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We consider the stability of the steady free-surface thin-film flows over topography
examined in detail by Kalliadasis et al. (2000). For flow over a step-down, their
computations revealed that the free surface develops a ridge just before the entrance to
the step. Such capillary ridges have also been observed in the contact line motion over
a planar substrate, and are a key element of the instability of the driven contact line.
In this paper we analyse the linear stability of the ridge with respect to disturbances
in the spanwise direction. It is shown that the operator of the linearized system has
a continuous spectrum for disturbances with wavenumber less than a critical value
above which the spectrum is discrete. Unlike the driven contact line problem where an
instability grows into well-defined rivulets, our analysis demonstrates that the ridge is
surprisingly stable for a wide range of the pertinent parameters. An energy analysis
indicates that the strong stability of the capillary ridge is governed by rearrangement
of fluid in the flow direction owing to the net pressure gradient induced by the
topography at small wavenumbers and by surface tension at high wavenumbers.

1. Introduction
Flow of thin viscous films over topographical features frequently arises in a large

variety of coating applications and is a necessary step in the fabrication of a large
number of products and devices. Typical applications include the fabrication of
microelectronic components, compact disks and optical devices, and manufacturing
of magnetic memory devices and magnetic disks. A common characteristic of these
devices is that the substrates are not flat, but exhibit a topography that leads to
development of variations in the thickness of the coating.

Theoretical developments in the area include the derivation of a one-dimensional
free-surface evolution equation based on the lubrication approximation by Stillwagon
& Larson (1998) and Schwartz & Weidner (1995) who also presented an analytical
solution to the problem of flow over a curved substrate with a curvature discontinuity.
Pritchard, Scott & Tavener (1992) considered the flow of a thin liquid film down an
inclined plane with a small slope topography and in the presence of inertia; analytical
solutions valid for thin films over large width features and thick films over small width
features have been obtained by Stillwagon & Larson (1990). Analytical solutions for
thin viscous films over shallow features have also been obtained by Fernandez-Parent,
Lammers & Decré (1998) whereas Peurrung & Graves (1993) considered steady flows
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over two-dimensional topography. Pozrikidis & Thoroddsen (1991) solved numerically
the full Stokes equations for a liquid film flowing down an inclined wall over a particle
arrested on the wall and in the limit where the particle size is much smaller than the
film thickness. Finally, Kalliadasis, Bielarz & Homsy (2000) performed an extensive
parametric study for flow over topography for a wide range of the parameters
involved.

Experimental investigations include studies of flow of thin viscous films over one-
dimensional trenches by Stillwagon & Larson (1990, 1998) whose experiments clearly
show that the free surface is not flat, but exhibits a series of capillary waves, one of
which, substantially more pronouned than the rest, we have already referred to as
the ‘capillary ridge’. Capillary ridges have also been observed in the experiments by
Fernandez-Parent et al. (1998), Messé & Decré (1997) and Decré, Fernandez-Parent
& Lammers (1999). For flow over two-dimensional topographical features, Peurrung
& Graves (1993) and Messé & Decré (1997) have observed two-dimensional capillary
ridges or ‘pile-ups’.

We are interested in flow over sharp edges and steps. For flow over a step-
down, Kalliadasis et al. (2000) demonstrated that such variations take the form of
an asymmetric capillary ridge. The topography will create interfacial curvature and
therefore a capillary pressure that will influence the flow features and cause the
formation of a capillary ridge just before the entry to the step. Hence, ridge formation
is a manifestation of the capillary pressure gradient induced by the substrate curvature
and the profile of the free-surface results from the competition between the substrate
feature, which creates an interfacial shape that is an impression of the topography,
and surface tension which tends to flatten the free surface. The height of the ridge
was found to be a strong function of the step depth and step steepness, with the
higher ridges appearing for steep substrate features of significant depth.

Much of the motivation for the present study arose from possible connections
between this problem and other thin-film problems exhibiting ridges; a capillary
ridge is present in the problem of a contact line driven by a body force (Troian
et al. 1989; Spaid & Homsy 1996; Bertozzi & Brenner 1997) or a temperature
gradient (Marangoni effect) over a flat substrate (Cazabat et al. 1990). In the moving
contact-line problem, the formation of the ridge is due to the response of the free
surface to pressure build-up in the vicinity of the contact line as a result of the
kinematic requirement that the streamwise velocity gradually decays as the contact
point is approached and then reverses as fluid leaves the contact-line region (Goodwin
& Homsy 1991). This capillary ridge is known to become unstable to spanwise
perturbations and such instabilities have been analysed for contact lines advancing
over smooth planar surfaces by a number of authors (Troian et al. 1989; Spaid &
Homsy 1996; Bertozzi & Brenner 1997; Kondic & Bertozzi 1999; Kalliadasis 2000).
The resulting fingering instability has been ultimately linked to the presence of the
capillary ridge (Bertozzi & Brenner 1997); we expect a profile without a ridge to be
stable. This was shown by Bertozzi & Brenner (1997) for a contact line advancing
over an inclined plane with small inclination angle in which case the hydrostatic
head associated with the gravitational component normal to the substrate becomes
important, suppressing the ridge that would otherwise form. Bertozzi & Brenner
showed that profiles without ridges are linearly stable with respect to disturbances in
the spanwise direction.

Although there have been both experimental and theoretical studies for flow of
thin viscous films over surface features and the type of steady solutions that occur,
to date there has not been a study of the stability of these solutions. In this paper,
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Figure 1. Flow over a step-down of depth D and wall steepness δ. The topography is given by
S(x) = D[0.5− (1/π)tan−1(x/δ)] with respect to an orthogonal coordinate system (x, z) with origin
on the step-down. The fluid flows from left to right with a characteristic velocity U and thickness h0

away from the step. hs(x) denotes the steady-state deviation height of the free surface with respect
to the topography S(x).

we develop a stability theory for free-surface thin-film flows over topography using
the flow over a step-down as a model system.

Figure 1 sketches the flow situation in which a thin viscous fluid of viscocity µ,
surface tension σ, density ρ and thickness h0 is flowing over a step of depth D and
steepness δ. The fluid flows from left to right driven by a flux Uh0 due to an external
body force with a characteristic velocity U. The basic equation for the evolution of
the film height hs, where the subscript s denotes steady-state, is given by Kalliadasis
et al. (2000). The equation is based on the lubrication approximation (see Kalliadasis
et al. for a justification). To balance viscous effects, capillary forces and mean flow,
we non-dimensionalize hs, D and S with h0, and x and δ with the capillary scale
` defined as ` = h0/Ca

1/3 with Ca = µU/σ the capillary number. The topography
shape with respect to the orthogonal coordinate system (x, z) whose origin is placed
at the step-down is taken to be

S(x) = D

[
1

2
− 1

π
tan−1

(x
δ

)]
. (1.1)

This particular choice for the topography shape approximates a sharp wall in the
limit of δ → 0.

