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INFORMATION IN PROPOSITIONAL PROOFS AND
ALGORITHMIC PROOF SEARCH

JAN KRAJÍČEK

Abstract. We study from the proof complexity perspective the (informal) proof search problem (cf.
[17, Sections 1.5 and 21.5]):

• Is there an optimal way to search for propositional proofs?

We note that, as a consequence of Levin’s universal search, for any fixed proof system there exists a
time-optimal proof search algorithm. Using classical proof complexity results about reflection principles
we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal
proof system exists.

To characterize precisely the time proof search algorithms need for individual formulas we introduce a
new proof complexity measure based on algorithmic information concepts. In particular, to a proof system
P we attach information-efficiency function iP(�) assigning to a tautology a natural number, and we show
that:

• iP(�) characterizes time any P-proof search algorithm has to use on �,
• for a fixed P there is such an information-optimal algorithm (informally: it finds proofs of minimal

information content),
• a proof system is information-efficiency optimal (its information-efficiency function is minimal up to

a multiplicative constant) iff it is p-optimal,
• for non-automatizable systems P there are formulas � with short proofs but having large information

measure iP(�).

We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for
iP(�) where no super-polynomial size lower bounds are known. We also point out connections of the new
measure with some topics in proof complexity other than proof search.

§1. Introduction. The central notion of proof complexity is that of a propositional
proof system as defined by Cook and Reckhow [7]: a p-time function

P : {0, 1}∗ → {0, 1}∗

whose range is exactly the set of propositional tautologies TAUT; for the definiteness
we take all tautologies in the DeMorgan language. Any w ∈ {0, 1}∗ such that
P(w) = � is called a P-proof of �.

The primary concern is the size of proofs (i.e., their bit-length) and, in particular,
the existence of short proofs. The efficiency of a proof system P is measured by the
growth rate of the length-of-proof function:

sP(�) := min{|w| | w is a P-proof of �}.
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INFORMATION IN PROPOSITIONAL PROOFS 853

(We are interested in values of these functions on TAUT only and may, for the
definiteness, define it to be equal to ∞ outside TAUT.)

The fundamental problem of proof complexity theory asks if this function is, for
some P, bounded by |�|O(1), for all � ∈ TAUT. This is equivalent to the question
whether the computational complexity class NP is closed under complementation:
NP =? coNP, cf. Cook and Reckhow [7].

The second principal open problem of proof complexity is the optimality problem:
Is there a proof system P such that sP has at most polynomial slow-down over any
sQ? If we define a quasi-ordering P ≥ Q on the set of all proof systems by

sP(�) ≤ sQ(�)O(1),

then the problem asks if there is a ≥-maximal proof system. Such a maximal proof
system P would be lengths-of-proofs optimal. The quasi-ordering ≥ has a finer
version ≥p: P ≥p Q iff there is a p-time function f (called p-simulation) such that
for all w:

P(f(w)) = Q(w).

In words: f translates Q-proofs into P-proofs of the same formulas. The reader can
find this basic background in [17, Chapter 1].

While the existence of short proofs of tautologies is the primary concern of proof
complexity, the theory also relates quite closely to the complexity of proof search and
SAT algorithms. For proof search algorithms this is obvious: the time complexity
of an algorithm searching for P-proofs is lower-bounded by function sP .

For SAT algorithms (i.e., algorithms finding a satisfying assignment for a
propositional formula, if it exists) the relation is indirect. In particular, we can
interpret the run of a SAT algorithm S that fails to find a satisfying assignment
for ¬� as a proof that � ∈ TAUT. Hence S can be studied also as a proof
system PS :

PS(w) = � iff (w is the failing computation of S on ¬�),
and the time complexity of S on unsatisfiable formulas is essentially the same as
the length-of-proof function for proof system1 PS . Hence lower bounds to the
latter function imply lower bounds for the time complexity of S. In fact, proof
complexity lower bounds apply more generally: a lower bound for sQ implies time
lower bounds for all SAT algorithms whose soundness is efficiently provable2 in
Q, cf. [16].

While PS is defined more abstractly than usual logical calculi, the proof system
is actually often equal (or close)—in the sense of p-simulation—to some standard
logical calculi as is, for example, resolution R. This then allows to interpret various
technical proof complexity results as results about the original algorithm S. In this
sense proof complexity contributes to the analysis of some classes of SAT algorithms.
This facet of proof complexity is surveyed by Buss and Nordström [3].

1Note that algorithm S is, in particular, also an algorithm searching for PS -proofs.
2There are p-size Q-proofs of propositional translations of the first-order statement formalizing the

soundness.
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854 JAN KRAJÍČEK

In this paper we are interested in efficiency of proof search algorithms. However,
rather than analyzing particular algorithms we consider an outstanding informal
problem3:

• Is there an optimal way to search for propositional proofs?
Surely this problem must have occurred to everybody interested in proof search,

and there are other natural informal questions one can ask (cf. [18] for example).
In this paper we investigate what can proof complexity say about the problem in

precise mathematical terms. We start with a definition of a proof search algorithm
that seems natural (cf. [17, Section 21.5]).

Definition 1.1. A proof search algorithm is a pair (A,P), where P is a proof
system and A is a deterministic algorithm that stops on every input4 and such that
A(�) is a P-proof of �, for all tautologies � ∈ TAUT.

