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BASES FOR FUNCTIONS BEYOND THE FIRST BAIRE CLASS

RAPHAËL CARROY AND BENJAMIN D. MILLER

Abstract. We provide a finite basis for the class of Borel functions that are not in the first Baire class,

as well as the class of Borel functions that are not ó-continuous with closed witnesses.

Introduction. A topological space is analytic if it is a continuous image of a closed
subset ofNN. A subset of a topological space isBorel if it is in the ó-algebra generated
by open sets, Fó if it is a union of countably-many closed sets, and Gä if it is an
intersection of countably-many open sets.
Suppose that X and Y are topological spaces. Given a family Γ of subsets of X,

a function φ : X → Y is Γ-measurable if φ–1(V) ∈ Γ for every open set V ⊆ Y .
A function is Borel if it is Borel-measurable, Baire class one if it is Fó-measurable,
and ó-continuous with closed witnesses if its domain is the union of countably-many
closed sets on which it is continuous. A result of Jayne-Rogers (see [2, Theorem 1])
ensures that a function from an analytic metric space to a separable metric space
has this property if and only if it is Gä-measurable.
A quasi-order on a set Z is a reflexive transitive binary relation ≤ on Z. A set

B⊆ Z is a basis under ≤ for Z if ∀z ∈ Z∃b ∈ B b≤ z.
A closed continuous embedding of φ : X → Y into φ′ : X ′ → Y ′ consists of a pair

of closed continuous embeddings ðX : X → X ′ and ðY : φ(X)→ φ′(X ′) such that
φ′ ◦ ðX = ðY ◦ φ. Note that the existence of such a pair depends not only on the
graphs of the functionsφ andφ′, but onY aswell, since different choices ofY ⊇φ(X)

can lead to different values of φ(X). Here we establish the following results.

Theorem 1. There is a 24-element basis under closed continuous embeddability
for the class of non-Baire-class-one Borel functions between analytic metric spaces.

Theorem 2. There is a 27-element basis under closed continuous embeddability for
the class of non-ó-continuous-with-closed-witnesses Borel functions between analytic
metric spaces.

In Section 1, we discuss the compactification N≤N

∗ of N≤N underlying our
arguments, as well as the corresponding compactification NN

∗ of N
N. In Section 2,

we discuss the endomorphisms of N≤N underlying our arguments. In Section 3, we
provide a three-element basis for the class of Baire measurable functions fromNN to
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separable metric spaces. In Section 4, we provide a three-element basis for the class
of non-ó-continuous-with-closed-witnesses Baire-class-one functions from analytic
metric spaces to separable metric spaces. In Section 5, we provide an eight-element
basis for the class of all functions from NN

∗ \NN to analytic metric spaces. And in
Section 6, we establish Theorems 1 and 2.

§1. A compactification of N≤N. We use s a t to denote the concatenation of
sequences s and t, and we say that s is an initial segment of t, or s⊑ t, if there exists
s′ for which t = s a s′. Endow the set N≤N

∗ = N≤N ∪{ta (∞) | t ∈ N<N} with the
smallest topology with respect to which the sets of the form {t} andNt = {c ∈N≤N

∗ |
t⊑ c}, where t ∈ N<N, are clopen.

Proposition 1.1. The family B of sets of the form {t} andNt \({t}∪
⋃
j<iNta(j)),

where i ∈ N and t ∈ N<N, is a clopen basis for N≤N

∗ .

Proof. Let ô be the topology generated by B. As every set in B is clearly clopen,
it is sufficient to show that the sets {t} and Nt are ô-clopen for all t ∈ N<N. As
these sets are clearly ô-open, we need only show that they are ô-closed. As Nta(i) is

ô-closed in Nt for all i ∈ N and t ∈ N<N, a straightforward induction shows that Nt
is ô-closed for all t ∈N<N. As {t} is ô-closed inNt for all t ∈N<N, it follows that {t}
is ô-closed for all t ∈ N<N. ⊣

Proposition 1.2. The space N≤N

∗ is compact.

Proof. Suppose, towards a contradiction, that there is an open cover U of N≤N

∗

with no finite subcover.

Lemma 1.3. Suppose that t ∈ N<N and no finite set V ⊆ U covers Nt. Then there
exists j ∈ N such that no finite set V ⊆ U covers Nta(j). ⊣

Proof. Fix U ∈ U containing t a (∞). Proposition 1.1 then yields i ∈ N with
Nt \({t}∪

⋃
j<iNta(j))⊆U , in which case no finite set V ⊆ U covers

⋃
j<iNta(j), and

it follows that there exists j < i for which no finite set V ⊆ U covers Nta(j). ⊣

By recursively applying Lemma 1.3, we obtain b ∈ NN such that for no i ∈ N is
there a finite set V ⊆ U covering Nb↾i. But Proposition 1.1 implies that every open
neighborhood of b contains some Nb↾i.

Given a countable set I and a topological space X, we say that a sequence
(xi)i∈I ∈ X

I converges to a point x ∈ X , or xi→ x, if for every open neighborhood
U of x there are only finitely many i ∈ I with xi /∈U . We endowN<N with the partial
order⊑, and when I andX are equipped with partial orders≤I and≤X , we say that
(xi)i∈I is decreasing if i ≤I j =⇒ xj ≤X xi for all i, j ∈ I .

Proposition 1.4. The space N≤N

∗ has a compatible ultrametric.

Proof. Fix a decreasing sequence (åt)t∈N<N of positive real numbers con-

verging to zero. Set d(a,a) = 0 for all a ∈ N≤N

∗ , as well as d(a,b) = max{åt |

t ∈ {a ↾min(|a|, i(a,b)),b ↾min(|b|, i(a,b))}∩N<N} for all distinct a,b∈N≤N

∗ , where
i(a,b) = min{i ∈ N | a ↾ i 6= b ↾ i}.
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To see that d is an ultrametric, suppose that a,b,c ∈ N≤N

∗ are pairwise distinct.
Observe that if i(a,c) < max{i(a,b), i(b,c)}, then d(a,c) ∈ {d(b,c),d(a,b)}, so
d(a,c) ≤ max{d(a,b),d(b,c)}. And if i(a,c) = max{i(a,b), i(b,c)}, then setting
i = i(a,b) = i(a,c) = i(b,c), it follows that

d(a,c) = max{åt | t ∈ {a ↾ i,c ↾ i}∩N<N}

≤max{åt | t ∈ {a ↾ i,b ↾ i,c ↾ i}∩N<N}

=max{d(a,b),d(b,c)}.