Following Kalliadasis et al. (2000), steady-state flows are governed by a modified
Landau–Levich equation which includes the topographical forcing as an additional
capillary pressure:

hsxxx = −Sxxx +
1− h3

s

h3
s

, (1.2a)

subject to the boundary conditions

hs(→ ±∞) = 1. (1.2b)

Solutions of this equation for δ = 0.001 and different step heights are shown in
figure 2. In each case, the step is centred at x = 0 and falls according to equation
(1.1); because of our scaling the surface is one unit below the film far from the step
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Figure 2. Free-surface profile, hs(x) + S(x) for flow over a step-down for δ = 0.001 and different
D values. Note the presence of a capillary ridge just before the entrance to the step whose height
increases as D increases.

itself. The feature of interest of these solutions is the presence of a large asymmetric
capillary ridge that forms just before the step.

We consider the linear stability of the steady solutions in figure 2 with respect to
disturbances in the spanwise direction. There are two main goals to the investigation
to be described in the present paper. The first is to construct the spectrum of the
linearized operator of the nonlinear system and hence address the issue of stability
of the capillary ridge with respect to infinitesimal disturbances in the spanwise
direction. The second goal is to infer, from an energy analysis, the physical mechanism
responsible for the evolution of infinitesimal disturbances in the spanwise direction
and the influence of the topography on the stability characteristics of the capillary
ridge.

2. The eigenvalue problem
The starting point for the stability theory is the two-dimensional evolution equation

for the free surface which in dimensional variables is:

3µ
∂h

∂t
+
µU

h2
0

∂

∂x
(h3) + σ

∂

∂x
[h3(hxxx + Sxxx + hyyx)] + σ

∂

∂y
[h3(hxxy + hyyy)] = 0, (2.1a)

with h(x, y, t) the deviation height and y the spanwise coordinate. Consistent with the
lubrication approximation, the mean curvature of the free surface is approximated by
hxx + Sxx + hyy for a one-dimensional topography shape S(x).

To balance the viscous force, external body force and capillary force in (2.1a), the
following non-dimensionalization is introduced,

h→ h

h0

, x→ x

`
, y → y

`
, t→ t

3`/U
, S → S

h0

,
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where `/U is the convective timescale. Equation (2.1a) then becomes:

∂h

∂t
+

∂

∂x
(h3) +

∂

∂x
[h3(hxxx + Sxxx + hyyx)] +

∂

∂y
[h3(hxxy + hyyy)] = 0. (2.1b)

Let h(x, y, t) = hs(x) + ĥ(x, y, t), ĥ� hs. Linearizing (2.1b) and using the steady-state
equation (1.2a), we obtain the evolution equation for the disturbance

∂ĥ

∂t
+ 3

∂

∂x
(h2
s ĥ) +

∂

∂x

[
h3
s (ĥxxx + ĥyyx) + 3

1− h3
s

hs
ĥ

]
+ h3

s (ĥxxyy + ĥyyyy) = 0. (2.2)

We now seek particular solutions of (2.2) in the form of the normal mode

ĥ(x, y, t) = eλt+ikyψ(x) + c.c. (2.3)

Such solutions are possible since the problem in (2.2) is homogeneous in both t and
y. Substitution of (2.3) into (2.2) then yields the infinite-domain eigenvalue problem

Lψ = λψ, (2.4a)

with boundary conditions

ψ bounded as x→ ±∞, (2.4b)

where the linear differential operator L is parameterized by the spanwise wave-
number k,

L = − ∂

∂x

[
h3
s

(
∂3

∂x3
(·)− k2 ∂

∂x
(·)
)

+ 3
1− h3

s

hs
(·)
]

−3
∂

∂x
(h2
s (·))− h3

s

(
−k2 ∂

2

∂x2
(·) + k4(·)

)
. (2.5)

The boundary conditions in (2.4b) allow for eigenfunctions which do not decay to
zero, but instead approach bounded oscillations at the infinities. Understanding of
the spectrum is difficult without inclusion of its continuous part, and hence we refrain
from imposing the usual boundary conditions ψ → 0 as x → ±∞. Indeed, we shall
demonstrate that such eigenfunctions dominate the spectrum at small wavenumbers.
Our stability analysis will also reveal the existence of a critical wavenumber, that
depends on both D and δ, at which localized eigenmodes with ψ → 0 as x→ ±∞ are
born out of the eigenfunctions with bounded oscillations at the infinities.

Whether the disturbance ĥ grows in time is then determined by the spectrum of
L. We note that for the driven contact-line problem on a planar inclined susbtrate,
the pertinent eigenvalue problem for k = 0 has a one-dimensional null space spanned
by the eigenfunction associated with the translational invariance of the system in
the streamwise direction (Troian et al. 1989). This translational invariance manifests
itself as a null eigenfunction at k = 0 corresponding to the eigenvalue λ = 0 (Kalli-
adasis 2000) and as the system possesses no other symmetry except the translational
invariance, the zero eigenvalue is generically simple. In the present case, however, the
presence of the topography breaks the translational symmetry and hence λ = 0 is not
an eigenvalue for disturbances of infinite wavelength that decay to zero at infinity.

We define and construct the spectrum of L using the Evans function method,
which we found to be a more efficient, accurate and systematic way of constructing
the spectrum and locating the eigenvalues than other methods. The method was first
introduced by Evans (1972) in his theory on nerve impulse stability in relation to the
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Hodgin–Huxley nerve axon equations. Later, the method was further developed by
Jones (1984) to study the stability of pulse solutions of the Fitzhugh–Nagumo equa-
tions and by Pego & Weinstein (1992, 1994) and Pego, Smereka & Weinstein (1993)
to study the stability of solitary wave solutions of a wide range of nonlinear evolution
equations including the generalized KdV, Boussinesq and KdV–Burgers equations.

The problem of relating spectral/Evans function properties to linearized and non-
linear stability has been treated in detail recently by Zumbrun and coworkers (see
for example Brin 1998; Bertozzi et al. 2001; Hoff & Zumbrun 1999; Gardner &
Zumbrun 1998). These authors have examined the spectral stability of a large family
of viscous shocks including compressive and undercompressive travelling waves in
thin-film models with second- and higher-order dispersion–diffusion terms. The Evans
function method was also used by Ye & Chang (1999) for the driven contact-line
problem down a prewetted inclined plane in order to formulate a spectral theory that
quantifies the delayed rivulet instability at small inclination angles.

We shall demonstrate that there are two types of singularity associated with the
spectrum of L: discrete eigenvalues and the continuous essential spectrum. The
discrete spectrum consists of decaying eigenfunctions with ψ(±∞) = 0. These eigen-
functions correspond to disturbances localized at the capillary ridge. The continuous
spectrum consists of those eigenfunctions with bounded oscillatory behaviour as
x→ ±∞ and, unlike the discrete spectrum, these can alter the base flow far from the
ridge. Such eigenfunctions have also been constructed for the contact-line problem
down a prewetted plane by Ye & Chang (1999). In this case, the continuous spectrum
captures the dynamic sensitivity of the front to surface heterogeneity. However, the
unstable discrete mode scrutinized by the spectral theory of Troian et al. (1989) dom-
inates over the continuous spectrum for all wavenumbers in the spanwise direction,
whereas for flow over topography, the continuous spectrum will be shown to dominate
the evolution of disturbances at small wavenumbers.

