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Standards for Modest Bayesian Credences
Jessi Cisewski, Joseph B. Kadane, Mark J. Schervish,

Teddy Seidenfeld, and Rafael Stern*

Gordon Belot argues that Bayesian theory is epistemologically immodest. In response,
we show that the topological conditions that underpin his criticisms of asymptotic Bayes-
ian conditioning are self-defeating. They require extreme a priori credences regarding,
for example, the limiting behavior of observed relative frequencies. We offer a different
explication of Bayesian modesty using a goal of consensus: rival scientific opinions
should be responsive to new facts as a way to resolve their disputes. Also we address
Adam Elga’s rebuttal to Belot’s analysis, which focuses attention on the role that the as-
sumption of countable additivity plays in Belot’s criticisms.
1. Introduction. Consider the following compound result about asymp-
totic statistical inference. A community of Bayesian investigators who begin
an investigation with conflicting opinions about a common family of statis-
tical hypotheses use shared evidence to achieve a consensus about which hy-
pothesis is the true one. Specifically, suppose the investigators agree on a
partition of statistical hypotheses and share observations of an increasing se-
quence of random samples with respect to whichever is the true statistical
hypothesis from this partition.1 Then, under various combinations of formal
conditions that we review in this essay, ex ante (i.e., before accepting the
new evidence) it is practically certain that each of the investigators’ condi-
tional probabilities approach 1 for the one true hypothesis in the partition.

The result is compound: individual investigators achieve asymptotic cer-
tainty about the unknown, true statistical hypothesis. Second, the shared ev-
*To contact the authors, please write to: Teddy Seidenfeld, Departments of Philosophy
and Statistics, Carnegie Mellon University; e-mail: teddy@stat.cmu.edu.

1. LetH be a (simple) statistical hypothesis for the random variable X, i.e., where the con-
ditional probability distribution P(X jH) is well defined. Given H, a random sample of
size n from this distribution, {X1, ..., Xn} has a joint distribution that is identically, inde-
pendently distributed (iid) with respect to P(X jH) : P(X1,:::, XnjH) 5

Qn
i51 P(XijH).
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idence leads to a consensus among the different investigator’s individual
degrees of belief. The initial disagreements, the disparate initial credences
about different hypotheses, are resolved with increasing shared evidence.
Stated in more familiar Bayesian terms, it is practically certain that the like-
lihood function based on the shared statistical evidence swamps differences
in initial prior credences to produce a consensus among posterior credences.

The strategy to use asymptotics of Bayesian inference to defend against
charges of excessive subjectivity is highlighted in the seminal work of Sav-
age (1954, secs. 3.6 and 4.6) and Edwards, Lindman, and Savage (1963).
Savage’s (1954) results apply to a finite set of investigators who hold non-
extreme views over a common finite partition of statistical hypotheses.2 He
establishes that—using a (finitely additive) weak law of large numbers—given
increasing statistical evidence from a sequence of random samples, with prob-
ability approaching 1, different nonextreme personalists’ conditional probabil-
ities become evermore concentrated on the same one true statistical hypothesis
from among a finite partition of rival statistical hypotheses.3 To repeat, the re-
sult is compound. It addresses both issues of certainty and consensus among
finitely many investigators over a finite partition of statistical hypotheses, as-
suming they share an increasing sequence of observations from random sam-
pling.4

Savage offers these findings as a partial defense against the accusation,
voiced by frequentist statisticians of the time, that the theory of (Bayesian)
personalist statistics is fraught with subjectivism and cannot serve the meth-
odological needs of the scientific community, where objectivity is required.
2. Say that an investigator with degree of belief represented by a probability P(�) holds a
nonextreme opinion about an event E if 0 < P(E) < 1.

3. Savage’s (1954) axiomatic theory of preference, based on postulates P1–P7, is about
an idealized Bayesian agent’s static preference relation over pairs of acts—preferences
at one time in the idealized agent’s life. The theory of personal probability and condi-
tional probability that follows from P1–P7 is about an idealized agent’s epistemic state
at that one time: her degrees of belief and conditional degrees of belief at that one time.
More familiar in the Bayesian literature is a dynamic Bayesian rule where conditional
probability models the idealized agent’s changing beliefs over time, when new evidence
is accepted. For details on differences between the static and dynamic use of conditional
probability, see Levi (1980, sec. 4.3).

4. We illustrate the weak and strong laws of large numbers for iid Bernoulli trials. Let X
be a Bernoulli variable with possible values {0, 1}, where P(X 5 1) 5 p, for some 0 ≤
p ≤ 1. Let Xi (i 5 1, 2,...) be a denumerable sequence of Bernoulli variables, with a com-
mon parameter P(Xi 5 1) 5 p and where trials are independent. Independence is ex-
pressed as follows. For each n 5 1, 2,..., let Sn 5 on

i51Xn. Then P(X1 5 x1, :::, Xn 5
xn) 5 pSn � (1 2 p)(n2Sn). The weak law of large numbers for iid Bernoulli trials asserts
that for each ε > 0, limn →∞P(jSn=n 2 pj > ε) 5 0. The strong law of large numbers as-
serts that P(limn →∞Sn=n 5 p) 5 1. If P is countably additive, the strong-law version
entails the weak-law version.
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The central theme in Savage’s response is to understand ‘objectivity’ in terms
of shared agreements about the truth, particularly when the shared agreements
arise from shared statistical evidence. In summary, Savage provides sufficient
conditions for when Bayesian methodology makes it ex ante almost certain
that shared evidence secures this kind of objectivity for a well-defined com-
munity of investigators.

Savage (1954, 50) notes that his result about asymptotic certainty can be
extended in several ways, by adapting the central limit theorem, the strong
law of large numbers, and the law of the iterated logarithm to sequences of
conditional probabilities generated by an increasing sequenceof randomsam-
ples. The last two of these laws require stronger assumptions than are needed
for the finitely additive weak-law convergence result that Savage presents.
Specifically, these stronger results require the assumption that (conditional)
probabilities are countably additive.

Savage’s twin results have been strengthened also to include shared evi-
dence from nonrandom samples. Consider an uncountably infinite probabil-
ity space generated by increasing finite sequences of observable random var-
iables, not necessarily forming a random sample with respect to a statistical
hypothesis of interest. Rather than requiring that different agents hold non-
extreme views about all possible events in the space of observables, which is
mathematically impossible with real-valued probabilities once the space is
uncountable, instead require that they agree with each other about which
events in this uncountably infinite space of observables have probability 0.
They share in a family of mutually absolutely continuous probability distri-
butions. If the agents’ personal probabilities over these infinite spaces also are
countably additive, then strong-law convergence theorems yield strength-
ened results about asymptotic consensus (see, e.g., Blackwell and Dubins
1962) and also about asymptotic certainty for events defined in the space
of sequences of increasing shared evidence. We discuss several of these re-
sults in section 4. There we use considerations both of certainty and consen-
sus to explicate epistemic modesty within a Bayesian framework that con-
trasts with a critical assessment of Bayesian theory offered by Belot (2013),
whose work we next consider.

2. Orgulity as Identified by Comparing Meager Sets versus Null Sets.
In a 2013 paper in this Journal, critical about the methodological signifi-
cance of some of the strengthened versions of Savage’s convergence result
for asymptotic certainty, Belot arrives at a harsh conclusion: “The truth con-
cerning Bayesian convergence-to-the-truth results is significantly worse than
has been generally allowed—they constitute a real liability for Bayesianism
by forbidding a reasonable epistemological modesty” (2013, 502). Below,
we argue that this verdict is misguided. The criteria for reasonable epistemic
modesty that we understand underpin Belot’s analysis are self-defeating;
86/694836 Published online by Cambridge University Press

https://doi.org/10.1086/694836


56 J. CISEWSKI ET AL.

https://doi.org/10.1086/69483
hence, his argument is not compelling. When the criteria that we attribute to
Belot are satisfied, they induce unreasonable epistemic apriorism regarding,
for example, how sequences of observed relative frequencies behave.

