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SUMMARY
Mobile robot systems are being used more often in tasks
that protect human operators from dangerous environments,
but these benefits can be easily lost if the robots spend
much of their time being repaired. This implies that any
increment in their reliability will also improve their benefits.
One way to achieve this is by adding redundant elements to
the robot, but this adds complexity and cost to the design.
On the other hand, cooperative mobile robots formed by
members with the same basic structure provide a natural
redundancy of elements, which may be used for reliability
improvement. This work presents an architecture that takes
advantage of the analytical and sensor redundancy present
in groups of cooperative mobile robots in order to increase
the reliability of the whole system. First, the design of
the architecture is portrayed and the faults to be detected
are described. The different layers of the system are then
explained and analyzed using several simulations to test their
capabilities and limitations. Finally, the experimental results
on a group of small mobile robots are shown, validating the
results delivered by simulations. These results show that the
proposed architecture is able to detect and isolate correctly
most of the faults tested.

KEYWORDS: Cooperative systems; Distributed detection;
Fault detection and isolation; Mobile robots.

1. Introduction
The use of robotic systems in environments hostile for human
beings or in dangerous tasks, such as land mines extraction,
and rescue operations, has increased over the last years,
making the work safer to human operators. However, the
advantages of operating with robotic systems are cut back
when faults occur as they disable the robot in some of its
functions, or in worst cases, they make the robot unable to
work at all. Recent studies show that the mean time between
failures is less than 20 h for field robots,1 after which they
require repairs, consuming time and resources. This makes an
increment in reliability a necessity in order to improve mean
time between failures and also to reduce the mean repairing
time.

* Corresponding author. E-mail: rax@ing.puc.cl
1 Work done while he was at Pontificia Universidad Católica de
Chile.

Two main methods have been used to increase the
reliability of robots. One method is to add mechanical
and/or sensory redundancy, which regretfully increases
the construction costs significantly. The other method for
increasing reliability is to add fault detection and isolation
(FDI) systems. These systems identify present problems and
thus reduce time and effort needed for repairs,2,3 or help in the
incorporation of fault tolerant controls, which modify control
objectives to accommodate present faults and continue with
normal operation if possible. This work focuses in the latter;
the aim is to develop a FDI architecture for cooperative
mobile robots, capable of providing information that can then
be used either to achieve a fault tolerant system or to reduce
the time needed to restore them to normal functionality.

Developments on fault analysis appeared in the early 1970s
with fault detection, isolation, and identification systems.
Fault detection only indicates that a fault is present on the
system; fault isolation follows the fault detection process
and determines the exact location of the fault, whereas fault
identification (also called fault diagnosis2) can determine the
location and size of the fault.4,5 Nowadays, developments
on FDI and fault detection and diagnosis (FDD) cover a
wide range of applications that go from the water tank
benchmark system, to more complex processes such as
airplanes, automotive systems, and robots.6–9

There are a wide range of techniques to achieve FDI, which
most of the time are tailor made for each specific application.
These techniques include the use of tools such as fuzzy logic,
neural networks, wavelets, and Kalman filters, which are used
to analyze and detect malfunctions.10–12

One of the most effective approaches to achieve FDI
on mobile robots is based on multiple models and a bank
of observers, where each model has one of the possible
faults embedded and the corresponding observer estimates
a state vector for the system according to that.3 As Kalman
filters give an optimal estimation of these state vectors if
the noise is normally distributed,13 it is an excellent tool for
this approach. In this technique, a bank of Kalman filters is
implemented, exploiting the analytical redundancy present.
Each Kalman filter estimates the state vector, using as model
for the system one of the possible operating modes (normal
and faulty modes); by comparing the estimation against the
measurements vector, a residual vector is formed for each
Kalman filter, which are then analyzed to determine which
fault has occurred. This technique is described in detail in the
work of Maybeck and Hanlon,10 where it is applied through
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simulations to aircraft FDI, using multiple hypotheses to
isolate each fault.