The starting point of the Evans function method is to express the eigenvalue
problem (2.4a) as a dynamical system

dy

dx
= A(x, λ)y, (2.6)

where y = (ψ, ψx, ψxx, ψxxx)
t and

A =

 0 1 0 0
0 0 1 0
0 0 0 1
α0 α1 α2 α3


with

α0 = 3
hsx

h5
s

− k4 − λ

h3
s

, α1 = − 3

h4
s

+ 3k2 hsx

hs
,

α2 = 2k2, α3 = −3
hsx

hs
.

Following Swinton & Elgin (1990) we also define an adjoint problem to (2.6) from

dz

dx
= −Atz, (2.7)

and such that
d

dx
(zt · y) = 0
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Figure 3. Locus of the essential spectrum Γ in the spectral plane (λR, λI ) for k = 0. The essential
spectrum separates the spectral plane into two regions Ω1 and Ω2.

or zt · y = constant for all x. The behaviour of y and z as x → ±∞ is determined
by the matrix A∞ obtained by setting hs = 1 in A. The ‘spatial’ eigenvalues are the
eigenvalues of A∞ determined by the characteristic polynomial

σ4 − 2k2σ2 + 3σ + k4 + λ = 0. (2.8)

Hence, there are four complex spatial eigenvalues for a given λ in the complex spectral
plane. For some specific values of λ, σ is purely imaginary and equal to iα. This is the
locus Γ of the essential spectrum and is defined by

Γ = {α : α4 + 2k2α2 + 3iα+ k4 + λ = 0, α ∈ (−∞,+∞)}, (2.9a)

which with λ = λR + iλI gives

λR = − 1
81
λ4
I − 2

9
k2λ2

I − k4, (2.9b)

and hence, unlike the capillary ridge in Huppert’s problem (see Ye & Chang 1999),
the essential spectrum in our case is confined to a single curve. A plot of equation
(2.9b) for k = 0 is given in figure 3. The locus Γ of the essential spectrum separates
the (λR, λI ) spectral plane into two regions Ω1 and Ω2. In Ω1, three eigenvalues
σ1,2,3 have positive real parts and one eigenvalue σ4 has a negative real part. In
Ω2, two eigenvalues σ1,2 have positive real parts and the remaining two eigenvalues
σ3,4 have negative real parts. Hence, Re(σ1,2) > 0 and Re(σ4) < 0 for all λ whereas
on Γ , one of the eigenvalues is purely imaginary, σ3 = iα, with α the wavenumber
parameterizing Γ . Therefore, the spatial eigenvalue σ3 changes stability as Γ is crossed
in the complex λ-plane. This purely imaginary eigenvalue on Γ is responsible for the
constant-amplitude oscillations of the eigenfunctions of the essential spectrum as
x→ ±∞.

The behaviour of y and z as x → ±∞ is determined by the eigenvectors of A∞
and At∞ obtained from A∞wi = σiwi and At∞vi = σivi for i = 1, 2, 3, 4 where wi is an
eigenvector of the eigenvalue σi of A∞ and vi is an eigenvector of −σi of −At∞, i.e. y
and z lie in the stable and unstable manifolds of the systems in (2.6) and (2.7).

For the discrete spectrum, ψ and y must decay to zero as x → ±∞. In Ω1 where
Re(σ1,2,3) > 0 and Re(σ4) < 0, the behaviour of y as x→ +∞ will be given by

y(x→ +∞) ∼ w4 exp(σ4x), (2.10)
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where A∞w4 = σ4w4. If we now integrate (2.6) from +∞ along (2.10), the behaviour
as x→ −∞ is

y(x→ −∞) ∼
4∑
j=1

b−j1wj exp(σjx), (2.11)

where b−j1 are complex coefficients. We obviously want b−41 = 0. We could then iterate
with the complex number λ until b−41 vanishes. However, it is often very difficult
to integrate y to −∞, or some numerically large number, owing to the exponential
growth. Instead, following Swinton & Elgin (1990) we choose to integrate the adjoint
problem from x→ −∞:

z(x→ −∞) ∼ v4 exp(−σ4x), (2.12)

where At∞v4 = σ4v4. We then define, from (2.11) and (2.12), the Evans function D1(λ)
in Ω1 as

D1(λ) = zt(−∞) · y(−∞) = b−41v
t
4 · w4 (2.13)

after invoking the biorthogonality condition between wi and vj , v
t
j · wi = 0 for i 6= j.

Hence, for b−41 = 0 we must have D1(λ) = 0, i.e. the Evans function must vanish. We
therefore define the discrete eigenvalues in Ω1 as the roots of the Evans function (2.13).
Alternatively, the Evans function has a zero at λ if, and only if, y and z are homoclinic
orbits in systems (2.6) and (2.7). Since now zt(−∞) · y(−∞) = zt(x) · y(x) = constant,
we can integrate (2.6) from +∞ to some point in the neighbourhood of the capillary
ridge, say x = 0 and the adjoint equation (2.7) from −∞ to the same point and
evaluate D1(λ) at that point. This numerical technique, first developed by Swinton
& Elgin (1990), removes numerical difficulties at large y at +∞ and it can be easily
formulated in a Newton scheme for seeking the roots of the complex function D1(λ).
Alternatively, we can simply scan the complex λ-plane for the roots.

In Ω2, σ1 and σ2 are the spatial eigenvalues with positive real parts and the Evans
function must be defined differently. At +∞, the asymptotic behaviour of y is a linear
combination of two trajectories

y1(x→ +∞) ∼ w3 exp(σ3x),
y2(x→ +∞) ∼ w4 exp(σ4x),

}
(2.14)

such that y(x → +∞) ∼ c1y1 + c2y2. At −∞, the integration of (2.6) using (2.14) as
the initial condition yields

y1(x→ −∞) ∼
4∑
j=1

bj1wj exp(σjx),

y2(x→ −∞) ∼
4∑
j=1

bj2wj exp(σjx).

 (2.15)

To eliminate the undesired growing behaviours exp(σ3x) and exp(σ4x) we must have[
b31 b32

b41 b42

] [
c1

c2

]
= 0,

which has a non-trivial solution for c1 and c2 when

D2(λ) =

∣∣∣∣ b31 b32

b41 b42

∣∣∣∣ (λ) = 0, (2.16)

with D2(λ) the Evans function in Ω2. However, the shooting scheme from +∞ to
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Stability of free-surface thin-film flows over topography 395

−∞ is again unstable and we must use the adjoint system in (2.7) to formulate an
alternative scheme where D2(λ) is evaluated near x = 0. In this scheme we integrate
the y equation from +∞ along wi and the z equation from −∞ along vj to evaluate
bji for i = 1, 2 and j = 3, 4 and therefore D2 in (2.16).