And if i(a,c) > max{i(a,b), i(b,c)}, then setting å = d(a,b) = d(b,c) and t =
a ↾ i(a,b) = c ↾ i(b,c), it follows that d(a,c) ≤ åt ≤ å, and therefore d(a,c) ≤
max{d(a,b),d(b,c)}.
As {t} = B(t,åt) and Nt \ {t} = B(Nt \{t},åt) for all t ∈ N<N, and Nt \ ({t} ∪⋃
j≤iNta(j)) = B(Nt \ ({t}∪

⋃
j≤iNta(j)),min({åta(j) | j ≤ i})) for all i ∈ N and t ∈

N<N, Proposition 1.1 ensures that every open subset of N≤N

∗ is d-open.
Given b ∈ NN and å > 0, fix i ∈ N with åb↾i < å, set t = b ↾ i, and note that Nt ⊆

B(b,å). Given t∈N<N and å > 0, fix i ∈Nwith åta(j) < å for all j≥ i, and observe that

Nt \ ({t}∪
⋃
j<iNta(j))⊆ B(ta (∞),å). Thus every d-open subset of N≤N

∗ is open.⊣

It follows that N≤N

∗ is Polish. As the space NN
∗ = N≤N

∗ \N<N is a perfect subset
of N≤N

∗ , a result of Brouwer’s ensures that it is homeomorphic to 2
N (see, e.g., [3,

Theorem 7.4]).

§2. Meet embeddings. Themeet of sequences s, t∈N<N is the sequence r= s∧ t of
maximal length for which r⊑ s and r⊑ t. A ∧-embedding is an injection ð : N<N →
N<N such that ð(s∧ t) = ð(s)∧ð(t) for all s, t ∈ N<N.

Proposition 2.1. Suppose that ð : N<N → N<N. Then ð is a ∧-embedding if and
only if the following conditions hold:

(1) ∀i ∈ N∀t ∈ N<N ð(t)❁ ð(ta (i)).
(2) ∀i, j ∈ N∀t ∈ N<N (i 6= j =⇒ ð(ta (i))(|ð(t)|) 6= ð(ta (j))(|ð(t)|)).

Proof. Suppose first that ð is a ∧-embedding. To see that condition (1) holds,
observe that if i ∈ N and t ∈ N<N, then ð(t) = ð(t)∧ð(ta (i)), so ð(t)⊑ ð(ta (i)),
thus ð(t)❁ ð(ta (i)). And to see that condition (2) holds, observe that if i, j ∈N are
distinct and t ∈N<N, then ð(t) = ð(ta (i))∧ð(ta (j)), so ð(ta (i))(|ð(t)|) 6= ð(ta
(j))(|ð(t)|).
Suppose now thatð satisfies conditions (1) and (2). To see thatð is a∧-embedding,

suppose that s, t ∈ N<N are distinct, and define r = s∧ t. By reversing the roles of s
and t if necessary, we can assume that |s| > |r|, so ð(r) ❁ ð(s), thus either r = t or
(|t| > |r| and ð(s)(|ð(r)|) 6= ð(t)(|ð(r)|)). In both cases, it follows that ð(s) 6= ð(t)
and ð(r) = ð(s)∧ð(t). ⊣

Remark 2.2. In particular, it follows that if ð : N<N → N<N has the property
that ð(t)a (i)⊑ ð(ta (i)) for all i ∈ N and t ∈ N<N, then ð is a ∧-embedding.

The composition of a finite sequence (ði)i≤n of functions is given by ◦i≤n ði =
ð0 ◦ ··· ◦ ðn.

https://doi.org/10.1017/jsl.2020.60 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.60
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Proposition 2.3. Suppose that (ðt)t∈N<N is a sequence of ∧-embeddings with the
property that ðt(N<N) ⊆Nt for all t ∈ N<N. Then the function ð : N<N → N<N given
by ð(t) = (◦n≤|t| ðt↾n)(t) is also a ∧-embedding.

Proof. Note that if i ∈ N and t ∈ N<N, then t a (i) ⊑ ðta(i)(t a (i)), so
Proposition 2.1 ensures that (◦n≤|t| ðt↾n)(t a (i)) ⊑ ð(t a (i)), thus ð(t) ❁
(◦n≤|t| ðt↾n)(t a (i)) ⊑ ð(t a (i)). It also implies that if i 6= j, then (◦n≤|t|

ðt↾n)(t a (i))(|ð(t)|) 6= (◦n≤|t| ðt↾n)(t a (j))(|ð(t)|), so ð(t a (i))(|ð(t)|) 6= ð(t a
(j))(|ð(t)|). One last application of Proposition 2.1 therefore ensures that ð is a
∧-embedding. ⊣

We next consider the connection between ∧-embeddings and closed continuous
embeddings.

Proposition 2.4. Every ∧-embedding ð : N<N →N<N has a unique extension to a
(necessarily injective) continuous map ð : N≤N

∗ → N≤N

∗ , given by ð(b) =
⋃
i∈N
ð(b ↾ i)

and ð(ta (∞)) = ð(t)a (∞) for all b ∈ NN and t ∈ N<N.

Proof. Suppose that ð : N≤N

∗ → N≤N

∗ is a continuous extension of ð. If b ∈ NN,
then b ↾ i→ b, and since (ð(b ↾ i))i∈N is strictly increasing by Proposition 2.1, it
follows that ð(b) =

⋃
i∈N
ð(b ↾ i). If t ∈ N<N, then t a (i)→ t a (∞), and since

ð(t) = ð(t) a (i)∧ ð(t) a (j) for all distinct i, j ∈ N, it follows that ð(t) a (∞) =
ð(t)a (∞).
To see that these constraints actually define a continuous function, note that if

t ∈ N<N, then either ð–1(Nt) = ∅ or there exists s ∈ N<N of minimal length with
t⊑ ð(s), in which case ð–1(Nt) =Ns.
To see that ð is injective, it is enough to check that its restriction toNN is injective.

Towards this end, suppose that a,b ∈NN are distinct, fix i ∈N least for which a(i) 6=
b(i), set t= a ↾ i= b ↾ i, and observe that ð(ta (a(i)))(|ð(t)|) 6= ð(ta (b(i)))(|ð(t)|)
by Proposition 2.1, thus ð(a) and ð(b) are distinct. ⊣

Remark 2.5. It follows that the extension associated with the composition of
two ∧-embeddings is the composition of their extensions.

Given a function φ : X → Y and sets X ′ ⊆ X and Y ′ ⊇ φ(X ′), let φ ↾ X ′ → Y ′

denote the function ø : X ′ → Y ′ given by φ(x) = ø(x) for all x ∈ X ′. Compactness
ensures that if ð is a ∧-embedding, then ð and ð ↾ NN

∗ are closed continuous
embeddings. The following observations show that so too are ð ↾ NN → NN and
ð ↾ NN

∗ \N
N → NN

∗ \N
N.

Proposition 2.6. Suppose that ð : N<N →N<N is a ∧-embedding. Then ð ↾NN →
NN is closed.