What makes a (coherent) Bayesian credal state overconfident and lacking
in epistemological modesty? Does the Bayesian position generally forbid “a
reasonable epistemological modesty,” as Belot intimates? These questions
are both interesting and imprecise. There is no doubting that the standard of
mere Bayesian coherence for a credal state, as formalized in de Finetti’s
(1937/1964) theory, falls short of characterizing the set of reasonable credal
states. To use an old and tired example, a person who thinks each morning
that it is highly probable that the world ends later that afternoon does not
thereby violate the technical norms of coherence.

In order to identify a brand of unreasonableness captured in overconfi-
dent, epistemologically immodest credal states, Belot supplements Bayesian
coherence with a topological standard for respecting what he calls a typical
event: He defines a typical event as a topologically large event. When a co-
herent agent assigns probability 0 to a topologically large set, specifically
when a probability null set is comeager, Belot thinks that is a warning sign
of epistemological immodesty.5 Such a Bayesian agent is practically certain
that the topologically typical event does not occur. And then Bayesian con-
ditioning (almost surely) preserves that certainty in the face of new evidence.
So, the Bayesian agent is not open-minded because, in dismissing as prob-
abilistically negligible a topologically typical event E, (almost surely) she is
aware ex ante that Bayesian conditioning precludes learning that the typical
event E occurs.

We understand Belot’s criticism (2013, sec. 4) to be that Bayesian
convergence-to-the-truth results about hypotheses that are formulated in
terms of sets of observable sequences fail this concern about typical events.
The strengthened convergence results allow the Bayesian agent to dismiss
(ex ante) a probabilistically negligible set of sequences of observations where
the convergence to the truth fails. This set has “prior” probability 0. Except,
Belot complains, that failure set may be comeager in the usual topology for
the sequences of observables. Hence, the failure set may be a typical event in
the space of observables, about which a modest investigator should keep an
open mind. But, instead, Bayes updating (almost surely) ignores these typical
events by continuing to assign to them probability 0, even as the evidence
grows. Thus, the strengthened asymptotic certainty results that Belot criticizes
do not conform to the topological standards of epistemic modesty in the sense
of modesty that we understand he advocates.
5. A topologically meager set is one that is a denumerable union of nowhere dense sets.
A comeager set, or a residual set, is the complement of a meager set.
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Although he does not explicitly formulate criteria for immodesty, on the
basis of the examples and analysis he offers, we understand Belot’s primary
requirements to be these two:6
6. A
the sp
do. H
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in ter
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space
space
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Topological Condition 1: Do not assign probability 1 to a meager set of
observables.
Also, we find that Belot argues for a more demanding standard,7
Topological Condition 2:Assign probability 0 to each hypothesis that is a
meager set in the space of sequences of observables.
Ordinary statistical models violate topological condition 1 by their uncondi-
tional probabilities, independent of whether learning is by Bayesian updating.
Already, condition 1 is inconsistent with the strong laws of large numbers,
including the ergodic theorem, which are asymptotic results for uncondi-
tional probabilities (see Oxtoby 1980, 85).

Here we show that topological condition 2 entails a radical probabilistic
apriorism toward observed relative frequencies that has little to dowith ques-
tions about Bayesian overconfidence. In particular, this topological standard
requires that with probability 1, relative frequencies for an arbitrary sequence
of (logically independent) events oscillate maximally. From a Bayesian point
of view, almost surely new evidence leaves this extreme epistemic attitude
wholly unmodified. A Bayesian agent whose credal state conforms to condi-
tion 2 knows ex ante that she is practically certain never to change her mind
that the relative frequencies for a sequence of events oscillate maximally. In
this sense, we find that conditions 1 and 2 are self-defeating through a lack of
humility. They promote excessive apriorism with respect to ordinary proper-
ties of limiting frequencies.

The Bayesian convergence-to-the-truth results that are the subject of Belot’s
complaints are formulated as probability strong laws that hold almost surely
or almost everywhere. In order to make clear why we think Belot’s verdict is
helpful referee suggests that Belot might instead restrict topological condition 1 to
ace of chance hypotheses rather than extending it to the space of observables as we
owever, Belot’s (2013, sec. 4) criticism of Bayesian methodology depends on ap-
g topological standards for a “typical event” to probabilities over hypotheses defined
ms of sequences of observables. There are no chance hypotheses in those cases.

lot (2013, 488), remark 2, notes that when R is a meager element of a measurable
hQ, Bi then the set of probabilities that assign R probability 0 is comeager in the
of probability distributions on the same measurable space hQ, Bi. This points to
we label as topological condition 2. It is a higher-order application of Belot’s idea
topologically typical set (i.e., a comeager set) should be reflected with probability
r condition 2, that reasoning is applied to typical sets of probabilities.
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mistaken thinking these results about convergence to the truth are a liability
for Bayesian theory, revisit the familiar instance of the strong law of large
numbers, as reported in footnote 4.

Let hQ, B, Pi be the countably additive measure space generated by all
finite sequences of repeated, probabilistically independent (iid) flips of a
“fair” coin. Let 1 denote a “heads” outcome and 0 a “tails” outcome for each
flip. Then a point x of Q is a denumerable sequence of zeroes and ones, x 5
h x1, x2, ::: i, with each xn ∈ f0, 1g for n 5 1, 2, .... Let Xn(x) 5 xn designate
the random variable corresponding to the outcome of the nth flip of the fair
coin. The Borel j-algebra B is generated by rectangular events, those deter-
mined by specifying values for finitely many coordinates in Q. The countably
additive iid product fair-coin probability P is determined by

P Xn 5 1ð Þ 5 1=2 n 5 1, 2, :::ð Þ,

and where each finite sequence of length n is equally probable,

P X1 5 x1,:::, Xn 5 xnð Þ 5 22n:

LetL1/2 be the set of infinite sequences of 0s and 1swith limiting frequency
1/2 for each of the two digits: a set belonging toB. Specifically, let Sn 5 on

i51Xn.
Then L1=2 5 fx : limn→∞ Sn=n 5 1=2g. The strong law of large numbers as-
serts that P(L1=2) 5 1. What is excused with the strong law, what is assigned
probability 0, is the null set (N 5 ½L1=2�c) consisting of the complement to
L1/2 among all denumerable sequences of 0s and 1s.

The null set N is large, both in cardinality and in category under the prod-
uct topology for 2q. It is a set with cardinality equal to the cardinality of its
complement, the continuum.8 When 2q is equipped with the infinite product
of the discrete topology on {0, 1},9 then the null set N is topologically large.
Set N is comeager (Oxtoby 1980, 85).10 That is, the set L1/2 is meager and so
8. For each 0 ≤ y ≤ 1, with y ≠ 1=2, N contains at least one sequence with limiting rel-
ative frequency y, and these are pairwise different sequences for different values of y.

9. This product topology is homeomorphic to the Cantor Space.

10. Oxtoby (1980, 99) sketches the proof of this claim. The claim follows from an ele-
gant application of the Banach-Mazur Game. Belot’s (2013, 498) remark 5, n. 41, adapts
Oxtoby’s argument, which we paraphrase as follows: Consider a point x in Cantor Space.
A prior P is ‘open minded’ with respect to the hypothesis x provided that, given any finite
initial segment of x, (x1, ..., xm), there is a finite continuation (x1, ..., xm, xm11, :::, xn) where
P(fx)j (x1, :::, xn)) > :50, and there exists some other finite continuation of (x1, ..., xm),
(xm11, :::, xn0 ) where P(fx)j(x1, :::, xn0 )) < :50. Say that hypothesis x flummoxes prior P pro-
vided that, for infinitely many values of n, P(fxgj(x1, :::, xn)) > :50 and for infinitelymany
values of n, P(fxgj(x1, :::, xn)) < :50. Then, the set of sequences in Cantor Space (i.e., the
set of hypotheses) that flummoxes an open minded P is comeager in the infinite product
topology on Cantor Space. What Belot observes is a special case of proposition 1, which
we introduce and discuss next.
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is judged topologically “small,” or atypical. By condition 1, a Bayesian who
adopts the fair-coin model for her credences is epistemologically immodest
with respect to denumerable sequences of possible coin flips: the space of
sequences of observations that drive the asymptotic certainty result.