The number of discrete eigenvalues within any region in Ω1 (or Ω2) can be estimated
by using the argument principle of an analytic function

n− p =
1

2πi

∮
C

D
′
1(λ)

D1(λ)
dλ =

1

2π
∆CargD1(λ), (2.17)

where C is a closed contour in Ω1, n is the number of zeros of D1(λ) and p the
number of poles. The right-hand side of (2.17) is the winding number of C

′
, image

of C through D1(λ), around the origin. The symbol ∆C arg denotes changes in the
argument over the contour C . Following Pego & Weinstein (1992), the Evans function
D1(λ) should have no poles in Ω1 and therefore the number of eigenvalues is solely
determined by the winding number of C

′
. We also used this method to estimate the

location of the eigenvalues by shrinking the closed contour successively. This is a very
labour-intensive effort and we used (2.17) to determine whether any eigenvalue exists
within a certain domain and whether all of them have been located by the shooting
scheme.

Construction of the eigenfunctions of the essential spectrum ψλ(x) can also be
obtained from a modified shooting scheme. Since Re(σ4) < 0 and σ3 = iα, the
asymptotic behaviour of y as x→ +∞ is a linear combination of two trajectories

y(x→ +∞) ∼ c1y1 + c2y2, (2.18)

where

y1(x→ +∞) ∼ w4 exp(σ4x),

y2(x→ +∞) ∼ w3 exp(iαx).

Integrating (2.6) using (2.18) as the initial condition at +∞ yields

y(x→ −∞) ∼ c1

4∑
j=1

bj1wj exp(σjx) + c2

4∑
j=1

bj2wj exp(σjx). (2.19)

Suppression of the unstable σ4 mode then requires that

c1b41 + c2b42 = 0,

which gives c1 = −c2b42/b41. Hence, with c2 arbitrary, the transmission coefficient
R(λ) can be defined as the ratio of the amplitude of oscillations in ψλ(x) as x→ +∞,
c2, over the amplitude of oscillations as x→ −∞, c1b31 + c2b32,

R(λ) =
b41

b32b41 − b42b31

≡ D1(λ)

D2(λ)
, (2.20)

for all λ on Γ . This transmission coefficient is a complex number, in general due to
the phase shift in the two oscillations as x→ ±∞.

We developed a numerical scheme for constructing the spectra of L using the
Evans function shooting approach. The shooting scheme is based on Gear’s method
with dynamic adjustment of the step-length (Gladwell & Sayers 1980). The scheme
also includes projection techniques for removing unwanted growing solutions which
are present at either side of the domain. The accuracy of the computations was
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D = 0.5 D = 1.0 D = 2.0

δ kc δ kc δ kc

0.1 2.65 0.1 2.67 0.1 2.85
0.01 3.10 0.01 3.37 0.01 2.61
0.005 3.89 0.005 3.60 0.005 2.52

Table 1. Critical wavenumber kc as a function of D and δ.

determined by mesh refinement as well as variation of the integration domain and
the point in the neighbourhood of the capillary ridge where the Evans function is
evaluated. A different method for the computation of the Evans function based on
wedge products of the solution vectors has been developed by Brin (1998) in his
study of the stability of viscous shock waves of conservation laws with second-order
regularization. Brin also performed winding number computations similar to those
reported here.

We finally notice that in the Evans function theory (see for example Gardner &
Zumbrun 1998), it is always assumed that the coefficients of the eigenvalue problem
decay exponentially to limiting values at the infinities, allowing the application of
a certain ‘gap lemma’ to construct bases of decaying solutions of the eigenvalue
problem at ±∞ in a manner that is analytic in λ and on an open neighbourhood
of the resolvent set. This assumption is obviously violated here, as the topographical
forcing term decays algebraically. However, as Gardner & Zumbrun (1998) point out
in their study of stability of viscous shock fronts with second-order regularization,
the assumption of exponential growth is not necessary in the scalar case, for which
a ‘positive spectral gap’ between decaying and growing solutions is maintained even
as λ approaches the essential spectrum, thus allowing an analytic continuation of the
Evans function into the region of the essential spectrum.

3. Results
3.1. Structure of the spectrum

Our calculations revealed that discrete eigenfunctions exist in Ω2 and only for
wavenumbers k > kc(D, δ). Figure 4 depicts the dispersion relation for the least
stable eigenvalue λ = λ(k) for D = 1 and δ = 0.01. Calculations were performed for
several values of D and δ, with no changes in the qualitative nature of the results.
In all cases, the least stable eigenvalue is negative and the capillary ridge is therefore
stable with respect to infinitesimal disturbances in the spanwise direction.

For wavenumbers less than the critical wavenumber kc, only the essential spectrum
is present. Table 1 gives kc for different values of D and δ. The corresponding
eigenvalue is −k4

c . Notice that for small D, kc is an increasing function of 1/δ;
however, for large D values, kc decreases as 1/δ increases, and thus the region in
which only the continuous spectrum is present becomes smaller, but the variation is
not large in any case. We also point out that Hoff & Zumbrun (2000) have proved
asymptotic stability for scalar viscous shock fronts of conservation laws with second-
and higher-order regularization, provided the Evans function has no zeros in Ω2

(which is the case here for k < kc).
Turning now to the eigenfunctions, figures 5(a) and 5(b) depict the unnormalized

discrete modes for D = 1, δ = 0.1 and k = 2.7, k = 5, respectively. Notice the presence
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Figure 4. Dispersion relation for the eigenvalue λ versus the spanwise wavenumber k for D = 1
and δ = 0.01. The critical wavenumber above which discrete modes exist is kc = 3.37. The solid line
represents the continuous spectrum for k 6 kc given by λ = −k4.
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Figure 5. (a) Discrete eigenfunction for D = 1, δ = 0.1 and k = 2.7. (b) Discrete eigenfunction for
D = 1, δ = 0.1 and k = 5.

of a maximum in the eigenfunctions near x = 0. The region of rapid variation for
ψ corresponds to the region of rapid variation of the base-state flow and hence the
discrete modes are very localized near the capillary ridge. These real modes resemble
stationary solitary waves with a characteristic width that decreases as the spanwise
wavenumber k increases (see figure 5).

Now consider the continuous spectrum. The solid curve in figure 4 is given by
λ = −k4 corresponding to λI = 0 in (2.9b). This is the point at which the locus
of the essential spectrum Γ intersects the λR-axis of the spectral plane. We have
already pointed out that Γ is parameterized by the wavenumber α of oscillations
of the continuous eigenfunctions as x → ±∞. As α → 0, the essential modes on Γ
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Figure 6. Continuous eigenfunction for α = 0. (a) D = 0.5, δ = 0.5, k = 2.5;
(b) D = 1, δ = 0.1, k = 1.

approach the λR-axis and the wavelength of the oscillations becomes infinitely large.
All essential modes for α 6= 0 are complex except for the limiting eigenfunction at
α = 0, which is real. This limiting real eigenfunction approaches constants c± as
x → ±∞, respectively. Figure 6 shows two such modes for D = 0.5, δ = 0.5, k = 2.5
and D = 1, δ = 0.1, k = 1. As k → k−c , c− or c+ → 0 and the discrete mode generated
at kc has the same shape as the continuous mode at this point, but approaches
zero very slowly as x → +∞ or x → −∞, respectively. When c− = 0, (which is
always the case for small D and large δ), the corresponding essential eigenfunction
has R(λ) = ∞. At the same time, D2(λ) = 0, consistent with an infinite transmission
coefficient, indicating that the discrete mode in Ω2 and at k = kc is embedded in the
essential spectrum. When c+ = 0, the corresponding essential eigenfunction has a zero
transmission coefficient whereas the discrete mode is not embedded in the essential
spectrum. As k deviates from kc, the width of the discrete mode decreases rapidly
while both discrete and limiting continuous modes move to the left of the spectral
plane with the distance between the two modes increasing as k increases and hence
λ(k) in figure 4 decays more slowly than −k4. Notice that as with the discrete modes,
the region of rapid variation for the continuous modes corresponds to the region of
rapid variation of the base-state flow.