This fault detection algorithm, applied to mobile robots,
is presented in Roumeliotis et al.,14 where only two possible
faults are analyzed: a reduction in the radius of one tire
and a periodic bump, without processing the information
in the residuals extensively. In Roumeliotis et al.,15 the
work in Roumeliotis et al.14 is extended through the use of
multiple hypotheses to isolate sensor faults. The probability
of each hypothesis is calculated using the residuals of the
corresponding Kalman filter, showing good results in FDI.
Regretfully, in this work there is no description of the
isolation criteria used to determine which fault has occurred.
A similar bank of Kalman filters is used in Goel et al.16 to
determine faults (on sensors and actuators) on a four-wheel
robot, but in this case the residuals are processed through a
neural network to isolate the faults. Another isolation method
is presented in Washington,17 where the bank of Kalman
filters is combined with a Markov model representation to
identify the faults through probability calculations. Although
these works present important advances in FDI, they detect
faults only in speed related sensors (e.g., gyros and encoders),
leaving behind other important sensors such as sonars, GPS,
and magnetic compasses, where FDI is a more complex task.

Other approaches to FDI in mobile robots include the use
of more advanced filtering techniques to identify the faults,
incorporating nonlinear robot dynamics, non-Gaussian noise,
geometrical constraints, and statistical analysis.18–20

Also, aiming toward an improvement in the reliability of
robotic systems, several researchers have proposed a multiple
robot approach.21–26 In Michaelson and Jiang,21 the authors
explain how the redundancy present in cooperative mobile
robots can be used to increase the robustness of the group,
thus improving the efficiency, but no fault detection system
is described, vital thing to the performance of the method.
In the same line of study the ALLIANCE architecture
presented by Parker22 shows a simple fault detection system
for cooperative robots based on behavioral programming,
but fault detection process is limited to detect when a robot
has suffered a fatal failure and the authors indicate that it
presents a slow response. Using another approach, the work
developed by Tinós et al.23 shows a distributed localization
scheme for resource limited mobile robots. The algorithm
takes advantage of measurement redundancy to improve the
localization of each robot and, at the same time, it is used
to detect which localization measurements are incorrect,
eliminating them from the system. The work in Tinós et al.24

describes a simple FDI method for cooperative manipulators,
which also uses measurement redundancy. Their experiments
show that faults are correctly detected over 90% of the
time, whereas in 68% of the experiments faults are properly
isolated. Heredia et al.25,26 present a cooperative approach for
differential GPS fault detection in unmanned aerial vehicles
(UAV). The proposed scheme uses artificial vision-based
relative position measurements, aiming to detect wrong GPS
absolute position measurements. The approach is based on
the fact that in multi-UAV missions, it is possible to take
advantage of the capabilities that the team of UAVs offers, to
augment each of the individual FDI systems. Different UAVs
may identify, using their cameras, common objects in the

Fig. 1. Control and fault detection and isolation structures for
robot Ri .

scene providing an alternative relative position measurement.
Results show that the cooperative scheme is able to detect
differential GPS faults that are indistinguishable using only
local FDI systems. Regretfully, with exception of Tinós
et al.,24 none of the works above mentioned contain an
analysis of fault detection limitations, nor of the efficiency of
the isolation (number of false positives or wrongly isolated
faults), so no reliability comparisons can be made among the
different methods.

With the same objective, multiple layer approaches have
also been used to achieve FDI in different classes of robotic
systems (systems with different levels of resources), so the
FDI system can be adapted depending on the redundancy that
exists,27,28 but the idea of having a cooperative layer within
the architecture has not been implemented yet.

This work presents a layered architecture for FDI on
cooperative robots that combines the advantages of single
and multiple robots fault detection mechanisms, where
the different layers can be implemented depending on
capabilities and resources of the robots. The proposed
architecture combines existing methods for single robot
FDI, where local information is used in order to detect the
presence of faults, with the ideas present in cooperative
robot FDI systems, where additional information obtained
from multiple robots is used for detecting faults in any
of the group members; yielding an architecture capable of
detecting a wider range of faults in comparison with local
information-based FDI systems. The idea behind the multiple
layer approach is to take advantage of the different levels of
information, control, and redundancy that exists within the
control structure (Fig. 1), tailoring each layer in the FDI
system according to the level of information available at its
corresponding level in the control structure and thus allowing
for an efficient use of the information. However, it is probably
impossible to create a single-general FDI system that can be
successful on any group of mobile robots, as different robot
systems have different capabilities, sensors, actuators, etc.