A key to a formalization of the proof search problem is to define a suitable quasi-
ordering on the class of all proof search algorithms. In Section 2 we consider a
quasi-ordering by the time complexity and in Section 3 we resort to algorithmic
information theory and replace time with information, introducing a new notion of
information-efficiency of proof systems. This notion offers a precise characterization
of the time any algorithm searching for a proof of a particular formula must use.

In both quasi-orderings (by time or information efficiency) there are optimal
proof search algorithms when the proof system is fixed, and these two algorithms
are essentially the same. Hence the question whether there is an overall optimal
proof search algorithm (A,P) (a maximal element in the respective quasi-ordering)
depends only on proof systems P and not on algorithms A. We show that in both
quasi-orderings the existence of such an optimal system is equivalent to the existence
of a p-optimal proof system, and thus the proof search problem reduces to the
optimality problem.

Time a proof search algorithm needs to use is traditionally lower bounded by the
minimum size of any proof of the formula in question. In Section 4 we compare size
(measure) with information (measure) and we note that for non-automatizable proof
systems the information measure is more precise for proving time lower bounds than
proof size is: there are formulas having short proofs but having large information
measure (i.e., while the proofs are short to find them requires long time). Note that
it is known that essentially all complete proof systems are non-automatizable under
various plausible computational complexity hypotheses. In Section 5 we motivate
and isolate the problem to establish unconditional lower bounds for iP(�) where no
lower bounds are known for sP(�). We conclude the paper with remarks on several
connections of the information measure to proof complexity in Section 6 and with
some further comments in Section 7.

The reader can find basic proof complexity background in [17, Chapter 1]. We
use only classic facts and we always point to a place in [17] where they can be found.
From algorithmic information theory we use only the original ideas and notions from
Kolmogorov [10, 11] modified to a time-bounded version of Levin [23]. Standard

3Which we included as a third basic problem of proof complexity under the name the proof search
problem in [17, Sections 1.5 and 21.5].

4See the second paragraph of Section 2 for this condition.
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notions from computational complexity (as are classes P, NP, one-way permutations
or pseudo-random generators) can be found in any textbook.

§2. Time optimality. The first thing that comes to mind is perhaps to compare
two proof search algorithms by the time they use. This is analogous to the fact that
in the optimality problem we compare two proof systems by the growth rate of their
lengths-of-proofs functions, i.e., by the non-deterministic time. For a deterministic
algorithm A that stops on all inputs we denote by timeA(w) the time A needs to stop
on input w.

We shall assume that proof search algorithms stop on every input, not just on
inputs from TAUT. Namely, if A is an algorithm that stops on TAUT but maybe not
everywhere outside TAUT, define new algorithmA′ that in even steps computes as A,
and stops if A does, and in odd steps performs an exhaustive search for a falsifying
assignment and stops if it finds one before A stopped. The time complexity of A and
A′ on inputs from TAUT are proportional and A′ stops everywhere.

Note that in the following definition the two proof search algorithms do not
necessarily use the same proof system.

Definition 2.1. For two proof search algorithms (A,P) and (B,Q) define

(A,P) ≥t (B,Q)

iff (A,P) has at most polynomial slow-down over (B,Q):

timeA(�) ≤ timeB(�)O(1),

for all � ∈ TAUT (the constant implicit in O(1) depends on the pair of the
algorithms).

Lemma 2.2. For any fixed proof system P there is algorithm A such that (A,P) is
≥t-maximal among all (B,P), i.e., it is time-optimal among all (B,P).

Proof. This is proved analogously as the existence of a universal NP search
algorithm (cf. Levin [22]): given input �, A tries for i = 1, 2, ... lexicographically
first i algorithms for i steps until it finds a P-proof of �.

We may assume w.l.o.g. that the size of the i-th algorithm is O(log i) and that A
simulates its t steps in time polynomial in t + log i . Hence for a fixed B that is j-th
in the ordering then

timeA(�) ≤ timeB(�)O(1). �

Notation. Let (AP,P) denote the proof search algorithm described in the above
proof. Hence (AP,P) is time-optimal among all (B,P).

The optimality problem (both its versions for ≥ and ≥p) relates to a number of
questions in a surprisingly varied areas and there are quite a few relevant statements
known (cf. [17, Chapter 21]). We shall recall just one statement that we will use in
the second proof of Theorem 2.4.

Theorem 2.3. (Krajı́ček and Pudlák [19, Theorem 2.1]) A p-optimal proof system
exists iff there is a deterministic algorithm M computing the characteristic function
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�TAUT of TAUT such that for any other deterministic algorithmM ′ computing �TAUT
it holds that:

timeM (�) ≤ timeM ′(�)O(1), for all � ∈ TAUT.

Now we shall relate the existence of p-optimal proof systems and time-optimal
proof search algorithms. We give two proofs as they illustrate different facets of the
statement.

Theorem 2.4. Let P be any proof system containing resolution R and having the
property that for some c ≥ 1, for every � and every �′ obtained from � by substituting
constants for some atoms it holds sP(�′) ≤ sP(�)c .

Then P is p-optimal iff (AP,P) is time-optimal among all proof search algorithms
(B,Q).

In particular, a p-optimal proof system exists iff a time-optimal proof search
algorithm (i.e., ≥t-maximal ) exists.

First proof. The only-if-direction is obvious, using Lemma 2.2. For the non-
trivial if-direction of the theorem we use the fact that for any Q there is a p-time
construable sequence of tautologies

〈RefQ〉n, n ≥ 1

such that n ≤ |〈RefQ〉n| and if P-proofs of these formulas are p-time computable
then P p-simulates Q. These formulas formalize the soundness5 of Q and their exact
definition is not important here. Their relation to (p-)simulations is a classic fact
of proof complexity going back to Cook [5]; see [17, Section 19.2 or 21.1] for this
background.