Although the locus Γ of the essential spectrum depends only on k (and hence
the dispersion relation for k 6 kc is independent of the base-state flow hs(x)), the
functional form of the continuous eigenfunctions obviously does depend on hs(x).
Figures 7 and 8 show the continuous (unnormalized) eigenfunctions for two different
sets of λ, k, D and δ.

3.2. Relevance of the continuous spectrum

The eigenvalues of the linearized system predict the long-time state of the system,
strictly speaking, the asymptotic behaviour as t → ∞. The existence of a critical
wavenumber kc above which discrete modes are present indicates that, for k < kc,
localized disturbances around the capillary ridge will influence both the ridge and the
regions away from it. In this regime, we cannot simply disturb the ridge and expect
that the initial disturbance will remain localized around the ridge. Hence, the presence
of a continuous spectrum has important implications in the solution of (2.2) as an
initial-value problem (see Appendix B for details).

At the same time, the continuous spectrum can be associated with localized dis-
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Figure 7. (a) Continuous eigenfunction for λI = −1, D = 1, δ = 0.1 and k = 0.1.
(b) Modulus of the eigenfunction in (a).
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Figure 8. (a) Continuous eigenfunction for λI = −2, D = 2, δ = 0.1 and k = 1.
(b) Modulus of the eigenfunction in (a).

turbances on the thin-film regions away from the step. Such localized disturbances,
sufficiently far from the capillary ridge, must be expressed in terms of the continuous
eigenfunctions which do not decay to zero, but approach bounded oscillations at
the infinities – but still within the bounds where the infinite-domain formulation is
valid. This is analogous to expansion of finite-mass disturbances with Fourier modes.
Such disturbances correspond to step changes in the average interfacial height which
generate effective point sources or sinks of liquid. At the same time, as the continuous
eigenfunctions do not decay to zero at the infinities, they represent spatially global
modes reflecting the response of the base state away from the capillary ridge. How-
ever, a detailed consideration of spatial modes and the connection with convective
stability theory is beyond the scope of the present paper.

If the base state is a flat film of unit thickness, L in (2.5) is a differential operator
with constant coefficients. Its spectrum then consists of the continuum of Fourier
modes eλt+iαx+iky with the dispersion relationship

λ = −3iα− 2k2α2 − α4 − k4. (3.1)

Since λR < 0, the flat-film regions of thickness 1 are stable. Indeed, as has been shown
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Figure 9. Modulus of the transmission coefficient along Γ as a function of λI for
D = 1, δ = 0.1 and two different values of k.

by Benjamin (1957), a thin flat film is always stable and can only be destabilized
with small but finite inertia (see also Yih 1963). From the dispersion relation in
(3.1) we also obtain λI = −3α. Thus, the normal modes on the flat-film regions
represent infinitesimal monochromatic waves that travel steadily with the kinematic
wave velocity −λI/α = 3. As λI is a linear function of α, the regions hs = 1 away from
the capillary ridge are also non-dispersive. Thus, any localized disturbances away
from the ridge will not spread, but will propagate at the phase velocity 3 and at
the same time decay at the rate λR . For the capillary ridge in gravity-driven films, a
similar analysis indicates that disturbances on the precursor film have a negative phase
velocity and decay very slowly as they travel towards the front. In fact, numerical
experiments by Ye & Chang (1999) demonstrated that such disturbances are trapped
at the capillary ridge and they are subsequently amplified, whereas in our case, the
flow of disturbances on either side of the ridge is in the same direction and hence we
anticipate that disturbances can pass from the back to the front of the ridge, leaving
it intact.

In any case, the essential spectrum resembles the flat-film Fourier modes away
from the capillary ridge, with the constant-amplitude oscillations at the infinities
corresponding to the normal modes of the regions hs = 1. In fact, the locus of
the essential spectrum Γ defined from (2.9a) is described exactly by the flat-film
dispersion relationship (3.2.1). The reason is that the ridge decays to such a film at
both infinities and the oscillations of the eigenfunctions must also be described by
its dispersion relationship. However, the normal modes of the flat film hs = 1 are
modified owing to the presence of the capillary ridge (see figures 7 and 8). Finally,
the essential eigenfunctions are required to describe disturbances which alter the flow
rate and hence the thickness of the film far from the ridge. Any localized disturbance
at the flat-film regions and more than a distance of 1/min|σ| from the capillary ridge
can then be Fourier transformed and its Fourier coefficients must be the coefficients
of expansion of the essential modes. The discrete modes also carry mass, as a simple
integration of (2.4a) indicates:

∫ +∞
−∞ ψ dx 6= 0.

Figure 9 depicts the modulus of the transmission coefficient ||R(λ)|| as a function
of λI for D = 1 and δ = 0.1. The wavenumber α of the oscillations for the essential
eigenfunctions as x→ ±∞ is given by α = − 1

3
λI . Notice that for k = 0.1, ||R|| ' 1 for
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a large range of λI , indicating that long wavelength disturbances are not influenced
by the presence of the capillary ridge. The modulus of the transmission coefficient
measures the ratio of the two limiting amplitudes for ψ as x → ±∞. Physically, if
||R|| < 1, sinusoidal waves are dampened as they pass through the capillary ridge
from front to back. This transmission coefficient is connected with the phenomenon
of radiation transmission through a localized potential well in quantum mechanics
as described by the Schrödinger equation (Landau & Lifshitz 1958). In this case,
the transmission coefficient is the ratio of the probability density in the transmitted
particle to that in the incident particle. However, for the conservative dynamics of the
Schrödinger equation, a radiation mode produces both a reflected and a transmitted
wave, such that the total energy is conserved. This conservation is lost here owing to
the dissipative nature in our system and there is no counterpart to the reflected wave.

In the region α→ 0, the eigenfunctions of the essential spectrum approach the
constant-amplitude Fourier normal modes of the homogeneous spectrum. These long
waves are much longer than the characteristic width of the capillary ridge and hence
are oblivious to the presence of the ridge. As a result, ||R|| is close to unity in this limit
and these long-wave modes are hence barely amplified. For transverse wavenumber
k = 0 (this is essentially the one-dimensional case), the amplification factor ||R||
approaches unity by conservation of mass (the situation, of course, is different for
other problems with a translational symmetry, for example the viscous shock problem
studied by Bertozzi et al. (2000)). As α→ ∞, figure 9 indicates that the transmission
coefficient approaches unity as well. This is consistent with the property Di(λ)→ 1 as
λ → ∞ of the Evans functions Di(λ), proved by Pego & Weinstein and other earlier
studies. Figure 9 also shows that there exists an intermediate range of α ∼ O(1) where
||R|| exhibits a maximum.