Figure 1 illustrates the division made on the control
structure for each robot Ri , according to the level of control
and information, and also shows the interaction with the
layers of the FDI system. The control structure is divided
into 5 main layers. First, the physical layer contains the body,
sensors, and actuators needed. The Actuator Control Layer
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Fig. 2. Mobile robot used with marker.

is the interface between the hardware and the navigation,
controlling the speed of the wheels in order to follow
a determined trajectory. Next, the Navigation Control is
dedicated to design the trajectories needed to achieve the
different objectives. The highest control layer for a single
robot is the Control of Objectives Layer, which designates
the tasks that must be done and where the robot must go in
order to do them. Finally, in cooperative robots the Multirobot
Coordination Layer is added, which can be either centralized
or distributed among the robots, and is the one that designates
the objectives for each robot to achieve a common goal.

This work is divided into five sections. First, Section 2
presents a description of the robot system over which the
FDI architecture is implemented describing the faults each
layer can detect and isolate. Next, Section 3 describes the first
layer of the architecture, presenting the method used and an
analysis of the fault detection capabilities and limitations.
Section 4 continues with the description of the second layer,
indicating how the cooperative robots approach is used.
Finally, Section 5 shows experimental results for each layer.

2. System Description

2.1. Robot simulation
The simulations were done in Matlab, using a mathematical
model, which includes the kinematic and dynamic equations
of each robot. The sensor readings were also simulated in the
model by adding Gaussian noise to the measurements. The
standard deviation of the noise added was equal to 10% of
the maximum value of the measurement, which was above
the range of what was observed in the real sensors used in
the implementation.

2.2. Cooperative robot system
A group of three small homogeneous mobile robots, as the
one shown in Fig. 2, built at our university, were used to test
each layer of the architecture and validate the data obtained

through the simulations. Each robot moves using two
independent actuated wheels, allowing differential steering,
and are controlled by two low cost 8-bit microcontrollers.
Each robot is equipped with optical encoders on both wheels
to achieve relative localization and a digital compass to
measure the heading angle. For navigation purposes, each
robot has a frontal sonar and a low resolution CMOS camera.
For this work, the CMOS camera is only used to recognize
other robots, which was done by identifying a red ball they
have on top.

2.3. Faults
As different faults implemented need different levels of
information to be isolated, faults are divided into two groups:
those that can be continuously monitored on a single robot
and those that can be detected through cooperation between
them. Although some faults can be detected through both
methods, they are assigned to the layer where it is easier to
detect them.

For the first layer of the FDI architecture, seven different
faults were considered: 1–2: slippage of one of the wheels,
3–4: one of the wheels gets stuck, 5: both wheels get stuck,
and 6–7: one of the encoders fail (i.e., the velocity of that
wheel is read as zero).

On the other hand, the cooperative layer isolates faults on
sensors that are redundant in the robot team. This layer was
designed to detect four different faults: 1: additive fault on
the sonar, 2: the sonar gives a constant value, 3: additive fault
on the compass, and 4: the compass gives a constant value.

3. Continuous FDI Layer

3.1. Method description
The use of multiple models has shown to be a good tool
for continuous monitoring of faults in mobile robots. As all
the faults this layer must detect can be modeled within a
Kalman filter, a bank of eight Kalman filters is used: one for
modeling normal operation (M0), and seven for modeling the
faults (M1 − M7). The basic structure of each model Mi is
as follows:

Mi

{
Xk+1,i = AiXk,i + BiUk + wk,i

Zk+1,i = CiXk+1,i + vk,i

, i = 0.7. (1)

In (1), Xk,i is the state vector for the robot at time k using
model i, whereas Zk,i is the measurement vector of that model
at time k. The matrices Ai , Bi , and Ci are the state equation
matrices for model i, and Uk is the control input at time k.
The process and measurement additive white noise at time k
are represented by wk,i and vk,i , respectively.