Define a proof system Q′ in which 1(n) is a proof of 〈RefQ〉n and any other w is
interpreted as a resolution proof. Further take algorithm B which upon receiving �
first looks whether � = 〈RefQ〉n for some n (a priori ≤ |�|) in which case it produces
1(n), and otherwise it uses some fixed resolution searching algorithm to find a
proof.

Because (AP,P) is supposed to be time optimal, AP(〈RefQ〉n) has to compute in
p-time a P-proof of 〈RefQ〉n. But by the stated properties of these formulas P ≥p Q
follows.

Second proof. We now give a second, alternative proof for the last statement
of the theorem, using Theorem 2.3. For a proof search algorithm (A,P)
define algorithm M(A,P) computing �TAUT as follows: On input � it com-
putes A(�) and checks that P(A(�)) = �. If so, it outputs 1, otherwise it
outputs 0.

On the other hand, if M computes �TAUT define proof system PM by

PM (w) = � iff (w is the computation ofM on � and it outputs 1)

and algorithm AM : On input � output the computation of M and �.

5They have bits for size ≤ n Q-proof x, formula y and truth assignment z and say that if x is a Q-proof
of y then z satisfies y, cf. [17].
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It is easy to verify that:

• if (A,P) is a time-optimal proof search algorithm thenM(A,P) is a deterministic
algorithm computing �TAUT having the time-optimality property from
Theorem 2.3, and

• if M is a deterministic algorithm computing �TAUT having the time-optimality
property from Theorem 2.3 then (AM,PM ) is time-optimal proof search
algorithm.

Theorem 2.3 then implies the statement. �
If P ≥p Q then in any reasonable quasi-ordering of proof search algorithms

(Ap, P) will be at least as strong as (AQ,Q). For the opposite direction (the if-
direction) of the theorem we utilized the fact that (AP,P) is required to find in
p-time proofs of simple sequences of formulas as are 〈RefQ〉n. A simple sequence of
formulas appears also in the following situation. Take any proof search algorithm
(A,R) searching for resolution proofs. Take a sequence of tautologies that are
computed by a p-time function from 1(n) and that are hard for R but easy for
Extended resolution ER and, moreover, their ER-proofs can be computed from
1(n) in p-time by some function f. Examples of such formulas are formulas PHPn
formalizing the pigeonhole principle, cf. Haken [9] and Cook and Reckhow [7] (or
see [17]). Now define a proof search algorithm (B,ER) that on input � computes as
follows:

1. B checks if � = PHPn for some n ≥ 1 (this is p-time because it needs to consider
only n ≤ |�|).

2. If yes, i.e., � = PHPn, then B outputs f(1(n)).
3. Otherwise B outputs A(�).

Then (B,ER) >t (A,R) but intuitively it does not seem quite right to claim that
(B,ER) is a better algorithm than (A,R); B does not do anything extra except that
it remembers one type of simple formulas. One would like to

(*) compare A and B on inputs � where they actually do something non-trivial.
In [17, Section 21.5] we proposed a definition of a quasi-ordering of proof search
algorithms by time as is ≥t but measured only on TAUT from which we are allowed
to take out a simple (in particular, a p-time construable) sequence of tautologies.
Subsequently in [18] a stronger variant of that (avoiding all such sequences) was
proposed. This could, in principle, allow for the situation that there is an optimal
proof search algorithm without having a p-optimal proof system, and thus separate
the two questions. However, the resulting quasi-orderings are unintuitive and it is
not clear whether they actually help to avoid the if-direction of Theorem 2.4.

A more fundamental issue, related to (*) above, is that the decision not to count
(or not count) � = PHPn when comparing two proof search algorithms is not based
only on the individual tautology � but depends on the fact that it is one of an infinite
series of tautologies defined in a particular uniform way.

These considerations are, of course, quite informal but lead us to formal notions
discussed in the next section.

§3. Information optimality. We shall assume that every e ∈ {0, 1}∗ is also a code
of a unique Turing machine and we shall consider a universal Turing machine U

https://doi.org/10.1017/jsl.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.75


858 JAN KRAJÍČEK

with three inputs e, u, 1(t) that simulates machine e on input u for at most t steps,
stops with the same output if e stops in ≤ t steps, and otherwise outputs 0. We shall
assume that U runs in polynomial time.

Using this setup recall the time-bounded Kolmogorov complexity of a string w ∈
{0, 1}∗ as defined by Levin [22]:

Kt(w|u) := min{(|e| + 
log t�) | U (e, u, 1(t)) = w}

(we use 
log t� instead of log t as we want integer values) and

Kt(w) := Kt(w|0).

Intuitively, smaller Kt(w) is simpler w is, in the sense that it can be compressed to
a shorter string without loosing information.

Note that we have trivial estimates to Kt(w|u) and Kt(w) in terms of the
size |w|:

log(|w|) ≤ Kt(w|u) ≤ Kt(w) ≤ |w| + log(|w|) +O(1). (1)

The left inequality holds as need time |w| to write w, the middle one is trivial and
the right inequality follows from considering a machine that has w hardwired into
its program.

