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SUMMARY
This paper illustrates basic concepts of real-time control
systems through the application of a real-time single-
processor computing environment for the control of a
robotic arm. The paper describes elements for the selection
of the real-time architecture, the control algorithm and the
graphical user interface. The system provides an opportu-
nity for users to verify the robot performance by changing
on-line the controller parameters and the shape of the
desired motion.
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1. INTRODUCTION
Besides robotics is nowadays of high importance as a
technological tool in a number of automation processes, it
also appears as an attractive discipline to illustrate important
engineering concepts involved in control systems and
computer sciences.

A well suited definition capturing the essence of robots is
that evoked by Brady1 which establishes that “a robot is a
surprisingly animate machine”. To this family belong the
mobile robots – basically legged and wheeled machines –
and robot manipulators. The latter class, being by far the
most utilized in industrial applications, is of our concern in
this paper.

Robot manipulators offer interesting theoretical and
practical challenges to control system designers. The
nonlinear nature of their dynamical behavior is well suited
for the application of advanced control techniques such as
nonlinear control. On the other hand, implementation of
control systems for robot manipulators dealing with high
speed tasks, requires dedicated hardware or control software
based on real-time features.

Real-time systems arise from the intersection of control
and computing engineering. A real-time system is one for
which it is absolutely imperative that the response occurs
within the required deadline. Control engineers need real-
time systems to implement their systems, so most practical
control systems are real-time systems.2

The objective of this paper is to illustrate distinctive
concepts of real-time control systems using as a testbed a
robotic arm. To this end, a real-time control system

implemented on a single-processor computer has been
developed based on Windows NT’s real-time extension,3

RTX, together with a graphical user interface built using the
TILCON Real-Time Developer.4 This system widely
exploits the features of real-time systems such as concurrent
processes executed at prescribed rates and interprocess
communication.

The controlled real-world system is a direct-drive
mechanical arm formed by two joints (see Figure 1). A
direct-drive arm is a mechanical arm in which the shafts of
actuated joints are directly coupled to the rotors of motors
with high torque.5 The “computed torque control” – which
is a well known model-based control scheme for motion
control of manipulators in joint space6 – has been utilized as
control algorithm. It was coded in C language and executed
every 2.5 [msec] on a Windows NT platform thanks to the
deterministic responses of the RTX module.

2. REAL-TIME CONTROL ARCHITECTURE
Important features of real-time systems are concurrent
activities, interprocess communication, and especially, tim-
ing requirements which lead to a deterministic and
predictable behaviour. Real-time systems must respond
accurately to internal and external events. Events can be
periodic or nonperiodic but each event requires a certain
amount of processing time and has a defined deadline.

In practice, control algorithms are coded as digital control
programs which must be executed at specified rates.
Depending on the nature of the controlled real process, the
rates are ranged between several Hertz and thousand of

*Work partially supported by CONACyT grant 225080-5
32613-A, and project CYTED. Fig. 1. Experimental arm.
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Hertz. The critical situations – from implementation
viewpoint – occur for those demanding high sampling
rates.

There are typically two hardware platform architectures
to implement real-time control systems:7

• The traditional approach consists of two single-processor
computers as illustrated in Figure 2: a general purpose
computer called the “host” and an embedded one –
interfaced to the host via the host’s bus or a serial
communication link – based, for example, on a Digital
Signal Processor (DSP) equipped with an acquisition
board. The control program is developed in the host and
then downloaded to the DSP computer using a cross-
development system. The control algorithm is executed in
the DSP computer at the specified rate and data is quickly
– but typically at a slower rate – transferred to the host
where a graphical user interface is executed allowing the
user to perform monitoring functions, start and stop the
control algorithm, and modify the control gains.

• The second approach is based on one single-processor
computer equipped with an acquisition board (without
any processor included) as depicted in Figure 3. The
computer system is based on either a real-time environ-
ment or a Real-Time Operating System (RTOS) in order
to keep the critical deterministic timing requirements of
the control algorithms.