To obtain an optimal estimation of the state and
measurement vectors of each model Mi , a Kalman filter13 is
used. First, the state and measurement vectors are estimated,
assuming that no noise is present., and the covariance matrix
Pk+1,i is estimated using the noise covariance matrix Qi :

X−
k+1,i = AiXk,i + BiUk,

Z−
k+1,i = CiX

−
k+1,i ,

P −
k+1,i = AiPk,iA

T
i + Qi.

⎫⎬
⎭ (2)
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Next, the estimations are updated using the new available
measurement Yk+1, and the Kalman gain Kk+1,i

Xk+1,i = X−
k+1,i + Kk+1,i(Yk+1 − Z−

k+1,i),
Zk+1,i = CiXk+1,i ,

Pk+1,i = P −
k+1,i − Kk+1,iCiP

−
k+1,i .

⎫⎬
⎭ (3)

The Kalman gain is calculated as follows, where Sk+1,i is
the residual covariance matrix at time k + 1 for model Mi ,
and Ri is the covariance matrix for the measurement noise in
that model.

Kk+1,i = P −
k+1,iC

T
i S−1

k+1,i , (4)

Sk+1,i = CiP
−
k+1,iC

T
i + Ri. (5)

Using these estimations, faults are detected by calculating
the probability of hypothesis Hi to be true, which states that
model Mi represents the actual operation mode of the robot.
The conditional probability that hypothesis Hi is true at time
k + 1 is given by the following expression:10

Pk+1(Hi) = f
(
Yk+1/Mi ,

[
YT

0 ..Y T
k

])
Pk(Hi)

7∑
j=0

f
(
Yk+1/Mj ,

[
YT

0 ..Y T
k

])
Pk(Hj )

. (6)

In (6), f (·) is the conditional probability density function
of the measurement Yk+1, conditioned on the model Mi

and the previous measurements. This is determined by the
following:

f

(
Yk+1

Mi

,
[
YT

0 ..Y T
k

]) = βk+1,ie
− 1

2 Dk+1,i . (7)

With Dk+1,i (the Mahalanobis distance at time k + 1) and
βk+1,i defined by following:

Dk+1,i = rT
k+1,iS

−1
k+1,irk+1,i , (8)

βk+1,i = ((2π)m|Sk+1,i |)−
1
2 . (9)

The parameter m used in (9) is equal to the number of
elements in the measurement vector as the noise is distributed
as a multivariate normal distribution. The residual rk+1,i is ob-
tained as the difference between the measurements vector and
the estimation of the measurement vector given by model Mi .

rk+1,i = Yk+1 − Zk+1,i . (10)

It is important to notice in (6) that if the probability of a
certain hypothesis reaches 0, it cannot return to another
value. This problem is solved by artificially setting the
minimum probability for any hypothesis to 0.0001.

To reduce the computational requirements of the Kalman
filters, only three variables are taken into account for the state
and measurement vectors: the rotation speed of the robot and
the speed of each wheel, and hence the state vector is given
as follows:

Yk = [ϕ̇k ω1,k ω2,k ]T . (11)

Fig. 3. Simplified scheme of the mobile robot used.

Figure 3 presents a simplified scheme of the mobile robot,
where the main variables are shown. Each Kalman filter uses
a simple kinematic relation, which is modified according to
the operation mode.

ϕ̇k = λr1ω1,k − μr2ω2,k

2b
. (12)

Equation (12) relates the speed of each wheel with the
rotational speed of the robot. In (12), r1 and r2 are the
radii of the right and left wheels, respectively, and 2b is
the axle length. λ and μ are parameters used to represent the
different faults. For M0, λ = μ = 1; for M1, λ = 0.4 μ = 1;
for M2, λ = 1 μ = 0.4; for M3, λ = 0 μ = 1; for M4, λ = 1
μ = 0; for M5 λ = μ = 0; and for M6−7, λ = μ = 1 as the
fault affects only the measurements and not the process. The
value 0.4 used in the model for faults 1 and 2 was determined
empirically, aiming to eliminate false alarms due to the small
slippage that mobile robots always have.