This strong-law counterexample to condition 1 should come as no surprise
in the light of the following result:
11. O
satisfi
nality
MT,
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Oxtoby (1980, theorem 1.6): Each nonempty interval on the real line may
be partitioned into two sets, {N, M}, where N is a Lebesgue measure null
set and its complement M 5 N c is a meager set.
Oxtoby generalizes this result with his theorem 16.5.11 In his illustration of
theorem 16.5 using the strong law of large numbers, the binary partition {N,
L1/2} displays the direct conflict between the measure theoretic and topolog-
ical senses of small. Under the fair-coin model, N has probability 0, and L1/2

is a meager set in the product topology of the discrete topology on {0,1}. The
tension between the two senses of small is not over some esoteric binary par-
tition of the space of binary sequences but applies to the event that the se-
quence of observed outcomes has a limiting frequency 1/2.

We exemplify the general conflict encapsulated in Oxtoby’s theorem 16.5
with the following claim, which we use to criticize condition 2. Consider the
space 2q, with points x 5 h x1, x2, ::: i of denumerable sequences of zeroes
and ones, equippedwith the infinite product of the discrete topology on {0,1}.
Define the set of sequences Lh0,1i consisting of those points x whose relative
frequency does not oscillate maximally, that is, where

lim info
n

j51

xj
n
> 0 or lim supo

n

j51

xj
n
< 1 :

The complement to Lh0,1i, OM 5 ½Lh 0,1 i�c, is the set of binary sequences
whose observed relative frequencies oscillate maximally.
Proposition 1. Lh0,1i is a meager set; that is, OM is a comeager set.12
TheoremA1 of the appendix establishes that sequences of logically indepen-
dent random variables that oscillate maximally are comeager with respect
xtoby’s (1980, 64) theorem 16.5 establishes that if the measure space hX, B, Pi
es that P is nonatomic, X has a metrizable topology MT with a base whose cardi-
is less than the first weakly inaccessible, and the j-field B includes the Borel sets of
then X can be partitioned into a set of P-measure 0 and a meager set.

his proposition is established by Calude and Zamfirescu (1999) using an application
toby’s (1957) theorem for the Banach-Mazur Game. In the appendix, we establish
ore general theorem A1 with a direct argument, which extends beyond Oxtoby’s
) theorem for the Banach-Mazur Game and which has proposition 1 as a corollary.

36 Published online by Cambridge University Press

https://doi.org/10.1086/694836


60 J. CISEWSKI ET AL.

https://doi.org/10.1086/69483
to infinite product topologies on the sequence of random variables. Proposi-
tion 1 is a corollary to theoremA1 applied to binary sequences, that is, where
there are only two categories for observables.

What proposition 1 establishes is that only extreme probability models of
relative frequencies satisfy topological condition 2. That is, consider a mea-
sure space h2q,B, Pi, whereB includes the Borel sets from 2q and where 2q is
equipped with the infinite product of the discrete topology as above. Each
probability with P(Lh 0,1 i) > 0 produces a nonnull set that is meager.

Unless a probability model P for a sequence of relative frequencies assigns
probability 1 to the set of sequences of observed frequencies that oscillatemax-
imally, then P assigns positive probability to a meager set of sequences, in
violation of condition 2. Evidently, the standard for epistemological modesty
formalized in topological condition 2, which requires meager sets of relevant
events to be assigned probability 0, itself leads to probabilistic orgulity be-
cause it requires an unreasonable a priori opinion about how observed rel-
ative frequencies behave. Let P satisfy condition 2. Given evidence of a
P-non-null observation o of observed relative frequencies, the resulting con-
ditional probability leaves this extreme a priori opinion unchanged: P(OMj
observation o) 5 1.

Familiar Bayesian models also violate the weaker topological condition 1.
Consider an exchangeable probability model over 2q. Then, by de Finetti’s
(1937/1964) theorem, each exchangeable probability assigns probability 1
to the set L of sequences with well-defined limiting frequencies for 0s and
1s. That is, then Pfx : lim  infon

j51xj=n5 lim sup on
j51xj=ng51. But L is a

subset of Lh0,1i; hence, L is a meager set.
In summary, our understanding is that Belot applies topological condi-

tions 1 and 2 in order to identify an epistemically immodest coherent credal
state. We find that each of these two conditions is excessively restrictive and
is self-defeating as a criterion for epistemic immodesty. The credences that
satisfy these conditions with respect to the sets of sequences of observables
that ground the almost-sure Bayesian convergence results embed extreme a
priorism about, for example, the limiting behavior of observed relative fre-
quencies.

In section 4, we argue that a better account of Bayesian epistemological
modesty/immodesty uses interpersonal standards for asymptotic consensus
within a community of investigators about the set of certainties that arise
from an idealized sequence of observations. Belot’s approach for identifying
epistemic immodesty applies topological conditions of adequacy to a stand-
alone credence function and avoids issues of consensus. In contrast, we sup-
plement coherence with criteria involving asymptotic consensus among a
community of investigators about which certainties they might acquire based
on a sequence of shared evidence.
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3. But What If Probability Is Merely Finitely Additive and Not Count-
ably Additive?. Elga (2016) responds to Belot’s criticism by focusing on
the premise of countable additivity for probability, which is needed for the
strong-law versions of Savage’s convergence result. The subjective theory of
probability, especially as promoted by Savage (1954), Dubins and Savage
(1965), and de Finetti (1974), does not mandate countable additivity for cre-
dences. This added generality is of importance for contemporary Bayesian
practice, as argued in Kadane, Schervish, and Seidenfeld (1986).

As we understand Elga’s response to Belot’s criticism, it is based on an
example. The example purportedly shows how, using afinitely but not count-
ably additive probability P, Belot’s standard for being an open-minded Baye-
sian credal state may be satisfied without also being burdened with the im-
modesty of treating a comeager failure set as a P-null set, as follows when
probability is countably additive. Elga argues that, in his example, the asso-
ciated set of data sequences where the convergence to the truth result fails
with the credal state P has positive P-probability, contrary to what happens
in the countably additive case. Elga asserts that in his example, the agent’s
finitely additive conditional probabilities do not (almost surely) converge to
the true statistical hypothesis about limiting relative frequencies; hence,
such a Bayesian agent escapes Belot’s criticism as this agent is epistemolog-
ically humble about becoming certain of the true limiting relative frequency
in the observed sequence.

First and foremost, we dispute Elga’s analysis of the specific example he
offers. We argue that, contrary to Elga’s assessment, his merely finitely ad-
ditive probability model P satisfies a finitely additive convergence-to-the-
truth theorem that is needed to defend Bayesian learning. The Bayesian agent
of Elga’s example is not humble about whether (with increasing probabil-
ity) she will achieve asymptotic certainty for the limiting frequency hypoth-
esis in question: at each stage of her investigation, looking forward, she re-
mains practically certain that her posterior probability will converge to the
true limiting frequency hypothesis.

Second, the credal state P in Elga’s example fails what we call Belot’s
condition 1. State P assigns probability 1 to a meager set of sequences of ob-
servations. Hence, although Elga argues that P is modest with respect to one
limiting frequency hypothesis, according to condition 1 P is immodest for a
different but related hypothesis about the existence of well-defined limiting
frequencies.

Nonetheless, we agree with Elga (and with others who have argued the
same point previously) that finitely but not countably additive probability
models allow failures of the strengthened convergence results. We illustrate
this point using a finitely additive probability, P0, that is a simple variant of
Elga’s model P. But in our judgment, this phenomenon—where a finitely ad-
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ditive model P0 fails the strengthened convergence-to-the-truth result—does
not provide a satisfactory rebuttal to Belot’s criticism. Belot’s criticism,
which is directed at countably additive credences, is that they display Bayes-
ian orgulity. To argue that, on the contrary, the finitely additive probability P0

assigns positive probability to a set of sequences where convergence to the
truth fails does not show that such a merely finitely additive probability is
reasonable.

According to the rival standards for epistemic modesty that we offer in
section 4, such a finitely additive probability P0 is unreasonable on two counts
simultaneously: the Bayesian agent with credence P0 knows in advance that
each data sequence that might be observed will fail to induce certainty, both
in the short term and in the limit. Also, P0 fails the test for reasonableness
based on consensus. That is, the agent with credences fixed by P0 does not
reach consensus with other members of a community of investigators who
use countably additive credences and agree with P0 about which (finite) se-
quences of observables are probability-0 events. But the others reach con-
sensus among themselves.