The control program as well as the graphical user
interface are both executed in the single-processor system.
Thanks to the real-time environment or the RTOS, the
control algorithm can be executed in the computer at the
specified high rate, and in a concurrent way – but at low
priority and rate – the data are transferred via the
interprocess communication procedures to the graphical
user interface where monitoring and control gain mod-
ification can be achieved on-line.

Nowadays, the availability of real-time environments for
MS-Windows such as RTX, Hyperkernel, WinRT, and, on
the other hand, PC-compatible RTOS such as QNX,
LynxOS, RTLinux, allow the use of PC-compatible single
CPU cards to have deterministic responses. Hence, control
programs demanding to run at high frequencies with
deterministic response, and non-real-time processes –
graphical user interfaces – can be executed concurrently on
one processor.

Combining the greater processing power of actual PC-
compatible CPUs with either real-time environments or
RTOSs, provides the basis for a single-processor archi-
tecture that can hold all the functionality of multiprocessor
architectures. This is the main reason why we have decided
to use the approach based on a single computer architecture
supported by a real-time environment for the implementa-
tion of our real-time control system.

Fig. 2. Traditional two-loops real-time control system.

Fig. 3. Single-CPU real-time control system.
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Having reviewed the existing real-time software technol-
ogy, it has been decided to use MS Windows NT operating
system together with VenturCom’s real-time extension,
RTX, as the software platform. RTX enables Windows NT
to function as both a general-purpose operating system and
a high-performance real-time operating system on the same
computer. Also, RTX offers key real-time features such as

• High execution rates for periodic processes (10 kHz)
• Complete range of process priorities from the lower level

0 to the higher 127
• Interprocess communication by shared memory

The hardware is completed by a ServoToGo’s I/O card
(without any processor included) installed into the host’s
ISA bus. The I/O facilities of the card that we are using are
encoder inputs, analog outputs, and digital outputs.

Our application to robotics consists of controlling the
motion of a mechanical arm (see Figure 1) utilizing a certain
control algorithm. The desired motion of the arm as well as
the control algorithm possess parameters related to the
desired motion shape and the accuracy of the arm tracking
the desired motion. Thus, these parameters have important
meaning for the user who may want to modify them. Also,
monitoring variables of the arm such as applied torques,
joint velocities, and position tracking errors are of crucial
importance.

Four concurrent processes have been developed for our
application (see Figure 4):

• The first process, R_TIME, is a real-time periodic
application written in C++ language devoted to generate
the clock signal. This process must be executed every 2.5
[msec] at the highest priority 127. The real-time variable
real-time containing the elapsed time is then updated
every 2.5 [msec] and used by both the control algorithm
and the graphical user interface.

• The second process, CONTROL, is also a real-time
periodic application written in C++ language dealing
with the control algorithm. Basically, this application
performs the following sequence of actions:

– Joint positions are “read” through the encoder inputs
of the I/O card.

– Joint velocities are estimated and then the control
actions are computed according to the control
algorithm which will be described later on.

Control actions are “written” in the I/O card through
the analog outputs.

These events are synchronized by the real-time variable,
hence the application CONTROL runs every 2.5 [msec]
at high priority 126. A number of variables such as joint
positions, joint velocities and applied torques are shared
with the graphical user interface. Also variables corre-
sponding to the controller gains and the shape parameters
of the desired motion come from the interface to be used
in the control algorithm.

• The third process, INTERFACE, is a non-real-time non-
periodic application written in C++ language serving as
a communication bridge with the Graphical User Interface
(GUI). The GUI has been generated using the TILCON’s
Real-Time Graphics Editor which is a tool for designing
object-oriented and event driven GUIs.4 This application
will be described later in this paper.

• The fourth process, MANAGER, is a low priority
application written in C++ language invoked every
0.5 [sec]. The role of MANAGER is to start and stop the
previous described processes by using the start/stop
variable shared with all the processes.