We would like to have inequality Kt(w) ≤ Kt(w|u) +Kt(u) that is intuitively
justified by composing machine e1 computing u with machine e2 computing w from
u. However, as pointed out in Kolmogorov [11], the code of the composed machine
(and, in general, of the pair (e1, e2)) does not have length |e1| + |e2| but rather can be
defined of length |e1| + |e2| +O(log(|e1|) + log(|e2|)). Hence we get a slightly worse
inequality:

Kt(w) ≤ Kt(w|u) +Kt(u) +O(log(Kt(w|u)) + log(Kt(u))) (2)

and similarly

Kt(w|u) ≤ Kt(w|v) +Kt(v|u) +O(log(Kt(w|v)) + log(Kt(v|u))). (3)

We use Kt to define a new measure of complexity of proofs.

Definition 3.1. Let P be a proof system. For any � ∈ TAUT define

iP(�) := min{Kt(w|�) | w ∈ {0, 1}∗ ∧ P(w) = �}.

We shall call iP the information efficiency function.

The function measures the minimal amount of information any P-proof of � has
to contain, knowing what � is. The next statement shows that stronger proof systems
do not require much more information.

Lemma 3.2. For any P,Q, P ≥p Q implies iP(�) ≤ O(iQ(�)).

Proof. Let f be a p-simulation of Q by P. Take w that is a Q-proof of � with
Kt(w|�) = iQ(�).

Using (3) we can estimate iP(�) ≤ Kt(f(w)|�) from above by the sum
Kt(f(w)|w) +Kt(w|�) = Kt(f(w)|w) + iQ(�) plus some log-small terms. But
Kt(f(w)|w) ≤ O(log |w|) +O(1) (the O(1) is for the machine computing f and
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the computation runs in time polynomial in |w|) which is also bounded byO(iQ(�))
by (1). �

The next two statements relate the information measure fairly precisely to time in
proof search.

Lemma 3.3. Let (A,P) be any proof search algorithm. Then for all � ∈ TAUT :

iP(�) ≤ Kt(A(�)|�) ≤ |A| + log(timeA(�)).

In particular, timeA(�) ≥ Ω(2iP (�)).

Proof. The first inequality is obvious, and the second follows from the definition
as A(�) = U (A, �, 1(t)), where t = timeA(�). �

This statement is complemented by the next one essentially saying that easy proofs
are easy to find.6

Lemma 3.4. (i-automatizability) For every proof system P there is an algorithm B
such that for all � ∈ TAUT :

Kt(B(�)|�) = iP(�)

and

timeB(�) ≤ 2O(iP (�)).

Proof. For i = 1, 2, ... algorithm B (using the universal machine U) does the
following:

• In the lexico-graphic order tries all pairs (e, t) such that |e| + 
log t� = i and
checks whether U (e, �, 1(t)) is a P-proof of �. If so, it outputs the proof and
stops.

There are ≤ 22i such pairs (e, t) to consider, computing U (e, �, 1(t)) takes
time poly(|e|, t) ≤ 2O(i) and checking whether P(U (e, �, 1(t))) = � takes time
poly(|U (e, �, 1(t))|) ≤ 2O(i). The procedure takes for one i overall time 2O(i) and
because B succeeds in the round for i = iP(�), the overall time B takes is
≤ 2O(iP (�)). �

Notation. Let us denote the algorithm described in the proof by BP .

In fact, the argument in the proof of Lemma 3.4 is another version of the universal
search as the next statement shows.

Corollary 3.5. Let P be any proof system and letAP andBP be the two algorithms
defined earlier. Then

(AP,P) ≥t (BP, P) ≥t (AP,P).

Proof. The first inequality follows from Lemma 2.2, and the second from
Lemmas 3.3 and 3.4. �

6In this sense it establishes automatizability of all proof systems w.r.t. information efficiency as
opposed to the original automatizability relating to lengths-of-proofs, cf. Section 4 or [17, Section 17.3].
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Because the algorithm BP achieves the optimal information efficiency it seems
natural to define a quasi-ordering of proof systems based on comparing their
information-efficiency functions.

Definition 3.6. For two proof systems P and Q define:

P ≥i Q iff iP(�) ≤ O(iQ(�)),

for all � ∈ TAUT .

This is a quasi-ordering of proof systems that is, by Lemma 3.2, coarser that ≥p
but, presumably, different than both ≥p and ≥. But as far as optimality goes it does
not allow for a new notion.

Theorem 3.7. Let P be any proof system containing resolution R and having the
property that for some c ≥ 1, for every � and every �′ obtained from � by substituting
constants for some atoms it holds sP(�′) ≤ sP(�)c .

Then P is information-optimal (i.e., ≥i -maximal ) iff it is p-optimal.

Proof. Let P be a p-optimal proof system and let Q be any proof system. Assume
f is a p-simulation of Q by P.

Let � ∈ TAUT and assume Kt(w|�) = iQ(�) for some Q-proof w of �. Then
f(w) is a P-proof of � and Kt(f(w)|w) ≤ O(1) +O(log |w|). But |w| ≤ 2iQ(�), so
Kt(f(w)|w) ≤ O(iQ(�)) and Kt(f(w)|�) ≤ O(iQ(�)) follows by (3). Hence

iP(�) ≤ O(iQ(�)), all � ∈ TAUT.

For the only-if-direction assume that P is an information-optimal proof system
and Q is an arbitrary proof system. Take the sequence 〈RefQ〉n, n ≥ 1, as in the first
proof of Theorem 2.4, and interpret strings 1(n) as proofs of these formulas in some
proof system Q′. We see that

iQ′(〈RefQ〉n) ≤ O(log n).