For a detailed discussion of Elga’s example, begin with a review of some
relevant mathematical considerations. When probability P is defined for a
measurable space, the principle of countable additivity has an equivalent form
as a principle of Continuity. Let Ai(i 5 1, :::) be a monotone sequence of
(measurable) events, where limi Ai 5 A is also a (measurable) event.
13. A
so to
straig

6 Publ
Continuity P(A) 5 limi P(Ai).
When probabilities satisfy Continuity, the probabilities for a class C of events
that form a field also determine uniquely the probabilities for the smallest j-
field generated by C (see Halmos 1950, theorem 13A). And if an eventH be-
longs to that j-field, then H can be approximated in probability by events
from the field C. Specifically, for each ε > 0 there exists a Ce ∈ C such that
P(½H 2 Cε� [ ½Cε 2 H �) < ε (see Halmos 1950, theorem 13D). This result
has important consequences when H is a tail-field event in 2q.13

Consider the countably additive probability P for iid flips of a fair coin
and, for example, the tail-field event L1/2 in 2q. Then, L1/2 can be approximated
ever more precisely in probability by a sequence of finite-dimensional events
{En : n 5 1, :::}, each of which is determined by a finite number of coordi-
nates from the set of denumerable binary sequences, 2q. Choose a sequence,
n event T belongs to the tail field of 2q provided that, when a point x belongs to T,
o does each point x0 that differs in only finitely many coordinates from x. It is
htforward to verify that the set of tail-field events of 2q form a field.
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{εn > 0 : n5 1, :::}, with limn εn 5 0.That is, for each n5 1, ..., P(½L1=22En�
[ ½En2L1=2�) < εn, and each En depends on only finitely many coordinates
from 2q. With P the product measure for iid fair-coin flips and L1/2 the tail-
field event that is to be approximated, then the finite dimensional events En

may be chosen as the set of sequences with relative frequency of ones suffi-
ciently close to 1/2 through the first n trials. However, when Continuity fails,
and P is merely finitely additive but not countably additive, then the probabil-
ities overCmay fail to define the probabilities over the smallest j-field gener-
ated by C.

For example, pick two values 0 ≤ p ≠ q ≤ 1. A coherent, merely finitely
additive probability Pp,q on 2q may assign values to each finite-dimensional
event according to iid trials with constant Bernoulli probability p but assign
probabilities to the tail-field events according to iid trials with constant Ber-
noulli probability q. Then, the strong law of large numbers does not entail the
weak law of large numbers with the same values. While finite sequences of
zeroes and ones follow an iid Bernoulli-p product law, with Pp,q probability 1,
the tail event of the limiting relative frequency for ones is q. This phenomenon
is at the heart of Elga’s example.

Let P be a merely finitely additive probability on the Borel j-algebra of
2q where P(�) 5 ½Pp,q(�) 1 Pq,p(�)�=2. Elga considers the case with p 5 1=10
and q 5 9=10. This finitely additive probability assigns probability 1/2 to
the tail-field event L1/10 (the set of sequences with limiting frequency 1/10)
and probability 1/2 to the tail-field event L9/10 (the set of sequences with lim-
iting frequency 9/10). For x ∈ 2q, let IL1/10(x) be the indicator function for
the event L1/10 and IL9/10(x) the indicator function for the event L9/10. So,
Pfx : I 1=10L (x) 1 I 9=10L (x) 5 1g 5 1.Thus,wesee fromproposition1,Elga’sex-
ample stands in violation of topological condition 1, since with P-probability 1
the sequence of coin flips has a convergent limiting relative frequency. This
forms a meager set among the set of all binary sequences.

Elga asserts that the conditional probabilities associated with the (merely)
finitely additive P-distribution fail the almost-sure strong-law convergence
result. Here is the argument he offers for that conclusion. Let x be an ele-
ment of the set L1/10, a sequence with limiting relative frequency 1/10, which
is practically certain to occur according to the P-distribution on sequences
if and only if the P9/10, 1/10 coin is flipped. (Otherwise, with P-probability 1,
a sequence x almost surely has a limiting relative frequency 9/10 since it is
then following a P1/10, 9/10 law.) Then, for each ε > 0 there exists integer nε, such
that for each n > nε, the observed sequence {X1, ..., Xn} has a relative fre-
quency of ones close enough to 1/10 so that the posterior probability satisfies
P(L9=10jX1, :::, Xn) > 1 2 ε.

This conditional probability assigns high probability to the event L9/10 that
the limiting frequency of the sequence is 9/10 even though the sequence that
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generates the observations in fact has limiting frequency 1/10. In this sense,
the sequence of conditional probabilities generated by x (an element of the
set L1/10) converge to the wrong tail-field event, L9/10, even though the se-
quence that generates the observations has limiting frequency 1/10. Likewise,
the convergence is to the wrong tail-field event, L1/10, when the sequence is
generated by an element of the set L9/10. Elga concludes that conditional prob-
abilities from this merely finitely additive P-model do not satisfy the (almost-
sure) strong-law convergence-to-the-truth results. Then, regarding either tail-field
event L1/10 or L9/10, the agent with conditional credences fixed by probability P
is both open-minded andmodest.14 But this analysis is misleading regardingcon-
vergence to the truth because it conditions on P-null events, as we now explain.

Define the denumerable set of countably additive probabilities {Pn} on 2q

so that Pn is the iid product of a Bernoulli-p probability for the first n coor-
dinates and is the iid product of a Bernoulli-q probability for all coordinates
beginning with the n 1 1 position. Each Pn is a countably additive probabil-
ity on the measurable space h2q, Bi. Distribution Pn has a change point after
the nth trial. Let the change point, N 5 n, be chosen according to a purely
finitely additive probability, with P(N 5 n) 5 0, n 5 1, 2, ... . Finally, let P
be the induced (marginal) unconditional probability on the Borel j-algebra of
sequences of coin flips, h2q, Bi.

As required for Elga’s construction, this finitely additive probability P be-
haves as Pp,q. Its distribution is the iid product of a Bernoulli-p distribution
on finite dimensional sets and is the iid product of a Bernoulli-q distribution
on the tail-field events.15 Probability P satisfies the weak law of large num-
bers over finite sequences with Bernoulli parameter p and satisfies the strong
law of large numbers on the tail field with Bernoulli parameter q. Hence, the
strong law does not entail the weak law with the same parameter value.
14. Regarding each of the two tail-field hypotheses, L1/10 and L9/10, the P-credences are
open-minded since P(L1=10jX1, :::, Xn) may cross the 0.5 threshold, in either direction, as
a function of finitely many future observations, {Xn11, :::, Xn1k}. The P-credences are
modest, since ex ante, given that the infinite sequence x belongs to L1/10 (or to L9/10) the
agent assigns a probability greater than 0 to the respective failure set of sequences.

15. Elga follows Rao and Rao (1983, 39–40) using the technique of Banach limits to
establish the existence of a finitely additive probability corresponding to the Pp,q distri-
bution on repeated flips of the coin, based on the set of countably additive probabilities
{Pn}. The method we use here, where the change point N is incorporated explicitly as a
random variable in the finitely additive joint probability model, generates all the Pp,q dis-
tributions over sequences of repeated flips of a coin as may be obtained with Banach limits.
However, in addition it provides the added machinery needed to assess the agent’s con-
ditional credences P(N jX1, :::, Xn), which reflects also the agent’s opinion about whether
the sequence of coin flips passed the change point. Elga’s reasoning ignores the fact that,
for each n 5 1,..., P(N > njX1, :::, Xn) 5 1, which is what the alternative analysis makes
salient.
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Given an observed history, hj 5 fX1 5 x1, X2 5 x2, :::, Xj 5 xjg, the
Bayesian agent in Elga’s example assigns a purely finitely additive condi-
tional probability to the distribution of the change point (N) so that, with
conditional probability 1, the change point is arbitrarily far off in the future.
For each finite history hj and for each k 5 1, 2, ..., P(N > kjhj) 5 1. An agent
who uses Elga’s finitely additive P-model precludes learning about the change
point variable, N. That agent is closed-minded in the relevant sense that, no
matter what she observes, she is certain that the change point lies in the yet-to-
be-observed future.