Proof. It is sufficient to show that every sequence (bn)n∈N
of elements of NN for

which (ð(bn))n∈N converges to an element of NN is itself convergent to an element
ofNN. As (ð(bn) ↾ i)n∈N is eventually constant for all i ∈N, a simple induction shows
that (bn ↾ i)n∈N is also eventually constant for all i ∈ N, so (bn)n∈N

converges to an
element of NN. ⊣

Proposition 2.7. Suppose that ð : N<N → N<N is a ∧-embedding. Then ð ↾ NN
∗ \

NN → NN
∗ \N

N is closed.
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Proof. It is sufficient to show that every sequence (sn)n∈N of elements of N<N

such that (ð(sn))n∈N converges to t a (∞) for some t ∈ N<N has a subsequence
converging to an element of NN

∗ \N
N. By passing to a subsequence, we can assume

that ð(sm)∧ ð(sn) = t for all distinct m,n ∈ N. Let s be the ⊑-minimal element
of N<N for which t ⊑ ð(s). Then sm ∧ sn = s for all distinct m,n ∈ N, thus sn →
sa (∞). ⊣

A set T ⊆ N<N is ⊑-dense if ∀s ∈ N<N∃t ∈ T s⊑ t. More generally, a set T ⊆ N<N

is ⊑-dense below r ∈ N<N if ∀s ∈ N<N∃t ∈ T ra s⊑ t.

Proposition 2.8. Suppose that T ⊆N<N. Then there is a ∧-embedding ð : N<N →
N<N such that ð(N<N)⊆ T or ð(N<N)⊆∼T.

Proof. Fix S ∈ {T ,∼T} which is⊑-dense below some s ∈N<N, and recursively
construct a function ð : N<N →Ns∩S with the property that ð(t)a (i)⊑ ð(ta (i))
for all i ∈ N and t ∈ N<N. ⊣

Proposition 2.9. Suppose that C ⊆NN is a nonmeager set with the Baire property.
Then there is a ∧-embedding ð : N<N → N<N with the property that ð(NN)⊆ C.

Proof. Fix s ∈ N<N for which C is comeager in Ns ∩ NN, as well as
dense open sets Un ⊆ Ns ∩NN with the property that

⋂
n∈N
Un ⊆ C. Set Tn =

{t ∈ N<N | Nt∩NN ⊆Un} for all n ∈ N, and recursively construct a function
ð : N<N →Ns ∩N<N such that ð(Nn) ⊆ Tn for all n ∈ N and ð(t) a (i) ⊑ ð(t a (i))
for all i ∈ N and t ∈ N<N. ⊣

§3. Baire measurable functions on NN. Here we provide a basis for the class of
Baire measurable functions from NN to separable metric spaces.

Proposition 3.1. Suppose that X is a second countable topological space and
φ : NN → X is Baire measurable. Then there is a ∧-embedding ð : N<N → N<N for
which φ ◦ ð is continuous.

Proof. Fix a comeager set C ⊆ NN on which φ is continuous, and appeal to
Proposition 2.9 to obtain a ∧-embedding ð : N<N → N<N with the property that
ð(NN)⊆ C. ⊣

Proposition 3.2. Suppose that X is a metric space and φ : NN → X is
continuous. Then there is a ∧-embedding ð : N<N → N<N with the property that
diamφ(Nð(t))→ 0.

Proof. Fix a sequence (åt)t∈N<N of positive real numbers converging to zero,
note that the continuity of φ ensures that for all t ∈ N<N the set Tt = {s ∈ N≤N |
diamφ(Ns) < åt} is ⊑-dense, and recursively construct a function ð : N<N → N<N

such that ð(t) ∈ Tt for all t ∈ N<N and ð(t) a (i) ⊑ ð(t a (i)) for all i ∈ N and
t ∈ N<N. ⊣

Given a countable set I and a topological space X, we say that a sequence (Xi)i∈I
of subsets ofX converges to a point x∈X , orXi→ x, if for every open neighborhood
U of x, all but finitely many i ∈ I have the property that Xi ⊆U . We say that (Xi)i∈I
is discrete if for all x ∈ X there is an open neighborhood U of x such that all but
finitely many i ∈ I have the property that U ∩Xi = ∅.
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Proposition 3.3. Suppose that X is a metric space and φ : NN → X has the
property that diamφ(Nta(i)) → 0 for all t ∈ N<N. Then there is a ∧-embedding

ð : N<N → N<N such that (φ(Nð(ta(i))))i∈N
is convergent or discrete for all t ∈ N<N.

Proof. For each t ∈ N<N, the fact that diamφ(Nta(i))→ 0 ensures that there is
an injection ét : N→ N for which (φ(Nta(ét(i))))i∈N

is convergent or discrete. Define

ð : N<N → N<N by choosing ð(∅) ∈ N<N arbitrarily and setting ð(t a (i)) = ð(t) a
(éð(t)(i)) for all i ∈ N and t ∈ N<N. ⊣

We say that a function φ : X → Y is nowhere constant if there is no nonempty
open set U ⊆ X on which φ is constant.

Proposition 3.4. Suppose that X is a metric space and φ : NN → X is continuous
and nowhere constant. Then there is a ∧-embedding ð : N<N → N<N such that

∀i ∈ N∀t ∈ N<N φ(Nð(ta(i)))∩
⋃
j∈N\{i}φ(Nð(ta(j))) = ∅.

Proof. Clearly each φ(Nt) is infinite.

Lemma 3.5. For all t ∈ N<N, there is a function ét : N → N<N \ {∅} such that
(ét(i)(0))i∈N

is injective and the closures of φ(Ntaét(i)) and
⋃
j∈N\{i}φ(Ntaét(j)) are

disjoint for all i ∈ N. ⊣

Proof. As each φ(Nta(i)) is infinite, there are extensions bi ∈ NN of t a (i)
such that φ(bi) /∈ {φ(bj) | j < i} for all i ∈ N. Fix a subsequence (ai)i∈N

of (bi)i∈N

for which {φ(ai) | i ∈ N} is discrete. For each i ∈ N, fix åi > 0 such that φ(aj) /∈
B(φ(ai),åi) for all j ∈ N \ {i}, as well as ét(i) ∈ N<N \ {∅} with t a ét(i) ⊑ ai and
φ(Ntaét(i))⊆ B(φ(ai),åi/3).
Suppose, towards a contradiction, that there exists i ∈ N for which some x ∈ X

is in the closures of φ(Ntaét(i)) and
⋃
j∈N\{i}φ(Ntaét(j)). Then there exist j ∈ N\{i}

and y ∈ φ(Ntaét(j)) with the property that d(x,y)≤ åi/3, in which case

d(φ(ai),φ(aj))≤ d(φ(ai),x)+d(x,y)+d(y,φ(aj))

< åi/3+ åi/3+ åj/3

≤max{åi,åj},

so φ(ai) ∈ B(φ(aj),åj) or φ(aj) ∈ B(φ(ai),åi), a contradiction. ⊣

Define ð : N<N →N<N by choosing ð(∅)∈N<N arbitrarily and setting ð(ta (i)) =
ð(t)a éð(t)(i) for all i ∈ N and t ∈ N<N.