Our calculations indicate that in most cases ||R|| > 1 (see figure 9). This means
that sinusoidal waves are amplified as they pass through the capillary ridge (although
for small and large α, radiation amplification is not effective). Hence, for flow over
topography, the capillary ridge acts as an amplifier, reminiscent of the driven contact-
line problem over a planar substrate where small perturbations in the vicinity of the
contact line may cause much larger perturbations to the flow field away from the
contact line (Bertozzi & Brenner 1997). Obviously, the amplification observed here
is distinctly different from the amplification observed by Bertozzi & Brenner (1997)
and more recently Kondic & Bertozzi (1999) for the driven contact-line problem. In
this case, there is a strong connection between microscopic-scale perturbations at the
precursor film ahead of the apparent contact line, and the transient amplification of
these perturbations at the capillary ridge. Bertozzi & Brenner demonstrated that this
amplification scales roughly as the inverse precursor film thickness while Kondic &
Bertozzi (1999) showed that the amplification factor depends strongly on the width
of the imposed perturbation.

We also note that both ψR and ψI have zero mean as x → ±∞. As α → 0, ψI
approaches zero (with a zero mean) while the wavelength of oscillations for both ψR
and ψI approaches infinity. Hence, for ||R|| 6= 1 we obtain a limiting eigenfunction
ψ ≡ ψR that approaches different constants as x → ±∞ (see figure 8b). In practice,
however, the wavenumber α of the continuous spectrum will never be exactly zero as
any physical domain is finite. Hence, there is a cutoff for α, αc. Still, it is the continuous
eigenfunctions with small α that dominate the evolution of the disturbances for k < kc.

Finally, we point out that L is a non-normal operator (not self-adjoint, see
Appendix A for details) and the solution of the linearized equations as an initial-
value problem might grow by orders of magnitude on a transient time scale, even
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though all the eigenvalues are stable. For the driven contact-line problem down an
inclined plane, this transient growth effect was suggested by Bertozzi & Brenner (1997)
as a means to explain the development of rivulets for small inclination angles. This
growth might cause an initially small disturbance to reach a size of order one on a
transient time scale, thus exciting nonlinearities and causing an instability. Of course,
the degree of non-normality depends on the condition number of the eigenfunctions
of L (Reddy, Schmid & Henningson 1993) and a complete analysis of this effect
would involve examination of the resolvent or equivalently the pseudospectrum of
L, which is beyond the scope of the present study.

4. Energy analysis
We have found that, unlike the problem of a contact line driven by a body force or

a temperature gradient, the capillary ridge for flow over topography is always stable
with respect to disturbances in the spanwise direction over the range of parameters
0.5 < D < 5 and 0.001 < δ < 0.5. In addition, for flow over topography there exists
a critical wavenumber kc such that, for k < kc, the least stable eigenfunctions are
continuous, whereas for the driven contact-line problem the dominant mode is a
discrete eigenfunction.

To explore the mechanism associated with the stability of the capillary ridge,
we perform an energy analysis. The method was introduced by Spaid & Homsy
(1996) in their work for the driven contact-line problem. Their analysis elucidated the
physical mechanism of the instability and demonstrated that the dominant effect is
the ‘mobility factor’, that is, under the action of the body force, thicker films have less
resistance than thinner films.

Following Spaid & Homsy (1996), the mechanical energy associated with the

disturbance ĥ can be defined as

E =
1

2

∫ +∞

−∞
ĥ
¯̂
h dx. (4.1a)

Taking the inner product of (2.2) with ĥ (here we use the usual L2 inner product
〈f, g〉 =

∫ +∞
−∞ fḡ dx for any two functions f and g in L2), and using the definition of

energy, as well as substituting the normal mode (2.3) for ĥ, gives

dE

dt
= λ〈ψ, ψ〉 = 〈Lψ, ψ〉. (4.1b)

Hence, we can obtain an expression for the rate of energy removal by taking the inner
product of the eigenvalue problem with the eigenfunction ψ. The time derivative of
the energy can now be normalized so that the total removal energy E∗ equals the
eigenvalue λ:

E∗ =
〈Lψ, ψ〉
〈ψ, ψ〉 ≡ λ. (4.1c)

The above definition of energy assumes that ψ is square integrable, i.e.∫ +∞
−∞ ||ψ||2 dx < ∞. This is definitely the case for the discrete modes of the spectrum

where the integral of ||ψ||2 converges to a finite value, but not for the continuous
eigenfunctions whose energy is infinite. For functions without compact support, such
as our continuous modes, the quantity of interest is the energy spectral density per
unit length (Champeney 1973). This is computed by taking a long, but finite domain
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Term Functional form Origin of energy

1 −3〈(h2
sψ)xψ〉 Flow in the x-direction due to the body force

2 −〈(h3
sψxxx)xψ〉 Flow in the x-direction due to the x-curvature

3 k2〈(h3
sψx)xψ〉 Flow in the x-direction due to the y-curvature

4 −3〈(hsxxxh2
sψ)xψ〉− Flow in the x-direction driven by the base-state

−3〈(Sxxxh2
sψ)xψ〉 pressure gradient

5 k2〈h3
sψxxψ〉 Flow in the y-direction due to the x-curvature

6 −k4〈h3
sψ

2〉 Flow in the y-direction due to the y-curvature

Table 2. Terms comprising the stability problem, along with the physical mechanism associated
with each term.

of ψ, computing its energy spectral density, i.e. the energy spectral density of the func-
tion that equals ψ in the finite domain but zero everywhere else, and then dividing
the resulting quantity by the length of the domain used. (Parseval’s theorem in this
case states that the integral of the energy spectral density per unit length is equal to
the mean square amplitude of ψ (Champeney 1973)). An alternative but equivalent
description of the energy is simply the integral of ||ψ||2 in a long enough domain
[L1, L2] divided by the length of the domain L2 − L1. The integration domain was
taken to be [−30, 30] corresponding to α ' 0.1, and the inner products in (4.1c) are
now understood to be finite integrals in the domain [−30, 30].

Having defined the energy for both the discrete and continuous eigenfunctions
(obviously, for k > kc, only the energy associated with the discrete modes is relevant),
we now turn to equation (4.1c) which contains 6 terms, each of which contributes to
the total energy and is associated with a different physical mechanism. Table 2 gives
the six terms that comprise 〈Lψ, ψ〉 in (4.1c) along with the physical meaning for
each term. A sum of all terms in table 2 divided by 〈ψ2〉 gives the extended version
of (4.1c)

λ = −3
〈(h2

sψ)xψ〉
〈ψ2〉 − 〈(h

3
sψxxx)xψ〉
〈ψ2〉 + k2 〈(h3

sψx)xψ〉
〈ψ2〉

−3
〈[(hsxxx + Sxxx)h

2
sψ]xψ〉

〈ψ2〉 + k2 〈h3
sψxxψ〉
〈ψ2〉 − k4 〈h3

sψ
2〉

〈ψ2〉 . (4.2)

As our base-flow is stationary, the term associated with flow in the x-direction owing
to the reference velocity for the driven contact-line motion studied by Spaid & Homsy
(1996) is absent in (4.2). Notice that the terms 〈(hsxxxh2

sψ)xψ〉 and 〈(Sxxxh2
sψ)xψ〉 are

lumped together in table 2 as hs + S is the total free-surface height and it is the
sum of the two quantities which represents flow in the x-direction driven by the net
base-flow pressure gradient.