So, whenever the agent observes a finite history of coin flips with ob-
served relative frequency of heads near to 9/10, she has high posterior prob-
ability for the tail-field event L1/10. Likewise, whenever the agent sees a finite
history of coin flips with observed relative frequency of heads near to 1/10,
she has high posterior probability for the tail-field event L9/10. And since this
agent is always sure, given each finite history hj, that the change point (N) is
in the distant future of the sequence of coin flips, she always assigns arbitrarily
high posterior probability to correctly identifying the tail-field event between
L1/10 and L9/10.

For example, this agent assigns probability near 1 to observing indefinitely
long finite histories that have observed relative frequencies that linger near
9/10 exactly when the sequence x has a limiting relative frequency of 1/10.
This finitely additive credal state satisfies the conclusion of the finitely addi-
tive almost-sure convergence-to-the-truth result: almost surely, given the ob-
served histories from a sequence x, the conditional probabilities converge to
the correct indicator for the tail behavior of the relative frequencies in x.

Elga’s analysis to the contrary is based on having the agent consider con-
ditional probabilities, P(L1=10jhn) at histories hn that run beyond the change
point. But with Elga’s finitely additive probability P-model, the agent’s cre-
dence is 0 of ever witnessing such a history. That is, Elga’s argument, whose
conclusion is that the agent’s conditional probabilities converge to the wrong
indicator function, requires the agent to condition on an event of P-probability 0
(i.e., that she has made finitely many observations that go past the change
point in the sequence). But, at each finite stage in the history of observations,
this event is part of a P-null event where a failure of the (finitely additive)
almost sure convergence to the truth is excused.Where this case differs from
the countably additive one is that with the merely finitely additive probabil-
ity P, the countable union of all these infinitely many P-null events (namely,
that that change point has been reached by the kth observation, k 5 1, 2, ...),
is a certain event—since the change point is certain to arrive eventually.

Apart from this peculiar merely finitely additive credal attitude that pre-
cludes learning about the change point N, there is something else unsettling
about this Bayesian agent’s finitely additivemodel for coin flips. Perhapswhat
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follows makes clearer what that problem is. Modify Elga’s model to the fi-
nitely additive probability P0 so that

P0 �ð Þ 5 P5=10,1=10 �ð Þ 1 P5=10,9=10 �ð Þ
� �

=2,

with the change point N chosen, just as before, by a purely finitely additive
probability, P(N 5 n) 5 0 for n 5 1, 2, .... Then the strong-law result applies
to tail-field events, and, P0-almost surely, the limiting frequency for heads is
either 1/10 or 9/10 also, just as in Elga’s P-model. However, the two finitely
additive coins, P5/10, 1/10 and P5/10, 9/10, assign the same probability to each finite
history of coin flips. Letting hn denote a specific history of length n,

P5=10,1=10 hnð Þ 5 P5=10,9=10 hnð Þ 5 22n :

But then

P0 L1=10jhn

� �
5 P0 L9=10jhn

� �
5 1=2 5 P0 L1=10

� �
5 P0 L9=10

� �
,

for each possible history. That is, contrary to the strengthened convergence-to-
the-truth result, in thismodifiedP0-model, the agent is completely certain that her
posterior probability for either of the two tail-field hypotheses, L1/10 or L9/10, is
stationary at the prior value 1/2. Under the growing finite histories from each in-
finite sequenceof coinflips, theposterior probabilitymovesneither toward0nor
toward 1.Within the P0-model, surely there is no convergence to the truth about
these two tail-field events given increasing evidence from coin flipping.16

Evidently, one aspect of what is unsettling about these finitely additive
coin models is that the observed sequence of flips is entirely uninformative
about the change point variable, N. No matter what the observed sequence,
the agent’s posterior distribution forN is her prior distribution forN, which is
a purely finitely additive distribution assigning 0 probability to each possible
integer value for N. It is not merely that this Bayesian agent cannot learn
about the value of N from finite histories. Also, two such agents who have
finitely additive coin models that disagree only on the tail-field parameter
cannot use the shared evidence of the finite histories to induce a consensus
about the tail-field events since they are both certain that their shared evi-
dence has yet to cross the change point. In the next section, we use these
themes about certainty and consensus based on shared evidence to provide
a different answer to Belot’s question about what distinguishes modest from
immodest credal states.
16. The P0-model does not contradict Savage’s (1954) finitely additive weak-law result,
which we reported in sec. 1. That is, the P0-model does not satisfy Savage’s requirement
that the rival statistical hypotheses, P5/10, 1/10(�) and P5/10, 9/10(�), have different likelihood
functions given some P0-non-null data.
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4. On Standards for Epistemic Modesty Using Asymptotic Merging
and Consensus. Peirce (1877) argues that sound methodology needs to de-
fend a proposal for how to resolve interpersonal differences of scientific
opinion. He asserts that the scientific method for resolving such disputes
wins over other rivals (e.g., apriorism or the method of tenacity) by having
the Truth (i.e., observable Reality) win out—by settling debates through an
increasing sequence of observations from well-designed experiments. With
due irony, much of Peirce’s proposal for letting Reality settle the intellectual
dispute is embodied within personalist Bayesian methodology.17 Here, we
review some of those Bayesian resources regarding three aspects of immod-
esty.

One kind of epistemic immodesty is captured in a dogmatic credal state
that is immune to revision from the pressures of new observations. Such a
credal state is closed-minded. And a closely related second kind of immod-
esty is that two rival dogmatic positions cannot find a resolution to their ep-
istemic conflicts through shared observations. They are persistent in their
closed-mindedness. These two suggest that a credal state can be assessed
for epistemic immodesty according to three considerations:

i) how large is the set of conjectures,
ii) how large is the community of rival opinions, and
iii) for which sets of sequences of shared observations

does Bayesian conditionalization offer resolution to interpersonal credal con-
flicts by bringing the different opinions into a consensus regarding the truth.
In other words, qualitative degrees of epistemic immodesty are revealed with
these three considerations, which synthesize criteria of asymptotic consensus
and certainty. We discuss this sense of “immodesty” in the remainder of this
section.

We use as our starting point an important result due to Blackwell and
Dubins (1962) about countable additive probabilities. Let hX, Bi be a mea-
surable Borel product space with the following structure. Consider a denu-
merable sequence of sets X i(i 5 1, :::) each with an associated j-field Bi.
Form the infinite Cartesian product X 5 X 1 � ::: of denumerable sequences
(x1, :::) 5 x ∈ X , where xi ∈ X i. That is, each xi is an atom of its algebra Bi.
In the usual fashion, let the measurable sets in B be the j-field generated by
the measurable rectangles.
17. The irony is, of course, that Peirce objected to conceptualism (i.e., personalist prob-
abilities) because he thought that it inappropriately combined subjective and objective
senses of “probability.” See Peirce (1878).
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Definition: A measurable rectangle (A1 � :::) 5 A ∈ B is one where Ai ∈
Bi and Ai 5 X i for all but finitely many i.
Blackwell and Dubins (1962) consider the idealized setting where two
Bayesian agents have this same measurable space of possibilities, each with
her own countably additive personal probability, creating the two measure
spaces hX,B, P1i and hX,B, P2i. Suppose that P1 and P2 agree on which mea-
surable events have probability 0, and admit (countably additive) predictive
distributions, Pi(�jX 1, :::,X n)(i 5 1, 2), for each finite history of possible ob-
servations.18 In order to index how much these two are in probabilistic dis-
agreement, Blackwell and Dubins adopt the total-variation distance. Define

r P1 �jX 1 5 x1, :::, X n 5 xnð Þ, P2 �jX 1 5 x1, :::, X n 5 xnð Þð Þ

5 supE∈B P1 EjX 1 5 x1, :::,X n 5 xnð Þ 2 P2 EjX 1 5 x1,:::, X n 5 xnð Þj j:

The index r is one way to quantify the degree of consensus between the two
agents who share the same history of observations, (x1, ..., xn). This index
focuses on the greatest differences between the two agents’ conditional prob-
abilities.