3.2. Fault detection and isolation
Once the probability of each hypothesis is calculated, FDI
is done by using thresholds. First, a fault is detected when
the probability of H0 is smaller than the threshold PDT . This
value is a free parameter that allows tuning, affecting the
response time of the detection. Higher values of PDT reduce
the detection time, but the number of false alarms increases,
whereas if the value is low, the detection takes longer but
false alarms are reduced. Due to the effect of noise, the
probability of H0 can sometimes be lower than PDT for some
time intervals, creating a false alarm. To reduce this, detection
is activated if the probability of H0 is smaller than PDT =
0.01 for three consecutive time intervals, thus reducing false
alarms without significantly increasing detection time.

After fault detection is done, isolation is achieved by
detecting which probability surpasses the threshold PIS . If
the probability of Hi is above PIS = 0.99, it is assumed
that fault i occurred. These values were determined through
simulations, reducing wrongly isolated faults.
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Table I. Average detection and isolation times for layer 1.

Fault 1 2 3 4 5 6 7

Detection [s] 1.1 1.3 0.7 0.6 0.7 0.3 0.3
Isolation [s] 1.1 1.3 0.8 0.8 0.7 0.3 0.3

3.3. Simulation results
The continuous FDI layer is tested through several
simulations. The system is simulated 1000 times with random
chosen operation modes (normal and faulty ones), setting on
each simulation the sampling time at 0.1 [s]. This allows a
statistical analysis of the layer performance.

Four different criteria are used to measure the performance:
amount of false alarms, confusion matrix, and FDI times.

False alarms indicate the number of times that faults are
detected while on normal operation. The simulations show
that no false alarms appear because of the detection criteria.

The confusion matrix shows the relation between the faults
that appear on the robot and the faults isolated by the FDI
layer. The matrix contains as elements cij , the percentage of
times when operating mode Mi is isolated due to hypothesis
Hj , helping to determine the percentage of wrongly isolated
faults. The following confusion matrix was constructed based
on the results of the simulations:

CfLayer1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0
0 0 100 0 0 0 0 0
0 0 0 98.1 0 0 1.9 0
0 0 0 0 97.6 0 0 2.4
0 0 0 0 0 100 0 0
0 0 0 0 0 0 100 0
0 0 0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

The results show that only a 0.4% of the total simulated
operating modes are wrongly identified. This confusion only
affects faults 3–4 (stuck wheels), which are isolated as faults
6–7 (encoder faults), respectively, as the effect of both faults
is similar during the first time intervals. This confusion can
be eliminated if the threshold used for isolation is raised, but
that also implies a slower response.

Finally, Table I shows the average detection and isolation
times. Due to the detection and isolation criteria, isolation
takes slightly longer than detection in some cases. It can be
observed that both detection and isolation take only a small
number on time intervals.

3.4. Interaction with the control structure
The interaction between the FDI architecture and the control
structure cannot only be used to inform that a fault is present.
It can also be used to increase isolation capabilities, obtaining
more information about the present state of the robot.

When the robot collides with an obstacle, the wheels can
either slip or get stuck depending on the friction at that
moment. In both cases, the FDI system will give a false
alarm, as no real fault is present. If no further actions are

taken, the robot can be considered disabled although it can
still work.

To solve this problem a control routine is added, which
helps to determinate if it is a real fault or a collision.
Whenever a slippage or stuck condition is detected, instead
of activating the fault detection flag, the FDI system asks for
a change in the rotation direction of the affected wheel to the
control structure. If the probability of H0 returns to be high
again, it means that the robot had collided with an undetected
object, but if the probability of the faulty condition continues
to be high, then a real fault is present. This simple algorithm
creates a “virtual bumper sensor” that improves the fault
isolation capabilities of the layer.

3.5. Method limitations
The biggest limitation of this method is that it must be
possible to model the effects of the faults within a Kalman
filter. If this is not possible, other isolation method must be
used, as there is no residual covariance matrix available for
the probability calculations.

4. FDI on Cooperatives Robots

4.1. Redundant sensor fault detection and isolation
Fault detection on redundant sensors can be achieved if at
least two independent measurements can be made. If the
difference between the readings of two sensors is above a
threshold DTH, a fault is detected although there is no enough
information to isolate the fault. When more than two sensors
are available, the faulty sensor can be isolated from within
the group by detecting which has the biggest difference.24

Because the robots are not always close together, the
Cooperative FDI layer works only when two or more robots
meet, testing the different redundant sensors available. If a
fault is detected and only two robots are present, it is assumed
that both robots have faulty sensors until a new robot is found.