We now obtain our main result stabilizing the topological behavior of Baire
measurable functions from NN to separable metric spaces.

Theorem 3.6. Suppose that X is a separable metric space and φ : NN →X is Baire
measurable. Then there is a ∧-embedding ð : N<N → N<N such that φ ◦ ð is constant
or extends to a closed continuous embedding on NN or NN

∗ .

Proof. By Remark 2.5, we are free to replace φ by its composition with the
extension of any ∧-embedding. For example, by Proposition 3.1, we can assume
that φ is continuous.
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If there exists s ∈ N<N for which φ ↾Ns is constant, then define ð : N<N → N<N

by ð(t) = s a t for all t ∈ N<N, so φ ◦ ð is constant. Otherwise, Propositions 2.8,
3.2, 3.3, and 3.4 yield a ∧-embedding ð : N<N → N<N such that diamφ(Nð(t))→ 0,
(φ(Nð(ta(i))))i∈N is convergent for all t ∈ N<N or discrete for all t ∈ N<N, and

∀i ∈ N∀t ∈ N<N φ(Nð(ta(i)))∩
⋃
j∈N\{i}φ(Nð(ta(j))) = ∅.

As ð(Nt)⊆Nð(t) for all t ∈ N<N, it follows that

∀i ∈ N∀t ∈ N<N (φ ◦ ð)(Nta(i))∩
⋃
j∈N\{i}(φ ◦ ð)(Nta(j)) = ∅.

So by replacing φ with φ ◦ ð, we can assume that diamφ(Nt)→ 0, (φ(Nta(i)))i∈N

is convergent for all t ∈ N<N or discrete for all t ∈ N<N, and

∀i ∈ N∀t ∈ N<N φ(Nta(i))∩
⋃
j∈N\{i}φ(Nta(j)) = ∅. (†)

To see that φ is injective, note that if a,b ∈ NN are distinct, then there is a least
i ∈N for which a(i) 6= b(i). Setting t= a ↾ i= b ↾ i, it follows from (†) that φ(Nta(a(i)))
and φ(Nta(b(i))) are disjoint, thus φ(a) and φ(b) are distinct.

We next check that if (φ(Nta(i)))i∈N
is discrete for all t ∈ N<N, then φ is a

closed continuous embedding. It is sufficient to show that every sequence (bn)n∈N
of

elements of NN for which (φ(bn))n∈N
converges to some x ∈ X is itself convergent.

But a straightforward recursive argument yields b ∈ NN such that x is in the
closure of φ(Nb↾i) for all i ∈ N, so (†) ensures that x is not in the closure of⋃
j∈N\{b(i)}φ(Nb↾ia(j)) for all i ∈N, thus (bn ↾ i)n∈N

is eventually constant with value
b ↾ i for all i ∈ N, hence bn→ b.
It remains to check that if (φ(Nta(i)))i∈N

is convergent for all t ∈ N<N, then the

extension of φ to NN
∗ given by φ(t a (∞)) = limi→∞φ(Nta(i)) for all t ∈ N<N is a

closed continuous embedding. To see that φ is injective, note that if c,d ∈ NN
∗ are

distinct, then there is a least i ∈ N with c(i) 6= d(i). By reversing the roles of c and d
if necessary, we can assume that c(i) 6=∞. Set t= c ↾ i = d ↾ i, and appeal to (†) to
see that φ(c) is in the closure of φ(Nta(c(i))) but φ(d) is not, so φ(c) 6= φ(d). To see

that φ is continuous, suppose that c ∈ NN
∗ and U is an open neighborhood of φ(c),

and fix an open neighborhood V of φ(c) whose closure is contained inU. If c ∈NN,
then there exists i ∈N for which φ(Nc↾i)⊆ V , thusNc↾i is an open neighborhood of
c whose image under φ is contained in U. Otherwise, there exists t ∈ N<N for which
c= ta (∞), as well as i ∈N for which φ(Nt \

⋃
j<iNta(j))⊆V . ThenNt \

⋃
j<iNta(j)

is an open neighborhood of c whose image under φ is contained in U. ⊣

For each topological space X, let cX denote the unique function from X to the
trivial topological space {∞}. Given topological spaces X ⊆Y , define éX ,Y : X →Y
by éX ,Y (x) = x for all x ∈ X .

Proposition 3.7. Suppose that X is a separable metric space, φ : NN →X is Baire
measurable, ð : N<N → N<N is a ∧-embedding, and φ ◦ ð is constant or extends to
a closed continuous embedding on NN or NN

∗ . Then there exist φ0 ∈ {c
NN}

⋃
{é

NN,Z |

Z ∈ {NN,NN
∗}} and ø : φ0(NN)→ φ(NN) with the property that (ð ↾ NN → NN,ø) is

a closed continuous embedding of φ0 into φ.
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Proof. If φ ◦ ð is constant, then set φ0 = cNN and let ø be the unique function
from c

NN(NN) to (φ ◦ ð)(NN). If φ ◦ ð extends to a closed continuous embedding ø
on Z ∈ {NN,NN

∗}, then set φ0 = éNN,Z. ⊣

§4. Baire-class-one functions that are not ó-continuous with closed witnesses.

Here we strengthen [4, Theorem 3.1] by providing a basis for the class of non-
ó-continuous-with-closed-witnesses Baire-class-one functions from analytic metric
spaces to separable metric spaces.

Proposition 4.1. Suppose that X is a metric space and φ : NN
∗ → X has the

property that φ ↾ NN is continuous. Then there is a ∧-embedding ð : N<N → N<N

such that either (φ ◦ ð)(NN)∩ (φ ◦ ð)(NN
∗ \NN) = ∅ or φ ◦ ð is continuous at every

point of NN.

Proof. We can assume that there is no s ∈ N<N with the property that
inf {d(φ(sa b),φ(sa ta (∞))) | b ∈ NN and t ∈ N<N} > 0, since otherwise the
∧-embedding ð : N<N → N<N given by ð(t) = sa t for all t ∈ N<N has the property
that (φ ◦ ð)(NN)∩ (φ ◦ ð)(NN

∗ \NN) = ∅.