3. MECHANICAL SYSTEM
A vertical direct-drive arm with two rigid links (see Figure
1) has been designed and built to enable real-time control
experiments. The arm links were made of 6061 aluminium,
and in extent they are 0.98 [m] long from shoulder axis to
the tip.

High-torque, brushless direct-drive servos are used to
drive the joints without gear reduction. The motors used in
the experimental arm are the models DM1200-A and
DM1015-B from Parker Compumotor for the shoulder and
elbow joints respectively. For this application the servos are
operated in “torque mode”, so the motors act as torque
sources and they accept an analog voltage as a reference of
torque signal. According to the actuator manufacturer, in
this configuration the DM1200-A motor is capable of
delivering a maximum torque of 200 [Nm], and the
DM1015-B motor delivers up to 15 [Nm].

Position information is obtained from incremental encod-
ers located on the motors, which have a resolution of
1024000 [pulses/rev] for the first motor and 655360 [pulses/
rev] for the second one, and velocity information is obtained
by numerical differentiation of the position signals.

The dynamics of our robot arm has the general struc-
ture:6

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(q̇) = t (1)

where in our application q is the 23 1 vector of joint
displacements, q̇ is the 23 1 vector of joint velocities, t is
the 23 1 vector of applied torque inputs, M(q) is the 23 2
symmetric positive definite manipulator inertia matrix,
C(q, q̇) is the 23 2 matrix of centripetal and Coriolis
torques, g(q) is the 23 1 vector of gravitational torques due
to gravity, and f(q̇) is the 23 1 vector of friction torques.

Considering the values of the physical parameters of our
robot arm, the corresponding entries of the robot dynamics
are:8Fig. 4. Block diagram of the whole software system.
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M(q) = F2.351 + 0.168 cos (q2)
0.102 + 0.084 cos (q2)

0.102 + 0.084 cos (q2)
0.102 G ,

(2)

C(q, q̇) = F20.168 sin (q2) q̇2

0.084 sin (q2) q̇1

20.084 sin (q2) q̇2

0 G , (3)

g(q) = 9.81 F3.921 sin (q1) + 0.186 sin (q1 + q2)
0.186 sin (q1 + q2)

G , (4)

f(q̇) = F2.288q̇1 + 7.50sgn(q̇1)
0.175q̇2 + 1.734sgn(q̇2)

G . (5)

4. CONTROL ALGORITHM AND MOTION
SPECIFICATION
The primary goal of motion control in joint space is to make
the robot joint positions q track a given time-varying desired
joint position qd. Rigorously, the motion control objective in
joint space is achieved provided that

lim
t→∞

~q(t) = 0 (6)

where ~q(t) = qd (t) – q(t) denotes the joint position error.
A number of control schemes for achieving the motion

control objective in joint space (6) have been reported in the
literature. This paper concerns with the “computed torque
control” which is a simple and natural appealing motion
control scheme, whose practical effectiveness has been
reported for more than two decades.

Let us introduce the following notation: Let qd, q̇d, q̈d, be
the desired joint position, velocity, and acceleration trajecto-
ries, which are chosen as bounded functions. The joint
position and velocity errors are denoted by ~q = qd – q and
~̇q = q̇d – q̇, respectively, Kp and Kv are 23 2 symmetric
positive definite matrices (Proportional and Derivative gain
matrices respectively used in the controller).

Computed torque control is a special application of
feedback linearization of nonlinear systems, which has been
popular in modern systems theory; this is why this control
technique is also called6 “inverse dynamics control”. This
control scheme uses the robot dynamics in the feedback
loop for linearization and decoupling. The computed torque
controller is given by the following equation6

t = M(q)[q̈d + Kv
~̇q + Kp

~q ] + C(q, q̇)q̇ + g(q) + f (q̇). (7)

If the manipulator and friction dynamics models are exact,
then the computed torque controller achieves dynamic
decoupling of all the joints using nonlinear feedback,
resulting in an asymptotically stable linear time-invariant
error dynamics, and thus asymptotically exact tracking.