By the information optimality of P also

iP(〈RefQ〉n) ≤ O(log n),

which, by Lemma 3.4, means that the algorithm BP finds P-proofs of formulas
〈RefQ〉n in time nO(1). This implies, as in the first proof of Theorem 2.4, thatP ≥p Q.
�

Theorem 3.7 implies that the information measure approach does not lead to a
separation of the proof search problem from the optimality problem either.

§4. Information vs. size. A natural question is whether the information-efficiency
function may give, at least in principle, better time lower bounds for proof search
algorithms than the length-of-proof function. By Lemma 3.3 information gives
super-polynomially better time lower bound than size if iP(�) cannot be in general
bounded above by O(log sP(�)).

Recall a notion introduced by Bonet, Pitassi and Raz [2]: a proof system P
is automatizable iff there is a proof search algorithm (A,P) such that for all
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� ∈ TAUT:

timeA(�) ≤ sP(�)O(1).

Considering that there are no known non-trivial complete automatizable proof
systems this author saw as the only use of the notion that it gives a nice meaning to
the failure of feasible interpolation, cf. [17, Section 17.3]. But now it is exactly what
we need to characterize the separation of size from information; using Lemma 3.3
the following statement is obvious.

Theorem 4.1. A proof system P is non-automatizable iff there is an infinite set X
of tautologies � of unbounded size such that

iP(�) ≥ �(log sP(�)) (4)

on X.

To illustrate what type of formulas witness the separation of size from information
we shall paraphrase the construction from [20]; there it was done for P = ER and
h := RSA.

Let h : {0, 1}∗ → {0, 1}∗ be a p-time permutation of each {0, 1}n, i.e., it is a
length-preserving and injective function, and let hn be the restriction of h to {0, 1}n.
For any b ∈ {0, 1}n define formula

�b := [hn(x) = b → B(x) = B(h(–1)(b))],

where B(x) is a hard-bit of permutation h; the statement hn(x) = b is expressed
by a p-size circuit (if P allows them), or using auxiliary variables whose values are
uniquely determined by values of x1, ... , xn. Note that |�b | ≤ nO(1).

Lemma 4.2. Let P be any proof system containing resolution R and having the
property that for some c ≥ 1, for every � and every �′ obtained from � by substituting
constants for some atoms it holds sP(�′) ≤ sP(�)c .

Assume that P proves by p-size proofs tautologies expressing that hn are injective:

hn(x) = hn(y) →
∧

i≤n
xi ≡ yi .

Assume that h is a one-way permutation and B is its hard bit predicate.7

Then there are P-proofs �b of formulas �b such that:
1. |�b | ≤ nO(1), i.e., sP(�b) ≤ nO(1),
2. for a random b ∈ {0, 1}n, with a probability going to 1 as n → ∞, it holds that

iP(�b) ≥ �(log n). (5)

If h is secure even against algorithms running in time 2n
�
, for some � > 0, then

the right-hand term in (5) can be improved to nΩ(1).

Proof. Define the wanted P-proof �b as follows. Pick a ∈ {0, 1}n such that
h(a) = b and prove in P in p-size, using the injectivity of hn, that

hn(x) = b → x = a.

7See [25] for definitions of these notions.
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From this implication we can derive �b using implication

x = a → B(x) = B(a)

that has p-size resolution proofs. This proves the first statement.
The second statement follows from the hypothesis that h is one-way: we can try

the algorithm BP from Section 3 on formulas

[hn(x) = b → B(x) = c]

for c = 0, 1 and compute in this way the hard bit in p-time. But that is impossible if
B is indeed a hard bit of h. �

Related formulas can be defined as follows. Letϕn(x), n ≥ 1 and x = (x1, ... , xn),
be a sequence of formulas that have p-size |ϕn| ≤ nO(1) but that do not have p-size
P-proofs:

sP(ϕn) ≥ n�(1), n ≥ 1.

For some proof systems we have such formulas unconditionally, for those which are
not p-optimal we can take formulas 〈RefQ〉n used earlier, for some Q >p P.

For any b ∈ {0, 1}n define formula

	b(x) := [hn(x) = b → ϕn(x)].

Note that |	n| ≤ nO(1). Analogously with the proof of the lemma, the formulas
have p-size P-proofs �b and these particular proofs satisfy Kt(�b |	b) ≥ �(log n).
It would be interesting if for some P it would hold that any short proof of 	b must
contain some non-trivial information about h(–1)(b).

§5. Information alone. A separation of size from information in the sense of
(4) implies that no p-time algorithm finds, given � and sP(�) in unary, a p-time
recognizable (by P) object (a P-proof), and hence it implies that P �= NP. In
fact, a number of proof systems are known to be non-automatizable assuming
various conjectures from complexity theory (cf. [17, Section 17.3]). We mention
just resolution R and its non-automatizability proved under the weakest possible
hypothesis that P �= NP by Atserias and Müller [1]; references for earlier work and
other examples can be found there or in [17, Section 17.3].

Proofs of non-automatizability depend on a p-time reduction of some hard set Y
(NP-complete in [1] or hard bit of RSA in [20] or similar, cf. [17, Section 17.3]) to a
set of formulas with p-size proofs that maps the complement {0, 1}∗ \ Y to formulas
with only long (or none) proofs. These arguments do not yield lower bounds for
iP(�) for individual formulas but only speak about the asymptotic behavior of an
automatizing algorithm.