Lemma 4.2. Suppose that å > 0 and s ∈ N<N. Then there exists t ∈ N<N with
d(φ(sa ta b),φ(sa ta (∞)))< å for all b ∈ NN. ⊣

Proof. Fix ä < å and u ∈ N<N with diamφ(Nsau∩NN) < ä, and b ∈ NN and
v ∈ N<N with d(φ(sa ua b),φ(sa ua va (∞)))< å – ä, and set t= ua v. ⊣

Fix a sequence (ån)n∈N
of positive real numbers converging to zero, and recursively

construct a function ð : N<N → N<N with the property that d(φ(ð(t)a b),φ(ð(t)a
(∞)))< å|t| for all b ∈ NN and t ∈ N<N, and ð(t)a (i)⊑ ð(ta (i)) for all i ∈ N and
t ∈ N<N.

We say that a metric space is å-discrete if all distinct points have distance at least
å from one another.

Proposition 4.3. Suppose that X is a metric space, φ : NN
∗ \N

N → X, å > 0, and
t ∈ N<N. Then there is a ∧-embedding ð : N<N → Nt ∩N<N with the property that
φ ◦ ð is an injection into an å-discrete set or (φ ◦ ð)(NN

∗ \N
N) is contained in the å-ball

around a point of φ(Nt).

Proof. If for no finite set F ⊆ φ(NN
∗ \NN) and extension u of t is it the case

that φ(Nu)⊆B(F ,å), then fix an enumeration (tn)n∈N
of N<N with the property that

tm ⊑ tn =⇒ m ≤ n for all m,n ∈ N, and recursively construct ð : N<N →Nt ∩N<N

such that φ(ð(tn)a (∞)) /∈ B({φ(ð(tm)a (∞)) |m< n},å) and ð(t
′
n)a (n)⊑ ð(tn)

for all n> 0, where t′n is the maximal proper initial segment of tn.
Otherwise, there exists x ∈ φ(NN

∗ \NN) with the property that the set S = {s ∈
N<N | φ(s a (∞)) ∈ B(x,å)} is ⊑-dense below some extension u of t, in which case
we can recursively construct a function ð : N<N → Nu ∩S with the property that
ð(v)a (i)⊑ ð(va (i)) for all i ∈ N and v ∈ N<N. ⊣

Proposition 4.4. Suppose that X is a metric space and φ : NN
∗ \NN → X. Then

there is a ∧-embedding ð : N<N →N<N such that φ ◦ ð is an injection into an å-discrete
set for some å > 0 or diam(φ ◦ ð)(Nt)→ 0.
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Proof. Suppose that for no å > 0 is there a ∧-embedding ð : N<N → N<N such
that φ ◦ ð is an injection into an å-discrete set, fix a sequence (åt)t∈N<N of positive real
numbers converging to zero, and recursively apply Proposition 4.3 to the functions
φt = φ ◦ (◦n<|t| ðt↾n) to obtain ∧-embeddings ðt : N<N → Nt ∩N<N such that (φ ◦

(◦n≤|t| ðt↾n))(NN
∗ \NN) is contained in an åt-ball for all t ∈ N<N. Let ð be the ∧-

embedding obtained from applying Proposition 2.3 to (ðt)t∈N<N , and observe that
diam(φ ◦ ð)(Nt)→ 0. ⊣

Define p : NN
∗ \NN → N<N by setting p(t a (∞)) = t for all t ∈ N<N. Let N<N∗ =

N<N∪{∞} denote the one-point compactification of N<N.

Theorem 4.5. Suppose that X is an analytic metric space, Y is a separable metric
space, and φ : X→Y is a Baire-class-one function that is not ó-continuous with closed
witnesses. Then there exists φ0 ∈ {c

NN}∪{é
NN,Z | Z ∈ {NN,NN

∗}} for which there is a
closed continuous embedding of φ0∪p into φ.

Proof. By the Jayne-Rogers theorem (see, e.g., [2, Theorem 1]), we can assume
that φ is notGä-measurable. Hurewicz’s dichotomy theorem for Fó sets then yields a

closed continuous embedding ø : NN
∗ →X with (φ ◦ ø)(NN)∩ (φ ◦ø)(NN

∗ \N
N) = ∅

(see, e.g., [1, Theorem 4.2]). As (ø, id
(φ◦ø)(NN

∗ )
) is a closed continuous embedding of

φ ◦ ø into φ, by replacing the latter with the former, we can assume that X = NN
∗

and φ(NN)∩φ(NN
∗ \N

N) = ∅.
By Proposition 3.1, there is a ∧-embedding ð : N<N →N<N for which (φ ◦ ð) ↾ NN

is continuous. By composing ð with the ∧-embedding given by Proposition 4.1, we

can assume that (φ ◦ ð)(NN)∩ (φ ◦ ð)(NN
∗ \NN) = ∅ or φ ◦ ð is continuous at every

point of NN. As φ is Baire class one, the former possibility would imply that the

preimages of (φ ◦ ð)(NN) and (φ ◦ ð)(NN
∗ \NN) under φ ◦ ð are disjoint dense Gä

subsets of NN
∗ , so the latter holds. By Proposition 4.4, we can assume that either

there exists å > 0 for which (φ ◦ ð) ↾NN
∗ \N

N is an injection into an å-discrete set, or
diam(φ ◦ ð)(Nt∩(NN

∗ \N
N))→ 0. As the former possibility contradicts the facts that

(φ ◦ ð)(NN)∩ (φ ◦ ð)(NN
∗ \N

N) = ∅ and (φ ◦ ð)(NN) ⊆ (φ ◦ ð)(NN
∗ \NN), it follows

that the latter holds. By applying Proposition 4.3 with any å > 0 and t ∈ N<N, but
replacing the given metric on X by one with respect to which all pairs of distinct
points have distance at least å fromone another, we can assume that (φ ◦ ð) ↾NN

∗ \N
N

is either constant or injective.

Lemma 4.6. Suppose that (sn)n∈N
is an injective sequence of elements of N<N

and (bn)n∈N
is a sequence of elements of NN such that sn ⊑ bn for all n ∈ N. Then

dX ((φ ◦ ð)(bn), (φ ◦ ð)(sn a (∞)))→ 0.