To show this, let us first compute the close-loop system
by substituting the control action t from (7) into the right-

hand side of the robot dynamics (1). This yields the
closed-loop linear time-invariant differential equation:

~̈q + Kv
~̇q + Kp

~q = 0

which can also be written in terms of the state vector

F~q T ~̇q TG as

d
dt F ~q

~̇q G = F 0
2Kp

I
2Kv

G F ~q
~̇q G . (8)

The unique equilibrium point of this system is the origin of

the state space F ~qT ~̇qTGT

= 0 P R4. The stability of this

equilibrium can be concluded by invoking the Lyapunov’s
direct method (see Reference 9) by means of the following
Lyapunov function10

V(~q, ~̇q) = 1
2 F ~q

~̇q GT F Kp + «Kv

«I
«I
I G F ~q

~̇q G (9)

where « is any positive constant satisfying lmin {Kv} > « > 0
with the symbol lmin{Kv} denoting the smallest eigenvalue
of the symmetric matrix Kv. This condition ensures that (9)
is globally positive definite.

The time derivative along the trajectories of the closed-
loop system (8) is given by

V̇(~q, ~̇q) = 2F ~q
~̇q GT F «Kp

0
0

Kv 2«I G F ~q
~̇q G . (10)

The global asymptotic stability is straightforward concluded
from the Lyapunov’s direct method because the Lyapunov
function (9) is globally positive definite whereas its time
derivative (10) is globally negative definite. One con-
sequence of this result is that the state vector composed by
~̇q(t) and ~q(t) vanishes as t→∞ . This implies that the motion
control objective (6) is guaranteed.

In practice, however, the presence of unmodeled high-
frequency dynamics and noise in the velocity estimation
causes deviations in trajectory tracking, so the best we can
expect is ultimated boundedness of the state vector.

The control law (7) has been coded in C language
considering the gain matrices Kp and Kv as diagonal, whose
entries are denoted by kp1, kp2, and kv1, kv2, respectively.
Although the closed-loop stability is guaranteed for all
positive value of the gains, in practice the values of these
parameters affect the control system performance. The user
of our system can corroborate – from position error plots –
the effect of changing these parameters from the GUI,
where they are restricted to the following intervals:

kp1 P (200.0, 600.0) [Nm/rad],
kp2 P (600.0, 1500.0) [Nm/rad],
kv1 P (20.0, 60.0) [Nm sec/rad],
kv2 P (40.0, 100.0) [Nm sec/rad].
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4.1. Motion specification
An important constituent for experimental evaluation of
robot control algorithms is the choice of a class of desired
trajectories qd(t) for the robot motion. The desired trajectory
should be chosen to exhibit motion profile without abrupt
changes in position, velocity and acceleration from the
beginning to the end of the motion, while preventing the
actuators from saturating. The expression of the desired
trajectory used in this project is similar to those proposed in
References 11 and 12, that is

qd(t) = F 45.0[12e22.0 t3
] + a1[12e22.0 t3

] sin (v1t)
60.0[12e21.8 t3

] + a2[12e21.8 t3
] sin (v2t)

G [deg]

(11)

where a1 and a2 denote the amplitude of the steady state sine
functions whereas v1 and v2 represent the frequency of the
desired trajectory for the shoulder and elbow joints
respectively.

The user can modify the value of amplitude and
frequency of the desired motion directly from the graphical
interface within the following intervals:

a1 P (7.0, 15.0) [deg],
a2 P (100.0, 150.0) [deg],
v1 P (0.0, 20.0) [rad/sec],
v2 P (0.0, 5.0) [rad/sec].

The reason for the choice of this trajectory structure (11)
was twofold. First, at the beginning of the tests – time t = 0
[sec] – the desired joint positions qd, velocities q̇d and
accelerations q̈d are zero. Since the arm starts at rest, then
the control system will present nice smooth transient.