Here is the related strong-law result about asymptotic consensus (Black-
well and Dubins 1962, theorem 2):
Blackwell-Dubins Result. For i 5 1, 2, Pi-almost surely,
limn→∞ r(P1(�jX15 x1,:::, Xn 5 xn), P2(�jX1 5 x1, :::, Xn 5 xn)) 5 0.
In words, the two agents are practically certain that with increasing shared
evidence their conditional probabilitieswillmerge, in the very strong sense that
the greatest differences in their conditional opinions over all measurable events
in B will diminish to 0. And they remain practically certain of this future de-
velopment for each (nonnull) observed history. Thus, this result supports a con-
clusion about idealized asymptotic consensus from idealized application of
the scientific method that Peirce asserted he could not prove but onlydefend
as having no equal.19
lackwell and Dubins use the concept of predictive distributions to mean those that
t regular conditional distributions with respect to the subalgebra of rectangular
s. (See Breiman [1968, 77] for a definition of a regular conditional distribution.)
iscussion of countably additive probabilities that do not admit regular conditional
butions, see Seidenfeld, Schervish, and Kadane (2001, 1614, corollary 1).

eirce (1877, sec. 5) writes, “To satisfy our doubts, therefore, it is necessary that a
od should be found by which our beliefs may be determined by nothing human, but
me external permanency—by something upon which our thinking has no effect.
mystics imagine that they have such a method in a private inspiration from on
But that is only a form of the method of tenacity, in which the conception of truth
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Since, for each event in the spaceB, the familiar strong-law convergence-
to-the-truth result applies, separately, to each investigator’s opinion, the added
feature of merging allows a defense against the charge of individual “im-
modesty” by showing that two rival opinions come into agreement about
the truth, almost surely, in the strong sense provided by the r-index. In the
setting of Blackwell and Dubins’s (1962) result, almost surely two such in-
vestigators agree that they can resolve all conflicts in their credal states over
all elements of B, and have their posterior probabilities almost surely con-
centrate on true hypotheses, by sharing increasing finite histories of observa-
tions from a sequence x. Thus, infine Peircean style, they are not open-minded
about the efficacy of the scientific method for creating consensus and cer-
tainty.

Schervish and Seidenfeld (1990, sec. 3) explore several variations on this
theme by enlarging the set of rival credal states in order to consider larger
communities than two investigators and by relaxing the sense of merging
as something public is not yet developed. Our external permanency would not be exter-
nal, in our sense, if it was restricted in its influence to one individual. It must be some-
thing which affects, or might affect, every man. And, though these affections are neces-
sarily as various as are individual conditions, yet the method must be such that the
ultimate conclusion of every man shall be the same. Such is the method of science.
Its fundamental hypothesis, restated in more familiar language, is this: There are Real
things, whose characters are entirely independent of our opinions about them; those Re-
als affect our senses according to regular laws, and, though our sensations are as differ-
ent as are our relations to the objects, yet, by taking advantage of the laws of perception,
we can ascertain by reasoning how things really and truly are; and any man, if he have
sufficient experience and he reason enough about it, will be led to the one True conclu-
sion. The new conception here involved is that of Reality. It may be asked how I know
that there are any Reals. If this hypothesis is the sole support of my method of inquiry,
my method of inquiry must not be used to support my hypothesis. The reply is this: 1. If
investigation cannot be regarded as proving that there are Real things, it at least does not
lead to a contrary conclusion; but the method and the conception on which it is based
remain ever in harmony. No doubts of the method, therefore, necessarily arise from
its practice, as is the case with all the others. 2. The feeling which gives rise to any method
of fixing belief is a dissatisfaction at two repugnant propositions. But here already is a
vague concession that there is some one thing which a proposition should represent. No-
body, therefore, can really doubt that there are Reals, for, if he did, doubt would not be a
source of dissatisfaction. The hypothesis, therefore, is one which every mind admits. So
that the social impulse does not cause men to doubt it. 3. Everybody uses the scientific
method about a great many things, and only ceases to use it when he does not know
how to apply it. 4. Experience of the method has not led us to doubt it, but, on the contrary,
scientific investigation has had the most wonderful triumphs in the way of settling opinion.
These afford the explanation of my not doubting the method or the hypothesis which it
supposes; and not having any doubt, nor believing that anybody else whom I could influ-
ence has, it would be the merest babble for me to say more about it. If there be anybody
with a living doubt upon the subject, let him consider it.”
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(or consensus) that is induced by shared evidence from a common measur-
able space hX, Bi. They show that, depending on how large a set of different
mutually absolutely continuous probabilities is considered, the character of
the asymptotic merging varies. This is where topology plays a useful role in
formalizing “immodesty.”

Here, we summarize three of those results. Let R be the set of rival cre-
dences that conform, pairwise, to the Blackwell-Dubins conditions above. Con-
sider three increasing classes of such communities.

1. If R is a subset of a convex set of rival credences whose extreme
points are compact in the discrete topology, then all of R uniformly
satisfies the Blackwell-Dubins merging result. That is, then merging
in the sense of r occurs simultaneously over all of R.

2. If R is a subset of a convex set of rival credences whose extreme
points are compact in the topology induced by r, then all that is assured
is a weak-law merging. That is, if {Pn, Qn} is an arbitrary sequence of
pairs fromR, and R ∈ R is an arbitrary credence from the set of rivals,
then

r Pn �jX 1, :::,X nð Þ, Qn �jX 1, :::, X nð Þð Þ →R 0 :

3. And if R is a subset of a convex set of rival credences whose extreme
points are compact in the weak-star topology induced by r, then not
even a weak-lawmerging of the kind reported in class 2 is assured.

It is not surprising then, as the community R increases its membership,
the kind of consensus that is assured—the version of community-wide prob-
abilistic merging that results from shared evidence—becomes weaker. So,
one way to assess the epistemological “immodesty” of a credal state formu-
lated with respect to a measurable space hX, Bi is to identify the breadth of
the communityR of rival credal states that admits merging through increas-
ing shared evidence from B. For example, the agent who thinks each morn-
ing that it is highly probable that the world ends later that afternoon has an
immodest attitude because there is only the isolated community of like-minded
pessimists who can reconcile their views with commonplace evidence that is
shared with the rest of us.

When the different opinions do not satisfy the requirement of mutual ab-
solute continuity, the previous results do not apply directly. Instead, we mod-
ify an idea fromLevi (1980, sec. 13.5) so that differentmembers of a community
of investigators modify their individual credences (using convex combinations
of rival credal states) in order to give other views a hearing and, in Peircean
fashion, in order to allow increasing shared evidence to resolve those differ-
ences.
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Let I 5 fi1, :::g serve as a finite or countably infinite index set, and let
R 5 fPi : i ∈ Ig represent a community of investigators, each with her own
countably additive credence function Pi on a common measurable space
hX, Bi. It may be that, pairwise, the elements ofR are not even mutually ab-
solutely continuous. In order to allow new evidence to resolve differences
among the investigators’ credences for elements of B (rather than trying,
e.g., to preserve common judgments of conditional credal independence be-
tween pairs of elements of B), each member of R shifts to a credal state by
taking a mixture of each of the investigators’ credal states: a “linear pooling”
of those states. Specifically, for each i ∈ I , let eai 5 faij : aij > 0, o∞

j51aij 5 1g
serve as a set of weights that investigatori uses to create the credal state
Qi 5 o∞

j51aijPi to replace Pi. It might be that for each i ∈ I , each Qi is self-
centered in the following sense. Let ε > 0. The Qi might be self-centered
in that aii ≥ 1 2 ε. Then, pairwise, the Qi satisfy the assumptions for the
Blackwell-Dubins result despite being self-centered. Depending upon the
size of the community R, using the replacement credal states {Qi} results 1,
2, and 3 obtain.

We conclude this discussion of probabilistic merging with a reminder that
merely finitely additive probability models open the door to reasoning to a
foregone conclusion (Kadane, Schervish, and Seidenfeld 1996), in a differ-
ent sharp contrast with the P0 model above to the almost sure asymptotic
merging and convergence-to-the-truth results associated with countably ad-
ditive probability models. Key to these asymptotic results for countably ad-
ditive probabilities is the Law of Iterated Expectations.

