c2 can be
computed from the above linear system.

Substituting all the solutions of c1, c2 and c3 to Eq. (12),
orientation R can be obtained.

3.2.2. An easy way to solve R when (v1, v2, v3) are
perpendicular to each other and intersect at one point: In
this case, the mechanism is as shown in Fig. 1. Thus the
parameters can be set as u1 = v1 = (1, 0, 0), u2 = v2 =
(0, 1, 0), u3 = v3 = (0, 0, 1), a1(0, a1,0), a2(0, 0,a2), a3(a3,0,
0), bi = (0, 0, 0)(i = 1, 2, 3), substituting them into Eq. (5)
there are

1 + (1 − cos α1)c2
1 − (1 + cos α1)c2

2 − (1 + cos α1)c2
3 = 0,

1 − (1 + cos α2)c2
1 + (1 − cos α2)c2

2 − (1 + cos α2)c2
3 = 0,

1 − (1 + cos α3)c2
1 − (1 + cos α3)c2

2 + (1 − cos α3)c2
3 = 0.

⎫⎬
⎭

(23)

These are three linear equations in c2
1, c2

2, c2
3, thus the

results can be easily got as

c1 = ±√
Rx/RD,

c2 = ±√
Ry/RD,

c3 = ±√
Rz/RD,

⎫⎬
⎭ (24)

where

Rx = −2 − 2 cos α1 + cos α2 + cos α3,

Ry = −2 + cos α1 − 2 cos α2 + cos α3,

Rz = −2 + cos α1 + cos α2 − 2 cos α3,

RD = −2 − 2 cos α1 − 2 cos α2 − 2 cos α3.

Any one of c1, c2 and c3 has +/− two solutions, so totally
there are eight solution assemblies corresponding to eight
orientations.

3.2.3. Solving position P : Substitute solutions of c1, c2 and
c3 into Eq. (14), there are

n2
i − l2

i ri4 = 0, (i = 1, 2, 3), (25)

where

ni = zri1 + yri2 + xri3, (i = 1, 2, 3). (26)

n1, n2 and n3 can be solved from (25) directly as

ni = ±li
√

ri4, (i = 1, 2, 3). (27)

Then substitute the solutions of n1, n2 and n3 into (26),
solutions of x, y and z can be obtained linearly using Crame’s
rule:

x = Dx/DD,

y = Dy/DD,

z = Dz/DD,

⎫⎬
⎭ (28)

where

Dx = −r13r22n3 + r12r23n3 + r13n2r32 − n1r23r32

−r12n2r33 + n1r22r33,

Dy = −r13n2r31 + n1r23r31 + r13r21n3 − r11r23n3

−n1r21r33 + r11n2r33,

Dz = −n1r22r31 + r12n2r31 + n1r21r32 − r11n2r32

−r12r21n3 + r11r22n3,

DD = −r13r22r31 + r12r23r31 + r13r21r32 − r11r23r32

−r12r21r33 + r11r22r33.

Thus there are eight solutions of ni then eight solutions of
position P(x, y, z) corresponding to one set of solutions
of R. So by giving the three distance and three angle
inputs, there are 8 × 8 = 64 sets of solutions of the forward
kinematics analysis of the 3CCC parallel mechanism, where
the orientation and position are decoupled.

4. Numerical Verification for the Forward Kinematics

4.1. Example one
Parameters of a 3CCC parallel mechanism are given
as a1 = (0, 0, 0), a2 = (0, 1.2, 2.07846), a3 = (2, 2, 2.8),
b1 = (0, 0, 0), b2 = (0.7, −0.7, 0), b3 = (1, 1, −1.4), u1 =
(1, 0, 0), u2 = (0, 1/2,

√
3/2), u3 = (1/2, 1/2,

√
2/2), v1 =

(1, 0, 0), v2 = (
√

2/2, −√
2/2,0), v3 = (−1/2, −1/2,

√
2/2),

l1 = 50, l2 = 21.5124, l3 = 37.0951, α1 = ArcCos(−1/2),
α2 = ArcCos(−0.12941), α3 = ArcCos(−3/4). The solu-
tions of the forward kinematics are obtained by using the
procedure proposed above and listed in Table I. The results
for this example containing 4 sets of real roots of the
orientation with each has eight solutions for the position,
corresponding to 32 moving platform configurations as two
are shown in Fig. 5 (the middle cylindrical joint is shown in
red with the base in blue and platform in green). All the roots
have been checked by substituting in Eqs. (3) and (4). The
validity of all of the roots shows that univariate equation and
the whole process is correct.

4.2. Example two
Another example is analysed where (v1, v2, v3) are
perpendicular to each other and intersect at one point, the
parameters are a1 = a2 = a3 = (0, 0, 0), b1 = b2 = b3 =
(0, 0, 0), u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), v1 =
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Table I. Solutions of example one.

Solutions of position corresponding
Solutions of orientation to root 3 of orientation

c1 c2 c3 x y z

1 −4.07337 0.542502 7.2445 1 −172.169 −49.4996 −50
2 0.121002 0.689641 1.6026 2 172.169 49.4996 50
3 0. 0. −1.73205 3 112.601 −24.1967 −50
4 −0.259–0.313i 1.373+0.324i −1.100+0.151i 4 −112.601 24.1967 50
5 −0.259+0.313i 1.373–0.324i −1.100–0.151i 5 17.4318 1.30371 −50
6 0.0997714 0.745702 −1.57283 6 −17.4318 −1.30371 50
7 0.088–0.977i −0.461–0.376i 0.691–0.627i 7 −77 −75 −50
8 0.088+0.977i −0.461+0.376i 0.691+0.627i 8 77 75 50

Fig. 5. The assembly configurations of two real solutions (root 7
and 8 in Table I).