Second, evaluation of the robot dynamics (1) along the
desired trajectory offers a good idea about the “ideal” torque
inputs needed to match the desired motion. For this
trajectory, the “ideal” torques are around 85% of the motor
capabilities — 200 [Nm] and 15 [Nm], respectively — .

5. INTERFACES
An informative yet simple graphic interface is essential for
a robot control system to be productive and easy to use. The
challenge is to provide enough information to make the
interpretation easy while minimizing data transmission and
maintaining a simple layout.

Good interface design is largely an iterative process, that
can be simplified by the use of suitable computing tools. We
used the Graphics Editor of the TILCON Real-Time
Developer, which is a tool for designing object-oriented and
event-driven GUIs.4 Although only one interface is required
in the system, we have decided to develop two interfaces.
Figures 5 and 6 show these interfaces.

The first interface, depicted in Figure 5, is composed by
two sections. The upper section is devoted to monitor the
joint position errors ~q1 and ~q2 by plotting their time
evolution. Also, this section contains three icons for
energizing the robot actuators, starting and finishing the
control algorithm, and quitting the whole system.

The lower section is divided into four panels. The
“Torques” and ”Velocities” panels display the correspond-
ing signals t1, t2 and q̇1, q̇2, from the robot controller. The
other two panels, “Controller gains” and ‘Trajectory
parameters”, let the user modify the controller gains kp1, kp2,
kv1, and kv2, as well as the desired motion amplitudes and
frequencies a1, a2, and v1, v2, respectively. This is

Fig. 5. Two-charts Graphical user interface.
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performed either by using sliding bars or directly from the
keyboard.

The second interface, shown in Figure 6, is also
composed by two sections. The main difference with respect
to the first interface in Figure 5 is that in the upper section
the two plots have been replaced by an oscilloscope-like
screen with two input channels. The functionality of this
oscilloscope is set through the upper right panel. This panel
contains different options that let the user specify the
display settings, such as the plot type (discrete dots,
continuous line of filled curve), the mode (scrolling or
stripping chart), the channel to display (either q̃1, q̃2, or
both), or the number of points per division of the screen.

The usage of both interfaces is far simple, so letting the
users the opportunity to corroborate in an easy way, some
important facts about robot motion control. For example,
the user can vary the parameters of the controller and check,
among other things, that:

• High proportional gain kp reduces the tracking position
error q̃ but produces oscillations and actuator saturations.

• Small derivative gain kv leads to oscillations. A good
choice for kv is to respect the critical damping condition6

kv = 2Ïkp.
• High motion amplitude a increases the tracking error q̃

and may cause actuator saturation.
• High motion frequency v also increases the tracking error

q̃ and may cause actuator saturation.

6. CONCLUDING REMARKS
Most of present automation systems are based on real-time
control systems implemented in digital computers. Thanks
to the progress during the last decade in high performance
hardware and real-time software, it is possible nowadays to

develop real-time control systems in a single-processor
computer.

The main features of real-time systems, such as con-
current processes being executed at desired rates and
interchanging data, have been illustrated in this paper
considering one of the applications where timing require-
ments are critical: robotics.

A real-time control system has been developed on a
single-processor PC based on Windows NT’s real-time
extension RTX and using a graphical user interface built
with the TILCON Real-Time Graphics Editor. The con-
trolled real-world system was a mechanical arm formed by
two joints. The control algorithm selected to handle the arm
was the so-called “computed torque control” which was
coded in C language and executed every 2.5 [msec] thanks
to the deterministic responses of the RTX module.

Besides the concepts of real-time control systems, the
developed application also allows the user – through the
friendly user interfaces – to learn about manipulator control
facts such as the effect in motion tracking accuracy of
changing in the proportional and derivative gains, and the
desired motion amplitudes and frequencies.
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