The energy calculations were performed for several values of D and δ with no
changes in the qualitative nature of the results and hence it is sufficient to discuss
the results for the particular choice D = 1 and δ = 0.1. Table 3 gives the various
contributions to the energy for a wide range of k. As can be seen, for all but the small
wavenumbers, the energy is dominated by term 6, which represents damping due
to surface tension acting on spanwise curvature. (This same term is responsible for
damping of short-wave axial modes in Rayleigh capillary breakup of liquid cylinders.)
Term 1, flow in the x-direction owing to the external body force, is always destabilizing,
and is the only positive term for all k. In fact, this same term is primarily responsible

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

62
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006231


4
0
4

S
.

K
a
llia

d
a
sis

a
n
d

G
.

M
.

H
o
m

sy

k Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Total energy

0.00 0.011 −2.918× 10−3 0.000 −7.962× 10−3 0.000 0.000 0.000
0.25 0.011 −2.740× 10−3 −9.307× 10−5 −7.930× 10−3 −2.900× 10−4 −3.976× 10−3 −3.906× 10−3

0.50 0.013 −2.288× 10−3 −3.187× 10−4 −7.910× 10−3 −9.899× 10−4 −6.359× 10−2 −6.250× 10−2

0.75 0.017 −1.771× 10−3 −5.887× 10−4 −7.940× 10−3 −1.059× 10−3 −0.323 −0.316
1.00 0.026 −1.473× 10−3 −1.094× 10−3 −6.800× 10−3 −1.199× 10−3 −1.015 −1.000
1.25 0.038 −1.631× 10−3 −2.835× 10−3 −6.871× 10−3 −2.848× 10−3 −2.465 −2.441
1.50 0.044 −2.240× 10−3 −7.060× 10−3 −6.835× 10−3 −2.473× 10−3 −5.088 −5.063
1.75 0.054 −3.084× 10−3 −1.356× 10−2 −5.030× 10−3 −3.145× 10−3 −9.408 −9.379
2.00 0.076 −4.186× 10−3 −2.153× 10−2 −0.022 −5.971× 10−3 −16.022 −16.000
2.25 0.059 −6.508× 10−3 −3.225× 10−2 −0.0158 −8.348× 10−3 −25.626 −25.629
2.50 0.054 −2.031× 10−2 −7.048× 10−2 −0.012 −6.654× 10−2 −38.974 −39.063
3.00 0.071 −1.749 −7.043 −0.182 −0.546 −67.202 −76.652
4.00 0.192 −4.902 −23.456 −0.429 −1.329 −176.619 −206.543
5.00 0.272 −9.843 −50.810 −0.596 −7.370 −376.174 −444.521
6.00 0.327 −16.958 −91.511 −0.715 −20.322 −706.068 −835.247

Table 3. Energy results as a function of k for D = 1 and δ = 0.1.
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Figure 10. Energy results for D = 1 and δ = 0.1. The energy is plotted as a function of the spanwise
wavenumber k for each of the terms listed in table 2 normalized with 〈ψ2〉. Note that the energy
has been multiplied by 103.

for the rivulet instability in the driven contact-line problem (Spaid & Homsy 1996).
However, as can be seen, it never exceeds term 6, except for small wavenumber. Thus,
stability at moderate to large wavenumber is due to surface tension.

We studied the small k regime in more detail, as shown in figure 10. The figure
depicts the energy of each term in (4.2) as a function of k for small k. The first feature
we note is that, with the exception of terms 1 and 6, most of the contributions to the
energy are relatively independent of k. Since term 6 is small for small k, and term 1 is
always positive, stability for small k must be due to mechanisms other than spanwise
curvature. Most of the negative energy comes from term 4, flow in the x-direction
driven by the base-state pressure gradient – the term most directly associated with the
topography – with smaller amounts of damping due to term 2, flow in the x-direction
due to the x-curvature. As already noted, term 6 is primarily responsible for most
of the negative energy in the system for wavenumbers > 0.3. Finally, notice that
term 5 (flow in the spanwise direction due to the azimuthal curvature – a destabilizing
Rayleigh term for a liquid cylinder) is always negative in contrast to the driven
contact-line problem where the same term is always destabilizing.

5. Summary
We have considered the stability of free-surface thin-film flows over topography,

the steady states of which have been examined in detail by Kalliadasis et al. (2000).
For flow over a step-down, the free surface develops a ridge just before the entrance
to the step. Such capillary ridges have been observed in the contact-line motion over a
planar substrate, and are a key element of the instability of the driven contact line. We
were motivated to examine the stability of ridges driven by topography by a possible
connection with the driven contact-line problem. We analysed the linear stability of
the ridge with respect to disturbances in the spanwise direction. The stability problem
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was formulated in a way that allowed for disturbances that did not necessarily decay
at the infinities. In this way, we are able to consider the initial-value problem for
disturbances and to analyse the complete spectrum. The resulting linear eigenvalue
problem proved to be particularly subtle in its structure, necessitating the use of the
Evans function method for its numerical solution.

We found that the operator of the linearized system has a continuous spectrum
for disturbances with wavenumber less than a critical value; above this value, the
spectrum is discrete. The discrete spectrum thus does not exist over the entire range
of wavenumbers, but is born from the continuous spectrum at this critical value.
The eigenfunctions of the discrete spectrum are localized near the step, whereas
those of the continuous spectrum exhibit oscillations of different amplitudes at the
infinities. The associated transmission coefficients are computed as a function of
the wavenumber of these oscillations. Interestingly, the transmission coefficients are
always near or above unity, indicating that the ridge may act as an amplifier for
impulses originating at infinity.

Our main result is that, unlike the driven contact-line problem where an instability
grows into well-defined rivulets, the topography-driven ridge is surprisingly stable
for a wide range of the pertinent parameters. The reasons for the stability of the
ridge are established through an energy analysis. Energy is produced or destroyed
by the coupling of perturbations with the base flow, and the energy evolution is
expressed as a series of mathematical terms, each of which has a specific physical
interpretation. The only term found to represent energy production is the same as
the one responsible for the rivulet instability, i.e. the flow in the streamwise direction
driven by a body force. This term is dominated by other, negative terms, representing
energy damping. The mechanism responsible for the damping is found to depend on
wavenumber. For small wavenumber, stability is due to rearrangement of fluid in the
flow direction owing to the net pressure gradient induced by the topography, whereas
for moderate to large wavenumber, stability is due to surface tension acting in concert
with spanwise curvature.

S. K. thanks the Chemical Engineering Department at Stanford University for
hospitality during a mini-sabbatical visit and the Engineering and Physical Sciences
Research Council of England for financial support. G. M. H. acknowledges financial
support from the Basic Energy Sciences, US Department of Energy, through grant
no. DE-FG03-87ER13673. Thanks also to Kevin Zumbrun for helpful comments and
suggestions.