Proof. Simply note that (φ ◦ ð)(bn)∈ (φ ◦ ð)(Nsn ∩ (NN
∗ \NN)) for all n∈N and

diam(φ ◦ ð)(Nsn ∩ (N
N
∗ \N

N))→ 0. ⊣

Along with the facts that (φ ◦ ð)(NN)∩ (φ ◦ ð)(NN
∗ \N

N) = ∅ and (φ ◦ ð)(NN) ⊆

(φ ◦ ð)(NN
∗ \NN), Lemma 4.6 ensures that (φ ◦ ð) ↾ NN

∗ \NN is not constant, and

is therefore injective. Along with the fact that (φ ◦ ð)(NN)∩ (φ ◦ ð)(NN
∗ \NN) = ∅,

Lemma 4.6 ensures that (φ ◦ ð)(NN
∗ \N

N) is discrete.
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1298 RAPHAËL CARROY AND BENJAMIN D. MILLER

By Theorem 3.6, we can assume that (φ ◦ ð) ↾ NN is constant or extends to a
closed continuous embedding on NN or NN

∗ .
We will now complete the proof by showing that there exist φ0 ∈ {c

NN}∪{é
NN,Z |

Z ∈ {NN,NN
∗}} andø : φ0(NN

∗ )∪N<N → φ(X) for which (ð ↾NN
∗ →NN

∗ ,ø) is a closed
continuous embedding of φ0∪p into φ.
If (φ ◦ ð) ↾ NN is constant with value y ∈ Y , then set φ0 = cNN , and note that the

extension ø of φ ◦ ð ◦ p–1 to N<N∗ given by ø(∞) = y is injective. As Lemma 4.6
ensures that (φ ◦ ð)(sn a (∞))→ y for every injective sequence (sn)n∈N

of elements
of N<N, it follows that ø is continuous, so the compactness of N<N∗ ensures that ø is
a closed continuous embedding.
If (φ ◦ ð) ↾ NN is a closed continuous embedding, then set φ0 = éNN,NN , and note

that the extension ø of φ ◦ ð ◦ p–1 to N≤N given by ø ↾ NN = (φ ◦ ð) ↾ NN is a
continuous injection. To see that it is closed, it is enough to show that every injective
sequence (an)n∈N

of elements of N≤N for which (ø(an))n∈N
converges to some point

y∈Y has a subsequence converging to a point ofNN. AsN≤N

∗ is compact, by passing
to a subsequence, we can assume that (an)n∈N

converges to a point of N≤N

∗ . As every
point of N<N is isolated, it therefore converges to a point of NN

∗ . And if there exists
t∈N<N for which an→ ta (∞), then there are extensions bn ∈NN of an for all n∈N,
in which case bn→ ta (∞) andø(bn)→ y by Lemma 4.6. Fix n∈N sufficiently large
that (φ ◦ ð)(bm) 6= y for all m ≥ n, and observe that {bm |m≥ n} is a closed subset
ofNN whose image under φ ◦ ð is not closed, contradicting the fact that (φ ◦ ð) ↾NN

is closed.
If (φ ◦ ð) ↾ NN extends to a closed continuous embedding ø′ on NN

∗ , then set φ0 =

é
NN,NN

∗
, and note that the extensionø of φ ◦ ð ◦ p–1 toN≤N

∗ given byø ↾NN
∗ =ø

′ ↾NN
∗

is injective. To see that it is continuous, suppose that (tn)n∈N is an injective sequence
of elements of N<N converging to ta (∞) for some t ∈N<N, fix bn ∈Ntn ∩NN for all
n ∈N, and observe that the continuity of ø′ ensures that ø(bn)→ ø(ta (∞)), thus
Lemma 4.6 implies that ø(tn)→ ø(ta (∞)). As N

≤N

∗ is compact, it follows that ø
is a closed continuous embedding.

§5. Functions on NN

*
\NN. Here we provide a basis for the class of all functions

from NN
∗ \N

N to analytic metric spaces.

Proposition 5.1. Suppose that X is a topological space, φ : NN
∗ \ NN → X

is injective, and x ∈ X. Then there is a ∧-embedding ð : N<N → N<N such that
x /∈ (φ ◦ ð)(NN

∗ \N
N).

Proof. Fix s ∈ N<N such that x /∈ φ(Ns), and define ð : N<N → N<N by ð(t) =
sa t for all t ∈ N<N. ⊣

Proposition 5.2. Suppose that X is a metric space and φ : NN
∗ \NN → X. Then

there is a ∧-embedding ð : N<N →N<N with the property that ((φ ◦ ð)(ta (i,∞)))i∈N

is convergent or {(φ ◦ ð)(ta (i,∞)) | i ∈ N} is closed and discrete for all t ∈ N<N.

Proof. For each t ∈ N<N, there is an injection ét : N → N for which (φ(t a
(ét(i),∞)))i∈N is convergent or {φ(t a (ét(i),∞)) | i ∈ N} is closed and discrete.
Define ð : N<N → N<N by choosing ð(∅) ∈ N<N arbitrarily and setting ð(t a (i)) =
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ð(t)a (éð(t)(i)) for all i ∈N and t ∈N<N, and note that (φ ◦ ð)(ta (i,∞)) = φ(ð(ta
(i))a (∞)) = φ(ð(t)a (éð(t)(i),∞)) for all i ∈ N and t ∈ NN. ⊣

Proposition 5.3. Suppose that X is a metric space, φ : NN
∗ \NN → X, F ⊆ X is

finite, and t ∈N<N. Then there is a ∧-embedding ð : N<N →Nt∩N<N such that either
((φ ◦ ð)(ua (∞)))u∈N<N converges to an element of F or the closure of (φ ◦ ð)(N

N
∗ \N

N)
is disjoint from F.

Proof. If the set Så = {s ∈ N<N | φ(sa (∞)) ∈ B(F ,å)} is ⊑-dense below t
for all å > 0, then there exist an extension u of t and x ∈ F such that the set
Så,x = {s ∈ N<N | φ(sa (∞)) ∈ B(x,å)} is ⊑-dense below u for all å > 0. Fix a
sequence (åv)v∈N<N of positive real numbers converging to zero, and recursively
construct a function ð : N<N → Nu ∩N<N such that ð(v) ∈ Såv,x for all v ∈ N<N

and ð(v) a (i) ⊑ ð(v a (i)) for all i ∈ N and v ∈ N<N, and observe that (φ ◦ ð)
(va (∞))→ x.
Otherwise, fix å > 0 and an extension u of t with the property that Nu ∩Så = ∅,

define ð : N<N → Nu ∩N<N by ð(v) = u a v, and note that the closure of (φ ◦
ð)(NN

∗ \N
N) is disjoint from F. ⊣

For the rest of this section, it will be convenient to fix an enumeration (tn)n∈N
of

N<N such that tm ⊑ tn =⇒ m≤ n for all m,n ∈ N.

Proposition 5.4. Suppose that X is a metric space and φ : NN
∗ \NN → X. Then

there is a∧-embedding ð : N<N →N<N with the property that ((φ ◦ ð)(ta (∞)))t∈N<N

converges or for no natural numbers m < n is (φ ◦ ð)(tm a (∞)) or a limit point of
{(φ ◦ ð)(tm a (i,∞)) | i ∈ N} in the closure of (φ ◦ ð)(Ntn).