We are interested in the question whether one can establish a lower bound for iP(�)
by considering formulas individually, not as members of an infinite set or sequence.
This would be in a way analogous to lengths-of-proofs lower bounds (e.g., forPHPn
in R in [9]) which work with individual formulas.

A super-polynomial lower bound for sP(�) is used primarily for three purposes:
1. It implies that no Q ≤ P is p-bounded, an instance of NP �= coNP, and if true

for all P then indeed NP �= coNP follows.
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2. It implies super-polynomial time lower bounds for a class of SAT algorithms
S that are simulated by P : P ≥ PS(PS defined in the Introduction). Currently
known lengths-of-proofs lower bounds imply time lower bounds for large classes
of SAT algorithms.

3. It implies independence results from a first-order theory attached to P and, in
particular, that P �= NP is consistent with the theory (see [17, Section 86]).

But having a super-logarithmic lower bound for iP(�) is just as good. Items 2 and 3
hold literally: in the former this is by Lemma 3.3 and for the latter this holds because
propositional translations of first-order proofs are performed by p-time algorithms
(cf. [17, Part 2]). In item 1 one has to compromise on weakening NP �= coNP to
P �= NP.

This motivates the following problem that seems to us to be quite fundamental.

Problem 5.1. Establish unconditional super-logarithmic lower bound

iP(�) ≥ �(log |�|)
for � from a set X ⊆ TAUT of tautologies of unbounded size, for a proof system P
for which no super-polynomial lowers bounds for the length-of-proof function sP are
known.

As a step towards solving the problem it would be interesting to have such
unconditional lower bounds at least for P for which super-polynomial lower bounds
for sP are known, but not for formulas from X.

Note the emphasis on the requirement that the lower bound is unconditional.
Allowing some unproven computational complexity hypotheses the problem
becomes easy. For example, if it were that iP(�) ≤ O(log |�|) for all � then the
algorithm BP form Section 3 runs in p-time and hence P = NP. Or you may take
any pseudo-random number generator g : {0, 1}n → {0, 1}n+1 and for b ∈ {0, 1}n+1

take a formula8 �b expressing that b /∈ Rng(g). Then iP(�b) cannot be bounded by
O(log |�b |) as otherwise BP would break the generator in p-time.

In what follows we shall discuss the existence of formulas � whose length we shall
denote m. The formulas will not be a priori members of some infinite series but are
considered individually. This means that questions and statements about them do
depend just on them and not on asymptotic properties of some ambient sequence.
But we still wish to use the handy O-, Ω- and �- notations and in doing so we
imagine what happens in each particular construction or statement as m → ∞.

For the sake of the following discussion let us call a size m formula simple if
Kt(�) = O(log m) and complex otherwise, and we apply similar qualifications to its
proofs � but still relative to parameter m (i.e., not relative to |�|).

For example, for the truth-table proof system TT, any tautology � in mΩ(1)

variables, simple or complex, will have only a complex truth-table proof �: its size is
exponential in mΩ(1) and (1) implies that Kt(�) ≥ iTT (�) ≥ mΩ(1) as well.

To solve Problem 5.1 we want a class X ⊆ TAUT of formulas �, |�| = m → ∞,
such that

iP(�) ≥ �(log m).

8See Section 6.1.
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The following lemma formulates two simple conditions on X, one necessary and one
sufficient.

Lemma 5.2. Let X ⊆ TAUT be a set of formulas of unbounded size.
1. (a necessary condition)

For X to solve Problem 5.1 it is necessary that all P-proofs � of all � ∈ X are
complex:

Kt(�) ≥ �(log m).

2. (a sufficient condition)
If X satisfies item 1 then a sufficient condition for it to solve the problem is that
all � ∈ X are simple:

Kt(�) ≤ O(log m).

Proof. For item 1 note that by (1) we have iP(�) ≤ Kt(�|�) ≤ Kt(�). For item 2
we have by (2):

Kt(�) ≤ Kt(�|�) +Kt(�) +O(logKt(�|�)) +O(logKt(�)).

By (1) we may estimate the last term by O(log m) for any �, and by the hypothesis
Kt(�) ≤ O(log m) as well. Hence we can rewrite the inequality as

Kt(�) – Kt(�|�) ≤ O(log m) +O(logKt(�|�)). (6)

Now distinguish two cases. Either � ≤ mO(1) or � ≥ m�(1). In the latter case we are
done as iP(�) is lower bounded by log sP(�). In the former case we can estimate the
last term in (6) by O(log m) and hence get

Kt(�) – Kt(�|�) ≤ O(log m). (7)

This implies what we need because, by item 1, Kt(�) ≥ �(log m). �
Note that condition 1 in the lemma is not sufficient. To see this take � of the form


 ∨ ¬
, where
 is random a hence of highKt-complexity. But � is a proof of itself in a
suitable Frege system (or even in R if 
 is just a clause and ¬
 is the set of singleton
clauses consisting of negations of literals in 
) and Kt(�|�) = log(|�|) +O(1) is
small.

When � are complex then the necessary condition holds automatically: given a
P-proof � of �, either |�| ≥ m�(1) and hence�(log m) lower boundsKt(�|�) by (1),
or |�| ≤ mO(1). In the latter case, because P(�) = � and using (2):

Kt(�) ≤ Kt(�|�) +Kt(�) +O(logKt(�|�) + logKt(�)),

which yields

�(log m) ≤ O(1) +O(log |�|) +Kt(�) +O(log(O(1) +O(log |�|)) + logKt(�)).

Estimating log |�| ≤ O(log m) we derive:

�(log m) ≤ Kt(�).