Appendix A. The adjoint eigenvalue problem
The operatorL in (2.4a) is non-normal with respect to the usual L2(−∞,+∞) inner

product 〈f, g〉 =
∫ +∞
−∞ fḡ dx (the overbar designates complex conjugation) for any two

functions f and g with appropriate boundary conditions at infinity. The adjoint is
defined from

〈Lψ, ψ̂〉 = 〈ψ,L∗ψ̂〉+ B(ψ, ψ̂)|+∞−∞,
where ψ is an eigenfunction ofL, ψ̂ the adjoint eigenfunction ofL∗, and B a bilinear
function of ψ, ψ̂ and their derivatives representing the boundary terms originating
from integrations by parts. To eliminate the boundary terms and define L∗, we are
first restricted to the discrete spectrum with exponentially decaying ψ at the infinities.
At the same time, since ψ and all its derivatives vanish at the infinities for the discrete
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spectrum, the adjoint eigenfunction ψ̂ is not required to decay at the infinities so long
it does not blow up faster than ψ. With these restrictions, 〈Lψ, ψ̂〉 = 〈ψ,L∗ψ̂〉 from
which the adjoint operator can be easily obtained. We find thatL does not commute
with its adjoint L∗ and hence the eigenvalues λ can be complex – the essential
spectrum is indeed complex. To define the adjoint operator for the essential modes,
the boundary terms B(ψ, ψ̂) vanish if the behaviour of the adjoint eigenfunctions is
given by ψ̂ ∼ ĉ±eiαx as x → ±∞ with ĉ+/ĉ− = c−/c+ where ψ ∼ c±eiαx as x → ±∞,
that is, the transmission coefficient for the adjoint continuous eigenfunctions is the
inverse of the transmission coefficient of the continuous eigenfunctions of L.

For a discrete spectrum, an arbitrary function Ψ can be represented in the form of
a series

Ψ =
∑
n

βnψn (A 1)

where the summation extends over all n, ψn are the discrete eigenfunctions and
βn are some constant coefficients. The expansion in (A 1) assumes that the set of
eigenfunctions {ψn} is complete. As the eigenfunctions are known within a multi-
plicative constant, they can be easily normalized such that their maximum attains
a given value. Alternatively, the discrete eigenmodes can be normalized such that
〈ψi, ψ̂j〉 = δij which for self-adjoint operators is simply

∫ +∞
−∞ ||ψ||2 dx = 1 (in quantum

mechanics, this is equivalent to requiring that the sum of all probabilities expressed
by the wave function ψ equals unity (Landau & Lifshitz 1958)).

Let us now denote ψλ, the eigenfunction corresponding to the eigenvalue λ of the
continuous spectrum. In this case, the series in (A 1) is replaced with an integral
(much as a Fourier series gives way to a Fourier integral for a periodic function with
an infinite period):

Ψ =

∫
Γ

βλψλ dλ (A 2)

where the integration takes place over all possible values of λ.
The coefficients in (A 1) can be evaluated by using the adjoint eigenfunctions ψ̂k

βk = 〈Ψ, ψ̂k〉.
To directly generalize this relation to the case of continuous spectrum, the coefficients
in (A 2) should be given by

βλ = 〈Ψ, ψ̂λ〉 (A 3)

with ψ̂λ the adjoint eigenfunction at λ. Combining (A 2) and (A 3) shows that the
normalization of the continuous spectrum should be

〈ψλ′ , ψ̂λ〉 = δ(λ
′ − λ), (A 4)

with δ the Dirac delta function. Hence, normalizing the continuous eigenfunctions is
more involved than the case of the discrete spectrum. For self-adjoint operators, for
instance, the requirement that the integral of the squared modulus of the function
should be equal to unity cannot be satisfied for the continuous spectrum. In this case,
the normalization condition is

∫ ||βλ||2 dλ = 1. In quantum mechanics (Landau &
Lifshitz 1958), this is equivalent to normalizing the functions ψλ in such a way that
||βλ||2 dλ is the probability that the physical quantity concerned, in the state described
by the wave function Ψ , has a value between λ and λ + dλ. Since the sum of the
probabilities of all possible values of λ must be equal to unity, we have

∫ ||βλ||2 dλ = 1.
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Appendix B. The initial-value problem for disturbances
The translational invariance of (2.2) in the spanwise direction allows us to make

use of a Fourier transform in y. Because of the linearity of (2.2), the dynamics of each
Fourier mode is decoupled. The equation for the disturbance H can then be written
as

∂H

∂t
=LH where t = 0, H = H0(x), (B 1)

with

lim
x→±∞H0(x) = 0,

where L is the operator defined in (2.5) and the initial condition is localized around
the capillary ridge. Following Huerre (1987), the initial-value problem in (B 1) is
equivalent to the impulse response problem(

∂

∂t
−L

)
H = F(x, t),

where

F(x, t) = H0(x)δ(t)

is a prescribed forcing function initiated at t = 0. As this function cannot produce
any effect prior to its application, both the perturbation field H and F must remain
zero for t < 0: H(x, t) = F(x, t) = 0 for t < 0. Hence, the impulsive ‘force’ F(x) is
applied in the entire physical domain at time t = 0.

We can now apply a Laplace tranform on (B 1), H̃(x, s) =
∫ ∞

0
e−stH(x, t) dt, to

obtain

(s−L)H̃ = H0, H̃(x→ ±∞) = 0, (B 2)

which can be inverted with the introduction of a Green’s function G(x; ξ, s)

H̃ =

∫ +∞

−∞
G(x; ξ, s)H0(ξ) dξ, (B 3)

where

(s−L)G(x; ξ, s) = δ(x− ξ). (B 4)

Inverting (B 3), we obtain the evolution of the disturbance

H =
1

2πi

∫ γ+i∞

γ−i∞
H̃(x, s)est ds

=
1

2πi

∫ γ+i∞

γ−i∞

∫ +∞

−∞
G(x; ξ, s)H0(ξ) dξ ds, (B 5)

where γ is chosen such that the path integral lies to the right-hand side of all
singularities for causality reasons. There are two types of singularities associated with
L (§ 3), the discrete eigenvalues and the continuous essential spectrum. Deforming
the path integral in (B 5) appropriately and applying the residue theorem, we obtain

H(x, t) = β0ψ0(x)eλ0t +

∫
Γ

βλψλ(x)eλt dλ, (B 6)

as the complete set of functions is formed by combining the eigenfunctions of
both spectra, with {ψ0, λ0} the discrete mode. Finally, we notice that the expansion
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coefficients of the discrete and continuous eigenfunctions can be evaluated by taking
the appropriate inner products with the adjoint dicrete and continuous eigenfunctions.
However, their exact values are not important as long as H0(x) is sufficiently rich such
that the pertinent βλ is not zero. Note also that while ψ(x; λ) is not localized, H(x, t)
must be localized as required by functions which can be Fourier transformed. In
essence, the Fourier transform is replaced by an expansion in terms of the continuous
eigenfunctions.
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