Proof. Suppose that for no ∧-embedding ð : N<N → N<N is the sequence
((φ ◦ ð)(ta (∞)))t∈N<N convergent. By Proposition 5.2, we can assume that
(φ(ta (i,∞)))i∈N

is convergent or {φ(ta (i,∞)) | i ∈ N} is closed and discrete for
all t∈N<N. By recursively applying Lemma 5.3 to the functions φt = φ ◦ (◦k<|t| ðt↾k),
we obtain ∧-embeddings ðt : N<N →Nt ∩N<N such that there do not exist natural
numbers m < n for which (φ ◦ (◦k≤|tm| ðtm↾k))(tm a (∞)) or a limit point of
{(φ ◦ (◦k≤|tm| ðtm↾k))(tm a (i,∞)) | i ∈ N} in the closure of (φ ◦ (◦k≤|tn| ðtn↾k))(Ntn).
Let ð be the ∧-embedding obtained from applying Proposition 2.3 to (ðt)t∈N<N , and
observe that for no natural numbers m< n is it the case that (φ ◦ ð)(tm a (∞)) or a
limit point of {(φ ◦ ð)(tm a (i,∞)) | i ∈ N} in the closure of (φ ◦ ð)(Ntn). ⊣

Theorem 5.5. Suppose that X is an analytic metric space and φ : NN
∗ \N

N → X.
Then there is a ∧-embedding ð : N<N →N<N such that φ ◦ ð is constant, φ ◦ ð extends
to a closed continuous embedding on NN

∗ \N
N or NN

∗ , or φ ◦ ð ◦ p
–1 extends to a closed

continuous embedding on N<N, N<N∗ , N
≤N

∗ \NN, N≤N, or N≤N

∗ .

Proof. As before, we will repeatedly precompose φ with appropriate ∧-
embeddings, albeit this time so as to stabilize the behavior of the functionø=φ ◦ p–1,
as opposed to that of the function φ itself. By applying Proposition 4.3 with any
å > 0 and t ∈N<N, but replacing the given metric on X by one with respect to which
all pairs of distinct points have distance at least å from one another, we can assume
that ø is either constant or injective. As φ is constant in the former case, we can
assume that we are in the latter.
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By Proposition 4.4, we can ensure that ø(N<N) is closed and discrete or
diamø(Nt)→ 0. As ø is a closed continuous embedding in the former case, we
can assume that we are in the latter.
Letø be the extension ofø to the setD=N<N∪{b∈NN| limi→∞ø(b ↾ i) exists}∪

{ta (∞) ∈ NN
∗ \N

N| limi→∞ø(ta (i)) exists} given by ø(b) = limi→∞ø(b ↾ i) and
ø(t a (∞)) = limi→∞ø(t a (i)) for all b ∈ D∩NN and t a (∞) ∈ D∩ (NN

∗ \NN).
Note that D could potentially be any set of the form N<N ∪A, where A ⊆ NN

∗ is
analytic (simply consider the inclusion map from N<N to N≤N∪A).
By Proposition 5.2, we can assume that {ø(ta (i)) | i ∈ N} has a limit point

=⇒ ta (∞) ∈ dom(ø) for all t ∈ N<N.
As each point of N<N is isolated, diamø(Nb↾i) → 0 for all b ∈ NN, and

diamø(Nta(i))→ 0 for all t ∈ N<N, it follows that ø is continuous. To see that
ø is closed, it is sufficient show that every injective sequence (cn)n∈N

of points in
the domain of ø for which (ø(cn))n∈N

is convergent has a subsequence converging
to a point in the domain of ø. By passing to a subsequence, we can assume that
the sequence converges to a point of N≤N

∗ . As each point of N<N is isolated, the
sequence converges to a point of NN

∗ , so the facts that diamø(Nb↾i)→ 0 for all
b ∈NN, diamø(Nta(i))→ 0 for all t ∈N<N, and {ø(ta (i)) | i ∈N} has a limit point
=⇒ t a (∞) ∈ dom(ø) for all t ∈ N<N ensure that it converges to a point of the
domain of ø.
By Proposition 2.8, we can assume that one of the following holds:

(1) NN
∗ \N

N ⊆ dom(ø) and ∀t ∈ N<N ø(t) = ø(ta (∞)).
(2) NN

∗ \N
N ⊆ dom(ø) and ∀t ∈ N≤N ø(t) 6= ø(ta (∞)).

(3) (NN
∗ \N

N)∩dom(ø) = ∅.

As the domain of ø is analytic, so too is its intersection with NN. It follows that the
latter intersection has the Baire property, so Proposition 2.9 allows us to assume
that one of the following holds:

(a) The domain of ø is disjoint from NN.
(b) The domain of ø contains NN.

In the special case that condition (b) holds, Theorem 3.6 allows us to assume that
ø ↾ NN is either constant or injective.
Proposition 5.4 allows us to assume that (ø(t))t∈N<N converges to some x ∈ X or

for no natural numbers m< n is ø(tm) or ø(tm a (∞)) in the closure of ø(Ntn). In
the former case, Proposition 5.1 allows us to assume that ø(N<N) is discrete, so the
extension of ø to N<N∗ sending∞ to x is a closed continuous embedding, thus we
can assume that we are in the latter.

Lemma 5.6. Suppose that c,d ∈ dom(ø) are distinct but ø(c) =ø(d). Then there
exists t ∈ N<N such that {c,d}= {t, ta (∞)}.

Proof. To see that ø ↾NN
∗ \N

N is injective, observe that ifm< n, both tm a (∞)
and tn a (∞) are in the domain of ø, and moreover ø(tm a (∞)) = ø(tn a (∞)),
then ø(tm a (∞)) is in the closure of ø(Ntn), a contradiction.
To see that ø ↾NN is injective when NN is contained in the domain of ø, note that

otherwise it is constant, and let x be this constant value. Then for each t ∈ N<N,
there is a sequence (ui)i∈N of elements of N<N such that ø(t a (i) a (ui))→ x, so
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the fact that diamø(Nta(i))→ 0 ensures thatø(ta (∞)) = x, contradicting the fact

that ø ↾ NN
∗ \N

N is injective.
To see that ø(NN)∩ø(N<N) = ∅, note that if b ∈ dom(ø)∩NN, t ∈ N<N, and

ø(b) =ø(t), then there exist m< n with tm = t and tn ❁ b, so ø(tm) is in the closure
of ø(Ntn), a contradiction.
To see that ø(NN)∩ø(NN

∗ \NN) = ∅, note that if b ∈ dom(ø)∩NN, t ∈ N<N,
ta (∞) ∈ dom(ø), and ø(b) = ø(ta (∞)), then there exist m< n with tm = t and
tn ❁ b, in which case ø(tm a (∞)) is in the closure of ø(Ntn), a contradiction.
Observe finally that if s, t∈N<N are distinct, ta (∞)∈ dom(ø), andø(s) =ø(ta

(∞)), then there existm 6= n such that tm = s and tn = t. Then ø(tm) is in the closure
of ø(Ntn) and ø(tn a (∞)) is in ø(Ntm), a contradiction. ⊣

If (1a) or (1b) holds, then ø ↾ NN
∗ \N

N or ø ↾ NN
∗ is an extension of φ to a closed

continuous embedding. If (2a), (2b), (3a), or (3b) holds, then ø is an extension of
ø to a closed continuous embedding on N≤N

∗ \NN, N≤N

∗ , N<N, or N≤N.