Let X and Y be (bounded) random variables measurable with respect to a
countably additive measure space hQ, B, Pi. With E[X] and E½X jY 5 y� de-
noting, respectively, the expectation of X and the conditional expectation of
X, given the event Y 5 y, then
86/6948
Law of Iterated Expectations E½X � 5 E½E½X jY ��.
As Schervish, Seidenfeld, and Kadane (1984) established, each merely fi-
nitely (and not countably) additive probability defined on a j-field of sets
fails this law even when the variable X is an indicator variable. That is, each
merely finitely additive probability fails to be conglomerable in some denu-
merable partition, here associated with the random quantity Y. Specifically,
with a merely finitely additive probability P, there exists a measurable hy-
pothesis H and denumerable partition of measurable events p 5 fEi : i 5
1, :::g, where

P Hð Þ < inf Ei∈p P H jEið Þ:

Then, contrary to the Law of Iterated Expectations, with expectations E over
all Ei ∈ p,
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P Hð Þ < E P H jEi ∈ p½ �½ � :

Let the random variable Y have a denumerable sample space, Y 5 fy1,
y2, :::g. Associate the event Ei with the outcome Y 5 yi. Then if P is non-
conglomerable for H in the partition generated by Y, in the partition pY, P
fails the Law of Iterated Expectations in pY.

A set of such merely finitely additive probabilities, each of which is non-
conglomerable in the same partition of the shared evidence, can display
reasoning to contrary foregone conclusions both in the short run and as-
ymptotically with increasing shared evidence. Because the investigators’
conditional probabilities for a pair of contrary hypotheses {H1, H2} are non-
conglomerable in the partitions of their increasing shared evidence, each in-
vestigator may become increasingly certain of a different hypothesis as a
function solely of the sample size of their shared evidence, regardless of what
those samples reveal. Moreover, this assured increasing divergence in their
updated opinions is a fact they are aware of ex ante.

The lesson we draw is this: Bayesian agents who use merely finitely ad-
ditive probabilities face a trade-off between the added flexibility in modeling
that comes with relaxing the constraint of countable additivity and the added
restrictions on the kinds of shared evidence necessary to achieve the desir-
able methodological laws about asymptotic consensus and certainty illus-
trated in the countably additive strong laws.

5. Summary. Savage (1954) and Blackwell and Dubins (1962) offer im-
portant results showing that Bayesian methodology uses increasing shared
evidence in order to temper and to resolve interpersonal disagreements about
personal probabilities. We contrast interpersonal standards of asymptotic
consensus about certainties that arise from a sequence of shared evidence
with Belot’s (2013) proposal to use a topological standard of “meagerness”
in order to determine when a credal state is immodest, based on a standalone
assessment of that credal state.

We understand Belot to endorse topological condition 1, which requires
that comeager sets are assigned positive probability. Where a probability
model treats a comeager set as null, that shows the model is immodest be-
cause it dismisses a topological large set as probabilistically negligible. But,
in the light of the fact that the set of sequences whose frequencies oscillate
maximally is comeager, we see that all the familiar probability models vio-
late condition 1. We believe that, also, Belot endorses condition 2, which
requires that a typical set of sequences should receive a typical probability;
that is, a meager set should be assigned probability 0. This topological stan-
dard entails extreme a priori credences about the behavior of observed rela-
tive frequencies. Condition 2mandates that, with probability 1, observed fre-
quencies oscillate maximally in order to avoid being contained in a meager
set. This creates its own kind of dogmatism since (almost surely) the condi-
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tional probability from this model persists in assigning conditional probabil-
ity 1 to the hypothesis that observed frequencies oscillate maximally.

In contrast with Belot’s approach, in section 4 we outline a different strat-
egy for assessing epistemic modesty/immodesty, based on considerations of
both asymptotic certainty and consensus among investigators who share ev-
idence. Belot’s strategy is to impose additional requirements that, in the spirit
of coherence, apply to a standalone credence function. We follow, for exam-
ple, Peirce in requiring that sound scientific methodology provides investiga-
tors with the resources to resolve interpersonal disagreements through shared
evidence. This consideration allows for results about conditions for asymp-
totic consensus among a set of investigators to serve also as a standard for their
epistemic modesty regarding interpersonal disagreements.

As a separate issue, in section 3 we discuss Elga’s (2016) reply to Be-
lot’s analysis. Elga focuses on the assumption of countable additivity in the
strengthened convergence results. His rebuttal to Belot’s analysis uses amerely
finitely additive P probability to illustrate that merely finitely additive condi-
tional probabilities need not satisfy the countably additive asymptotic (strong
law) convergence results. These are the results that Belot argues reveal an im-
modesty in the countably additive Bayesian methodology.

We agree with Elga (as has been argued before) that the asymptotics of
merely finitely additive conditional probabilities are different in kind from
those of countably additive conditional probabilities. But we do not agree
with Elga about which are the relevant asymptotic results in his P-model
for assessing Bayesian learning of limiting frequencies. In addition, the P-
model fails condition 1, which we understand is one of Belot’s standards for
modesty.

As we illustrate in section 3, the conditional probabilities arising from a
different (but related) merely finitely additive probability P0 fail the asymp-
totic certainty and consensus results that follow when either Savage’s or
Blackwell and Dubins’s analysis applies. We argue that the added generality
afforded by merely finitely additive probabilities over countably additive
probabilities carries an extra price if merely finitely additive probabilities
are to be used reasonably. They require more restrictive conditions than do
countably additive probabilities, if the sequence of conditional probabilities
that arise from an increasing sequence of shared evidence is to resolve inter-
personal credal disagreements.
Appendix

In his classic discussion of measure and category, Oxtoby (1980, theorems 1.6
[p. 4] and 16.5 [p. 64]) establishes that, quite generally, a topological space that
also carries a Borel measure can be partitioned into two sets: one is ameasure
0 set, and the other, which is its complement, is a meager set. Here we show
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(theorem A1) that this tension between probabilistic and topological senses
of being a “small” set generalizes to sequences of random variables relative
to a large class of infinite product topologies. We follow that result with a cor-
ollary, namely, proposition 1 in the main text is an instance of theorem A1 for
binary sequences.

Let x be a set with topology I and Borel j-field,B, that is, the j-field gen-
erated by the open sets in I. Let x∞ be the countable product set with the
product topology I∞ and product j-field, B∞, which is also the Borel j-field
for the product topology (because it is a countable product). Let hQ, A, Pi
be a probability space, and let fXng∞

n51 be a sequence of random quantities
such that, for each n, Xn : Q→ x is A and B measurable. Define X :
Q→ x∞ by X (q) 5 h X1(q), X2(q), ::: i. Let SX 5 X (Q) be the image of X,
that is, the set of sample paths of X. We denote elements of SX as y 5
h y1, y2, ::: i. The set SX is a subset of x∞. Therefore, we endow SX with
the subspace topology. In the remainder of this appendix, we identify certain
subsets of SX as being either meager or comeager. These results depend solely
on the topology for themeasurable space hQ,Ai, and not on the probability P.
However, the probability P is needed in order to display the tension between
the two rival senses of being a “small” set.

In what follows we require a degree of “logical independence” between
the Xn’s. In particular, we need the sequence fXng∞

n51 to be capable of mov-
ing to various places in x∞ regardless of where it has been so far.
6 Publ
Condition A: Specifically, for each j, let Bj ∈ B be a set such that Bj has
nonempty interior Bo

j . Assume that for each n, for each x 5 h x1, :::, xn i
∈ h X1,:::, Xn i(Q), and for each j, there exists a positive integer c(n, j, x)
such that h X1, :::, Xn, Xn1c(n,j,x) i21

�
fxg � Bo

j

�
≠ ∅.
Condition A asserts that, no matter where the sequence of random variables
has been up to time n, there is a finite time, c(n, j, x), after which it is possible
that the sequence reaches the set Bo

j . For example, suppose that each Xn is the
average of the first n in a sequence of Bernoulli random variables and that
fεjg∞

j51 is a sequence of positive real numbers whose limit is 0. If Bj 5
(0, εj) for even j and Bj 5 (1 2 εj, 1) for odd j, then, independent of the par-
ticular sequence x, the longest we would have to wait to reach Bj is

cn, j 5
n 1 2 εjð Þ

εj
1 1,

in order to be sure that there is a sample path that takes us from an arbitrary
initial sample path of length n to Bj by time n 1 cn, j. Thus, cn, j is a worst case
bound for waiting. For some x 5 h x1,:::, xn i, the minimum c(n, j, x) might
be much smaller than this cn,j. For instance, with jointly continuous random
variables with strictly positive joint density in which h X1, :::, Xn i(Q) 5 xn for
all n, then c(n, j, x) 5 1 for all n, j, and x.
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For each y ∈ SX , define t0( y) 5 0, and for j > 0, define

tj yð Þ 5
min n > tj21 yð Þ : yn ∈ Bjf g if the minimum is finite,

∞ if not:

(
Let B 5 fy ∈ SX : tj( y) < ∞ for all jg, and let A 5 SXnB 5 Bc \ SX .