On the other hand, the computation in the proof of item 2 does not yield anything
for complex formulas. But the quantity being estimated from above in (7) still makes
sense and if (7) holds for an X (satisfying item 1) then X solves the problem.
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In fact, this quantity has been isolated already by Kolmogorov [10, 11]; following
him define (the Kt-version of) information that u conveys about w as

It(u : w) := Kt(w) – Kt(w|u).

Hence what we want is �, simple or complex, having only complex proofs such that
for any proof � it holds that:

It(� : �) is small.

In words: � knows very little about its proofs.
Many formulas that appear in various contexts of proof complexity (as formulas

PHPn or 〈RefQ〉n we encountered earlier) occur as members in a uniformly
constructed sequence {�n}n. The sequence is often p-time construable from 1(n)

or, in fact, has even stricter levels of uniformity (cf. [17, Section 19.1]). When such
formulas have short proofs �n in some proof system P it is often the case that
the proofs are also uniformly constructed from 1(n). But that forces Kt(�n) to be
O(log n).

Hence if we wanted to use for X some uniform formulas they ought to be expected
to have only long P-proofs (but we may not be able to prove that). Leaving the
reflection principles aside, two examples that come to mind are

• AC 0[p]-Frege systems and the PHPn formulas, cf. [17, Section 10.1 and
Problem 15.6.1].
(No super-polynomial size lower bounds are known for this proof system, cf.
[17, Problem 15.6.1].)

• AC 0-Frege systems and theWPHPn formulas (expressing weak PHP).
(Lower bounds for AC 0-Frege systems are known but not for formulas
WPHPn expressing a form of the weak PHP, cf. [17, Problem 15.3.2].)

For stronger systems the only candidates for hard formulas9 which are supported by
some theory are �-formulas, called also proof complexity generators. These formulas
are described in Section 6.1. For some generators, as those defined in [15, Sections
29.4 and 29.5] these formulas are expected to be all complex in the sense of Kt
complexity.

But for the �-formulas based on the truth-table function tts,k there are uniform
examples possibly hard for ER (Extended resolution). The formulas express that a
size 2k string is not the truth-table of a Boolean function computed by a size ≤ s
circuit. Truth tables of SAT (in fact, of any language in the class E) are constructible
in p-time (i.e., in time polynomial in 2k) and there is a theory (cf. [12, Section 5])
supporting the conjecture that the corresponding �-formulas are hard for ER.

The theory of proof complexity generators is now fairly extensive and it is not
feasible to repeat its key points here. More information is in Section 6.1 and in the
references given there.

§6. Proof complexity remarks. In this section we remark on several topics in proof
complexity that seem to be related to the information measure. It may be worthwhile
to explore if there are some deeper connections. The section aims primarily at proof

9We leave reflection principles aside here.
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complexity readers but we give references to relevant places in [17] to aid non-
specialists.

6.1. Proof complexity generators. A fairly succinct exposition of the theory of
proof complexity generators can be found in [17, Sections 19.4 and 19.6] or in
older [15, Chapters 29 and 30]. The theory investigates, in particular, functions g
extending n bit strings to m-bit strings, m = m(n) > n, computable in p-time, and
such that formulas �(g)b , expressing for b ∈ {0, 1}m that b /∈ Rng(g), ought to be
hard to prove in a given proof system. In particular, function g is defined to be
hard for P iff for any c ≥ 1 only finitely many formulas �(g)b have a P-proof of size
≤ |�(g)b |c .

Function g can be thought of as a decompression algorithm and for w ∈ Rng(g)
we haveKt(w) ≤ n +O(log n) +O(1) which is<< m if, for example, 3n ≤ m. Note
that forw ∈ {0, 1}m, 3n ≤ m, the conditionKt(w) ≥ m/2 implies thatKt(w) > n +
O(log n) +O(1) and hence also w /∈ Rng(g). The property Kt(w) ≥ m/2 cannot
be expressed by a p-size tautology as the time involved in the computation of
the universal machine may be exponential in m. But for a fixed p-time t(n) we
can consider complexity Kt by restricting the decompression to a universal Turing
machine Ut on inputs e, u (i.e., no time input) simulating e on u for time t. By
padding (or restricting) all outputs in some canonical way to sizem = m(n) exactly,
and taking for the domain n′-bit strings with, say, n′ := n + log n (the term log n
swallowing the description of a machine), we can think of Ut as of a generator as
well.

By the virtue of constructions of universal Ut (for time t machines) it is
straightforward to show in theory PV that Rng(g) ⊆ Rng(Ut) for any generator g
as above running in time ≤ t(n). Hence (the propositional translations of) this fact
are shortly provable in ER, cf. [17, Chapter 12]). It follows that for any P ≥ ER, if
some �-formulas resulting fromUt have short proofs so do some formulas resulting
from g. That is, if there is any g computable in time t and hard for P then Ut must
be hard as well. Putting it differently, proving tautologies10 expressingKt(w) > m/2
must be hard for P.11

6.2. Implicit proof systems. Implicit proof systems, introduced in [13], operate
with proofs � computed bit-by-bit by a circuit (but that is not all). Proof � may
have size exponential in comparison with the size of the defining circuit. Hence its
Kt-complexity may be close to the lower bound log |�| from (1).

For two proof systems P,Q the implicit proof system [P,Q] considers a proof of
a tautology � to be a pair (α, �), where � is a circuit whose truth-table is a Q-
proof of � and α is a P-proof (of the propositional statement formalizing) that �
indeed computes a Q-proof. Note that using circuits � alone would not constitute a
Cook–Reckhow proof system. For the formal definition see [13] or [17, Section 7.3].