Proposition 5.7. Suppose that X is an analytic metric space, φ : NN
∗ \NN → X,

ð : N<N → N<N is a ∧-embedding, and φ ◦ ð is constant, φ ◦ ð extends to a closed
continuous embedding on NN

∗ \N
N or NN

∗ , or φ ◦ ð ◦ p
–1 extends to a closed continuous

embedding on N<N, N<N∗ , N
≤N

∗ \NN, N≤N, or N≤N

∗ . Then there exist φ0 ∈ {c
NN
∗\N

N}∪

{é
NN
∗\N

N,Z |Z ∈ {NN
∗ \NN,NN

∗}} ∪ {é
N<N,Z ◦ p|Z ∈ {N<N,N<N∗ ,N

≤N

∗ \NN,N≤N,N≤N

∗ }}

andø : φ0(NN
∗ \NN)→ φ(NN

∗ \NN) with the property that (ð ↾NN
∗ \N

N →NN
∗ \N

N,ø)
is a closed continuous embedding of φ0 into φ.

Proof. Ifφ ◦ ð is constant, then setφ0= cNN
∗\N

N and letø be the unique function

from c
NN
∗\N

N(NN
∗ \N

N) to (φ ◦ ð)(NN
∗ \N

N). If φ ◦ ð extends to a closed continuous

embeddingø onZ ∈ {NN
∗ \N

N,NN
∗}, then setφ0= éNN

∗\N
N,Z. And ifφ ◦ ð ◦ p

–1 extends

to a closed continuous embedding ø on Z ∈ {N<N,N<N∗ ,N
≤N

∗ \NN,N≤N,N≤N

∗ }, then
set φ0 = éN≤N,Z ◦ p. ⊣

§6. Borel functions that are not Baire class one. Here we provide bases for the
classes of non-Baire-class-one Borel functions and non- ó-continuous-with-closed-
witnesses Borel functions between analytic metric spaces.

Proposition 6.1. Suppose that X is a metric space and φ : NN
∗ → X has the

property that φ ↾ NN is continuous and φ(NN) * φ(NN
∗ \NN). Then there is a ∧-

embedding ð : N<N →N<N with the property that (φ ◦ ð)(NN)∩(φ ◦ ð)(NN
∗ \NN) = ∅.

Proof. Fix b ∈ NN for which φ(b) is not in the closure of φ(NN
∗ \NN). Then

there is an open neighborhood U of φ(b) disjoint from φ(NN
∗ \NN), as well as an

open neighborhood V of φ(b) whose closure is contained in U, in which case the
continuity of φ ↾NN yields a proper initial segment s of b for which φ(Ns∩NN)⊆V .
Then the ∧-embedding ð : N<N → N<N given by ð(t) = s a t for all t ∈ N<N is as
desired. ⊣

Given φ
NN : NN → X and φ

NN
∗\N

N : NN
∗ \NN → Y , let φ

NN

⊔
φ
NN
∗\N

N denote the

corresponding function from NN
∗ to the disjoint union X

⊔
Y .
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Theorem 6.2. Suppose that X and Y are analytic metric spaces and φ : X → Y is
a Borel function that is not Baire class one. Then there exist φ

NN ∈ {c
NN}∪{é

NN,Z |Z ∈

{NN,NN
∗}} and φNN

∗\N
N ∈ {c

NN
∗\N

N}∪{é
NN
∗\N

N,Z |Z ∈ {NN
∗ \N

N,NN
∗}}∪{é

N<N,Z ◦ p|Z ∈

{N<N,N<N∗ ,N
≤N

∗ \NN,N≤N,N≤N

∗ }} for which there is a closed continuous embedding
of φ

NN

⊔
φ
NN
∗\N

N into φ.

Proof. Hurewicz’s dichotomy theorem for Fó sets yields a closed continuous

embeddingø : NN
∗ →X with (φ ◦ø)(NN)∩(φ ◦ ø)(NN

∗ \NN) = ∅. As (ø, id
(φ◦ø)(NN

∗ )
)

is a closed continuous embedding of φ ◦ ø into φ, by replacing the latter with the

former, we can assume that X = NN
∗ and φ(N

N)∩φ(NN
∗ \NN) = ∅.

By Proposition 3.1, there is a ∧-embedding ð : N<N →N<N for which (φ ◦ ð) ↾ NN

is continuous. By composing ð with the ∧-embedding given by Proposition 6.1,

we can assume that (φ ◦ ð)(NN)∩ (φ ◦ ð)(NN
∗ \NN) = ∅. By composing ð with the

∧-embedding given by Theorem 3.6, we can assume that (φ ◦ ð) ↾ NN is constant or
extends to a closed continuous embedding on NN or NN

∗ . And by composing ð with
the ∧-embedding given by Theorem 5.5, we can assume that (φ ◦ ð) ↾ NN

∗ \N
N is

constant, (φ ◦ ð) ↾NN
∗ \N

N extends to a closed continuous embedding onNN
∗ \N

N or

NN
∗ , or φ ◦ ð ◦ p

–1 extends to a closed continuous embedding onN<N,N<N∗ ,N
≤N

∗ \NN,

N≤N, or N≤N

∗ .
By Proposition 3.7, there exist φ

NN ∈ {c
NN} ∪ {é

NN,Z | Z ∈ {NN,NN
∗}} and

ø
NN : φNN(NN) → φ(NN) for which (ð ↾ NN → NN,ø

NN) is a closed continuous
embedding of φ

NN into φ ↾ NN. By Proposition 5.7, there exist φ
NN
∗\N

N ∈ {c
NN
∗\N

N}∪

{é
NN
∗\N

N,Z|Z ∈ {NN
∗ \N

N,NN∗}}∪{é
N<N,Z ◦ p}|Z ∈ {N<N,N<N∗ ,N

≤N

∗ \NN,N≤N,N≤N

∗ }}

and ø
NN
∗\N

N : φNN
∗\N

N(NN
∗ \NN) → φ(NN

∗ \NN) for which (ð ↾ NN
∗ \ NN → NN

∗ \

NN,ø
NN
∗\N

N) is a closed continuous embedding of φNN
∗\N

N into φ ↾ NN
∗ \NN. Then

(ð ↾ NN
∗ → NN

∗ ,øNN

⊔
ø

NN
∗\N

N) is a closed continuous embedding of φNN

⊔
φ
NN
∗\N

N

into φ. ⊣

Theorems 4.5 and 6.2 together provide the promised twenty-seven element basis
under closed continuous embeddability for the class of non-ó-continuous-with-
closed-witnesses Borel functions between analytic metric spaces.
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