(1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), l1 = l2 = l3 = 1.206,
α1 = 60◦, α2 = 60◦, α3 = 60◦. The solutions of the forward
kinematics are obtained by using the procedure proposed
above and listed in Table II. Two assembly configurations
corresponding to two real solutions are shown in Fig. 6.

5. Comparison with the Traditional Stewart Platform

5.1. Kinematics
For the forward kinematics of the traditional Stewart–
Gough platform, when Calay’s formula is used to describe
the orientation,20 six equivalent polynomial equations are
obtained from the original six geometrical constraint
equations. After dealing with them with Gröbner basis theory,
18 basis equations are obtained and the problem of the

Fig. 6. The assembly configurations of two real solutions (root 6
and 8 in Table II).

forward displacement is reduced to a 40th degree polynomial
equation in a single unknown from a constructed 13 × 13
Sylvester’s matrix which is relatively small in the existing
literatures Comparing with that, the process of solving the
kinematics of the 3-CCC parallel mechanism leading to
a 5 × 5 matrix in this paper is much simpler while the
mechanism has the same mobility.

5.2. Workspace
Workspace is an important issue in the study of parallel
mechanisms, which is usually investigated as reachable,
constant-orientation21 or orientation workspace. Several
researchers addressed the determination of the workspace
based on given leg length ranges.22 This paper just gives

Table II. Solutions of example two.

Solutions of position corresponding
Solutions of orientation to root 1 of orientation

c1 c2 c3 x y z

1
√

5/5
√

5/5
√

5/5 1 −1.70249 −0.411509 1.67734
2 −√

5/5
√

5/5
√

5/5 2 −1.34567 2.03416 0.743181
3 −√

5/5 −√
5/5

√
5/5 3 −0.768328 −0.768328 −0.768328

4 −√
5/5 −√

5/5 −√
5/5 4 −0.411509 1.67734 −1.70249

5
√

5/5 −√
5/5

√
5/5 5 0.743181 −1.34567 2.03416

6
√

5/5
√

5/5 −√
5/5 6 1.1 1.1 1.1

7
√

5/5 −√
5/5 −√

5/5 7 1.67734 −1.70249 −0.411509
8 −√

5/5
√

5/5 −√
5/5 8 2.03416 0.743181 −1.34567
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Fig. 7. Workspace of the 3CCC under a special orientation (1 ≤
li ≤ 2).

a short discussion by giving a special constant-orientation
workspace of the new 3CCC parallel mechanism as in Fig. 1.

Workspace of a parallel mechanism usually depends
on three parts except its mobility: limited link lengths,
mechanical limits on the passive joints and links interference.
For the 3CCC parallel mechanism, the limits of link
lengths are lmin ≤ li ≤ lmax, αmin ≤ αi ≤ αmax, (i = 1, 2, 3).
As there are only cylindrical joints, the mechanical limits on
the passive joints are the rotation angles (ϕi) of the cylindrical
joints, which can be any amount of degree in the 3CCC
parallel mechanism. Links interference follows Eq. (4) in
literature.23

As the orientation and position of the moving platform of
the 3CCC are decoupled, the limits of link lengths for the
constant-orientation workspace will be lmin ≤ li ≤ lmax only
and αi are known. Using the same parameters of example
2 in Section 4 and the constant orientation corresponding to
solution 1 in Table II, the workspace can be given as shown
in Figure 7.

From this case, we can find that the workspace under this
orientation is simple and depend on the limits of the linkage
lengths only. The traditional Stewart platform does not have
this characteristic.

5.3. Control and trajectory planning
As studied in the kinematics, the orientation and position
of the moving platform of the 3CCC are decoupled, the
orientation depends on the angle constraints only, thus when
we control the platform to a needed posture, there will be
two steps:

(i) Firstly, plan the orientation by using Eq. (7) and the
procedure in this paper to calculate the input (α1, α2, α3)
of the three limbs;

(ii) Secondly, consider the position by Eq. (8) to give the
other three actuation (l1, l2, l3) of the three limbs.

Thus it is much easier in control and trajectory planning of
this new parallel mechanism comparing with the traditional
Stewart platforms while their orientation and position are
usually coupled and much more complex.

6. Conclusions

This paper presents the design of a CCC limb and a new
3CCC parallel mechanism. The screw analysis shows that

this new limb does not constrain the moving platform and
the 3CCC parallel mechanism has 6-DOF. The forward
displacement analysis of a new 6-DOF 3CCC parallel
mechanism, which has three distance constraints and three
angle constraints between three pairs of lines in the base
and platform. The forward positional equations are derived
and the position and orientation are proved decoupled while
both are of eighth order. The orientation is solved by
reducing three angle constraint equations to a single eighth-
order polynomial equation from a constructed 5 × 5 Dixon’s
matrix and the position is solved linearly. Two examples
of application are reported which prove the efficiency of
the process. The result of the 3CCC parallel mechanism is
much easier than the general Stewart–Gough platform while
they have the same mobility and the feature of decoupled
orientation and position is also an advantage in trajectory
planning. The workspace analysis proves special constant-
orientation workspace and the traditional Stewart parallel
mechanisms do not have this property. As the cylindrical
joint is stiffer than the traditional spherical joint, the new
design shown in this paper may be a better choice for the
industry applications than the general Stewart ones when a
full-DOF parallel mechanism is needed.
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