To identify between additive and stuck type faults, the
magnitude of both measurements is stored by each robot.
If the difference is similar in two independent tests, it is
assumed to be an additive fault, with that difference being the
amount of the fault, therefore achieving fault identification.

As there is noise in the measurement made by the sensors,
the threshold must be optimized to reduce the false alarm
probability. The main problem is that the required threshold
might be higher than the accepted fault tolerance, but
reducing the threshold will result in a useless system as the
number of false alarms will become too high. In this case, the
use of a multiple measurements test can solve the problem.

As sensors used in these robots present additive white
noise, with known standard deviation σI , the difference
between the measurements of two sensors, mi and mj , has
the following error probability distribution:

mi − mj ∼ N
(
0, σ 2

d

)
, with σ 2

d = σ 2
i + σ 2

j . (14)

If n measurements are done, the standard deviation of the
average difference is reduced to σn, where

σ 2
n = 1

n
σ 2

d . (15)

https://doi.org/10.1017/S0263574710000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000457


560 Fault detection and isolation in cooperative mobile robots

Depending on the desired threshold, DTH, the optimal
number of measurements needed in order to have a false
alarm probability 1 − Pn is determined by the following:

n = σ 2
d

σ 2
n

, with σn = DTH

DP

, (16)

where DP is obtained from the standard normal distribution,
such that

1√
2π

∫ DP

x=0
e− x2

2 dx = Pn

2
. (17)

If the robot can only do a limited number of measurements,
nmax, using (16) and (17), the optimal threshold DTH must be
increased to keep the same false alarm probability.

DTH = σdDP /
√

nmax. (18)

Every time two robots in the group meet, the sonar and
magnetic compass are used to determine the distance and
direction between each other. The number of measurements
needed is calculated previously using (16), and the average
measurement is transmitted between the robots to detect the
fault. For the sonar, if the difference between both readings
is above DTHs , a fault is detected. For the magnetic compass,
the difference between both readings must be 180 [◦], so if
the difference is outside the range 180 ±DTHc[◦], a fault is
detected.

4.2. Simulation results
With the same methodology used for the first layer, the
capabilities of the Cooperative Layer are tested. The FDI
layer is simulated 1000 times with randomly chosen faults,
and on each simulation it is assumed that the robots are close
together whenever a sensor check is made.

For every sensor, the probability Pn is set to 99.99%. As
the standard deviation for the error on the compass is σc =
0.15[◦] and for the sonar is σs = 0.02 [m], given that DTHc =
0.5[◦] and DTHs = 0.05 [m], then n = 2 for the compass and
n = 3 for the sonar to achieve the desired probability. For
this layer, only two criteria are used to test the performance:
number of false alarms and confusion matrix.

Because Pn is set to 99.99%, no false alarms appear during
the simulations of this FDI layer as false alarms should occur
only once every 10,000 times.

The confusion matrix obtained is perfectly diagonal as no
confusion can be made in the isolation of the faults. Then, all
detected faults are always correctly isolated, and the amount
of the fault (for additive faults) is determined with 96% of
accuracy.

As the detection and isolation is done only when two
robots meet, there is no point in measuring the detection
and isolation times.

5. Experimental Results
Due to the computational limitations of our robots, both
layers were tested offline using data collected by each robot,
which were then processed in a computer.

Fig. 4. Experimental result for fault 3: right wheel gets stuck.

The first layer faults are injected in the following way:
wheel slippage is done by using the robot over a slippery
surface with plastic wheels; the stuck wheel fault is emulated
using the robot over thick carpet, this time with rubber
wheels; finally, the encoder faults are injected by putting
a dark paper between the sensor and the encoder wheel.

Figures 4 and 5 show the results corresponding to two
different faults, injected after about 30 [s] of normal
operation. After the fault is injected, the probability of H0

reduces, whereas the probability of the corresponding fault
increases. It is important to notice that other hypotheses (H3

in Fig. 3 and H4 in Fig. 4) also present a change in their
probability. This effect was not observed in the simulations
and can be attributed to the slight difference that exists
between the parameters of the models used and the ones
of the real robot, such as wheel radii and axle length.