Note that A is the set of sample paths each of which fails to visit at least
one of the Bj sets in the order specified. Because we do not require that the
sets Bj are nested, it is possible that the sequence reaches Bk for all k > j
without ever reaching Bj. Or the sequence could reach Bj before reaching
Bj21 but not after.
86/6948
Theorem A1. A is a meager set.

Proof. Write A 5 [j Cj, whereCj 5 fy ∈ SX : tj( y) 5 ∞g. Then A is mea-
ger if and only if Cj is meager for every j. We prove that Cj is meager
for every j by induction.

Start with j 5 1. We have tj( y) 5 ∞ if and only if y ∈ C1 5 \∞
n51 fy ∈

SX : yn ∈ Bc
1g. To see that C1 is meager, notice that Cc

1 5 [∞
n51 Dn, where

D1 5 SX \ B1 � x∞ð Þ,

and for n > 1

Dn 5 SX \ xn21 � B1 � x∞ð Þ:

Each Dn contains a nonempty sub-basic open setOn obtained by replac-
ing B1 in the definition of each Dn by its interior Bo

1. So Cc
1 contains the

nonempty open set O 5 [∞
n51 On.

Next, we show that O is dense; hence, C1 is meager as it is nowhere
dense. We verify that O \ E ≠ ∅ for every nonempty basic open set E.
If E is a nonempty basic open set, then there exists an integer k and there
exist nonempty open subsets E1, ..., Ek of x such that

E 5 SX \ E1 � ::: � Ek � x∞ð Þ:

Let y ∈ E, and let xk be the first k coordinates of y. Then there exist
points in SX whose first k coordinates are xk and whose k 1 c(k, 1, xk) co-
ordinate lies in Bo

1. Hence,

O \ E ⊇ SX \ E1 � ::: � Ek � xc k,1,xkð Þ21 � Bo
1 � x∞� �

≠ ∅ :

Next, for j > 1, assume that Cr is meager for all r < j. To complete the
induction, we show that Cj is meager, which follows the same reasoning as
in the base case. Write

Cj 5 Cj21 [∞
r5j21 Fr,
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where Fr 5 fy ∈ SX : tj21( y) 5 r and yn ∈ Bc
j for all n > rg. It suffices to

show that each Fr is meager.
Notice that Fr is a subset of

Gr 5 y ∈ SX : yr ∈ Bjf g \ y : for all n > r, yn ∈ Bc
jf g:

It suffices to show that Gr is meager.
As in the case with j 5 1, write Gc

r 5 fy ∈ SX : yr ∈ Bc
rg [[∞

n5r11 Dn,
where Dn 5 SX \ (xn21 � Bj � x∞). Each Dn contains a nonempty sub-
basic open set On obtained by replacing each Bj in the definition of each Dn

by its interior Bo
j . So Gc

r contains a nonempty open set O 5 [∞
n5r11 On.

Finally, we establish that O is dense; hence, Gr is meager. Reasoning as
in the base case with j 5 1, we verify thatO \ E ≠ ∅ for every nonempty
basic open set E. If E is a nonempty basic open set, then there exists an
integer k and there exist nonempty open subsets E1, ..., Ek of x such that
E 5 SX \ (E1 � ::: � Ek � x∞). Let y ∈ E, and let xk be the first k coor-
dinates of y. Then there exist points in SX whose first k coordinates are xk
and whose k 1 c(k, j, xk) coordinate lies in Bo

j . Hence,

O \ E ⊇ SX \ E1 � ::: � Ek � xc k, j, xkð Þ21 � Bo
j � x∞� �

≠ ∅,

which completes the induction. QED
Next, return to consider the sequence fXng∞
n51 of random variables de-

scribed earlier. Suppose that each Xn is the sample average of some other se-
quence of random variables. That is, Xn 5 (1=n)on

k51Yk , where each Yk is fi-
nite. Assume that condition A obtains. Namely, assume that the dependence
between the Yk is small enough so that c(n, j, xk) < ∞, for all n, j, xk. For ex-
ample, assume that there exist c < d with c either finite or c 5 2∞, and ei-
ther with d finite or d 5 ∞, such that for each j > 1 and each y ∈ hY1,:::,
Yj21 i(Q),

supq∈Ay
Yj qð Þ 5 d and inf q∈Ay

Yj qð Þ 5 c,

where
Ay 5 q : < Y1 qð Þ, :::, Yj21 qð Þ >5 yf g :

Then condition A obtains for a sequence of iid random variables. It also
obtains for a sequence of random variables such that{Y1, ..., Yn} has strictly
positive joint density over (c, d )n for all n. In such a case, we could let

Bj 5
c, a½ � if c is finite,

2∞, a½ � if c 5 2∞

(
where c < a < d. Then A contains all sample paths for which lim inf nXn >
a along with some sample paths for which lim inf nXn 5 a. If we repeat the
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construction of A for a countable collection of an with an ↓ c, then the union
of all of the A sets is meager. Then, the set of sample paths for which the
lim inf nXn > c is meager. A similar construction shows that the set of sam-
ple paths for which lim supnXn < d is meager. Hence the union of these last
two sets is meager, and the sequence of sample paths along which Xn oscil-
lates maximally is a comeager set.

Theorem A1 applies directly to the sequence fXng∞
n51. It shows that cer-

tain sets of sample paths of this sequence are meager or comeager. If, as in
the case of sample averages, each Xn is a function of {Y1, ..., Yn}, we can
evaluate the category of a set of sample paths of the fYng∞

n51 sequence. If
hX1, X2, ...i is a bicontinuous function of hY1, Y2, ...i, then the two sets of
sample paths are homeomorphic. In particular, this implies that the category
of a set of sample paths of one sequencewill be the same as the category of the
corresponding set of sample paths of the other sequence: the one is meager if
and only if the other is.

In the case of sample averages, we can exhibit the bicontinuous function ex-
plicitly. To be specific, let x 5 R, and for each n, define Xn 5 (1=n)on

k51Yk .
Let X 5 hX1, X2, :::i as above, with Y 5 hY1, Y2, :::i. Let SX and SY be the
sets of sample paths of X and Y, respectively. That is, SX 5 X (Q) and SY 5
Y (Q). For each y ∈ SY , define

f yð Þ 5 :::,
1

no
n

k51

yk , :::

� �
:

For each x ∈ SX , define

J xð Þ 5 x1, 2x2 2 x1, :::, nxn 2 n 2 1ð Þxn21,:::ð Þ:

Then, by construction, f(Y ) 5 X and J(X ) 5 Y . That is, J : SX → SY is
the inverse of f : SY → SX . In order to have the category of the two sample
paths the same, it is sufficient that both f and J are continuous. If they are
continuous as functions both from and to R∞, then they will be continuous
in their subspace topologies. It suffices to show that f21(B) and J21(B) are
open for each sub-basic open set B. Every sub-basic open set is of the form
B 5

Q∞
n51 Bn, where each Bn 5 R except for one value of n 5 n0 for

which Bn0
is open as a subset of R. Then each of f21(B) and J21(B) has

the form C � R∞, where C is an n0-dimensional open subset of Rn0 ; hence,
both sets are open, and we have that SX is homeomorphic to SY . Proposi-
tion 1 in the main text is an instance of theorem A1 for binary sequences.
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