10A referee pointed out that Pich and Santhanam [26] considered similar tautologies expressing high
Kolmogorov complexity based on the KT complexity.

11It is tempting to look for analogies of these tautologies with formulas occurring in Chaitin’s [4]
incompleteness theorem. But the interpretation of the role of information in incompleteness phenomenon
is littered with mathematically unsupported or outright incorrect interpretations—see van Lambalgen
[21] for analysis of some—and we stay away from any informal discussion of this topic.
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Implicit proof systems get incredibly strong very fast. For example, implicit
resolution iR := [R,R] p-simulates ER and iER p-simulates quantified propositional
system G, cf. [17, Section 7.3].

6.3. Proof systems with advice. Recall from Cook and Krajı́ček [6] that a
functional12 proof system with k(n) bits of advice is a P : {0, 1}∗ → {0, 1}∗ whose
range is exactly TAUT and such that P is computable in polynomial time using k(n)
bits of advice on inputs (i.e., proofs) of length n. Cook and Krajı́ček [6, Theorem
6.6] proved that there exists a proof system with 1 bit of advice that p-simulates all
classical Cook–Reckhow’s proof systems. This suggests13 to use the only-if direction
of Theorem 2.4 and to conclude that there is a proof search algorithm with advice
(A,P) which is≥t-better than all ordinary proof search algorithms of Definition 1.1.
Here P is the proof system with 1 bit of advice from [6, Theorem 6.6] and A is a
non-uniform p-time algorithm, i.e., it uses p-size advice.

To see this note that the proof of the only-if direction in Theorem 2.4 appeals
to Lemma 2.2 that there is a time-optimal algorithm for any fixed proof system: in
the universal search construction we need to check many—but only polynomially
many—potential proofs of different lengths and each length requires its own bit of
advice. Algorithm A will use the advice that collects together all these individual
bits.

6.4. Diagonalization. Diagonalization in proof complexity was used in [14] (or
see [17, Section 21.4]) to prove that at least one of the following three statements is
true:

1. There is a function f : {0, 1}∗ → {0, 1} computable in time 2O(n) that has
circuit complexity 2Ω(n).

2. NP �= coNP.
3. There is no p-optimal propositional proof system.

A key part of that is a way, assuming that item 1 fails, how to compress possibly very
long proofs and to represent them by small circuits. Using instead the Kt measure
may possibly allow for a stronger result.

6.5. Random formulas. Müller and Tzameret [24] proved that random 3CNFs
with Ω(n1.4) clauses do have (with the probability going to 1) polynomial size
refutations in a TC 0-Frege system. Their argument is based on formalizing in the
proof system (via bounded arithmetic) the soundness of the unsatisfiability witnesses
proved to exists with a high probability by Feige, Kim and Ofek [8].

Such a formula � has bit sizem = O(n1.4 log n) (and, by virtue of being random,
it has Kt-complexity Ω(m)). Feige, Kim and Ofek [8] proved that their witness (i.e.,
also the p-size TC 0-Frege proof � from [24]) can be found in time 2O(n0.2 log n) which
is exponential in mΩ(1). That is, we know that

iTC 0–F (�) ≤ mΩ(1). (8)

12Classical proof systems can be formulated either as functional—as we did at the beginning of the
paper—or as relational and these two formulations are essentially equivalent from proof complexity
point of view. This is no longer true for systems with advice, cf. [6].

13To us it was suggested by Igor C. Oliveira.

https://doi.org/10.1017/jsl.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.75


868 JAN KRAJÍČEK

This leaves open the possibility that this inequality cannot be significantly improved.
In that case the formulas would be witness for Theorem 4.1 for TC 0-Frege systems
demonstrating even exponential gap.

§7. Concluding remarks. Results in Sections 2 and 3 show that the optimality
of proof search algorithms reduces to p-optimality of proof systems in both quasi-
orderings based on time or information, respectively. This leaves some room for a
totally different definition of a quasi-ordering of proof search algorithms that is
coarser than those studied here and in which there could be an optimal algorithm
without implying also the existence of a p-optimal proof system. On the other hand,
the ordering by time of Section 2 is perhaps so rudimentary that it is the finest one
among all sensible quasi-orderings; hence the opposite implication ought to hold
always. However, it is our view that—from the point of view of proof complexity—
the situation is clarified and the proof search problem as formulated in [17, Section
21.5] is simply the p-optimality problem.

This does not quite dispel the doubts about the ≥t ordering discussed at the
end of Section 2. The quasi-orderings considered here are theoretical models of
a comparison of proof search algorithms and have shortcomings in modeling
actual comparison of practical algorithms that are, we think, quite analogous to
shortcomings of p-time algorithms as a theoretical model of practical feasible
algorithms. The comparison of real-life algorithms is also more purpose specific
and classifying all purposes that arise in practice may not be theoretically possible
or useful.

However, measure iP(�) may still have some uses for comparing two proof systems
from the practical proof search point of view. For example, it can be used to kill all
uniform formulas when testing algorithms (cf. the discussion at the end of Section 2)
by accepting as test formulas only those satisfying, say,Kt(�) ≥ (log |�|)2. Also, the
information-efficiency functions for P, Q such that P >p Q could lead to a suitable
distance function measuring how much better P than Q is, by counting how much
more information Q-proofs require than P-proofs do.
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