It is important to highlight that the detection and isolation
capabilities are directly related to the accuracy of the
models used. Model-plant mismatches could produce false
alarms, increment detection time, or make that some faults
remain undetected. These inaccuracies come from several
sources such as parameter differences, unknown inputs,
and unconsidered nonlinear dynamics, among others, and

Fig. 5. Experimental result for fault 7: left encoder fault.
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Fig. 6. Experimental result for the “virtual bumper sensor.”

sometimes are inherent to the system modeled. In this work,
the effect of model-plant mismatches is seen in Figs. 3 and 4,
where changes in the probability of hypotheses other than the
current operating conditions are seen. However, in this case,
the system is able to detect and isolate the fault despite the
presence of differences between models. This is due to the
detection and isolation criteria used, which require that
the probabilities stay above (or below) a threshold for several
time steps before raising an alarm or making an isolation
decision.

The system was tested 10 times for every fault, correctly
detecting and isolating 100% of the cases, which is not
surprising given the simulation results, as the amount of times
each fault is tested is fairly small.

As this layer is tested offline, the interaction with the
control layer must be done artificially. To test the “virtual
bumper sensor,” the robot is set on a rough surface and is
directed toward a wall, making only the right wheel collide
with the wall. After 30 [s] of operation the direction of the
wheel is inverted, and the robot is positioned at a distance
such that after that time it would have already collided with
the wall. Figure 6 shows the result of the experiment. After
the robot collides the probability of fault 3 increases, but
later it decreases when the speed of the wheel is inverted.
This indicates that no real fault is present and activates the
“virtual bumper sensor” flag.

Before implementing the Cooperative FDI Layer, the
sensors were analyzed to make sure that the noise had a
normal distribution and to determine its standard deviation,
observing that σc = 0.157[◦] and σs = 1.31 [cm].

To test this layer, the robots are set in pairs, detecting
each other using the CMOS camera and taking all the
measurements needed. Then, an additional robot is used
so the fault can be isolated. Every time, the robot
randomly chooses one of the possible faults and injects
it to the measurement via software. The values are stored
in an external memory for later analysis. The number
of measurements nc and ns are calculated using (16),
considering that the tolerated thresholds are DTHc = 0.5[◦]

and DTHs = 3 [cm], and that Pn = 99.99%. This sets nc = 2
and ns = 3. The test is done 30 times in total.

The results of the experiments show that no false alarms
are activated, and 100% of the faults are correctly isolated.
Again it is important to notice that this result is expected as
the false alarm probability was set really small and only 30
tests were done. In the case of the additive faults, as the robots
stored the amount of the fault injected, it was possible to
check the accuracy of the fault identification. In these cases,
the amount of the fault is identified with less than 5% error.

6. Conclusions and Future Work
Through this work, a layered architecture for FDI in
cooperative mobile robots is successfully designed and
implemented. The reliability of the architecture is measured
through simulations, showing excellent results as it is capable
of detecting all the simulated faults, isolating correctly 99.6%
of them. The architecture is then validated by an off-line
implementation, which shows similar results, with no false
alarms and 100% accuracy in the isolation of the faults.

Furthermore, it is clear that the algorithm used in the
Cooperative FDI Layer can be used to isolate faults on
GPS and other types of sensors without adding too much
complexity to the system, which appears to be quite difficult
using other techniques, but having the drawback that at least
two robots are needed for detection and three or more for
fault isolation.

As future work, an online implementation of the
architecture must be made, which means that a more powerful
processor must be added to the robots, together with a
wireless link that allows information exchange between
them. Although these first experiments show good results,
more experiments in different environments are required to
analyze the robustness of the architecture.

Regarding the architecture itself, more layers can be
designed and added to take advantage of the information
available at other levels in the control structure and the
redundancy existing at the navigation and objective control
levels. This could mean for example, monitoring systems
that check if the objectives are being achieved, which could
help to detect, isolate and even identify new faults, especially
those related to robot coordination and trajectory designs.
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