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Recently, Sychev showed that conditions both necessary and sufficient for lower
semicontinuity of integral functionals with p-coercive extended-valued integrands are
the W 1,p-quasi-convexity and the validity of a so-called matching condition (M).
Condition (M) is so general that we conjecture whether it always holds in the case of
continuous integrands. In this paper we develop the relaxation theory under the
validity of condition (M). It turns out that a better relaxation theory is available in
this case. This motivates our research since it is an important old open problem to
develop the relaxation theory in the case of extended-value integrands. Then we
discuss applications of the general relaxation theory to some concrete cases, in
particular to the theory of strong materials.
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1. Preliminaries

Let m, N � 1 be two integers and let M be the space of all real m×N matrices. In
what follows, we denote the Lebesgue measure of a Borel subset A of R

N by |A|.
Let p > 1 be a real number and let E : W 1,p(Ω; Rm) → [0,∞] be defined by

E(u) :=
∫

Ω

L(∇u(x)) dx,

where Ω is a bounded open set such that |∂Ω| = 0 and L : M → [0,∞] is Borel
measurable and p-coercive, i.e. L(·) � c| · |p for some c > 0. Let Ē : W 1,p(Ω; Rm) →
[0,∞] be the lower semi-continuous envelope of E with respect to the strong con-
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vergence of Lp(Ω; Rm), i.e.

Ē(u) := inf
{

lim
n→∞

E(un) : un → u in Lp(Ω; Rm)
}

.

Due to the p-coercivity of L, strong convergence in Lp could be replaced by weak
convergence in W 1,p, as this frequently happens in the literature. However, in this
paper we shall use strong convergence in Lp. It is well known that Ē is lower
semi-continuous with respect to the strong convergence in Lp (weak convergence in
W 1,p).

Recently, Sychev suggested conditions both necessary and sufficient for lower
semicontinuity of the functional E with respect to the strong convergence in Lp

(see condition (M) and theorem 1.1).

(M) For every ξ ∈ M and every {un}n ⊂ W 1,p(Y ; Rm) such that un → lξ in
Lp(Y ; Rm) and limn→∞ I(un) < ∞, there exist a subsequence {un}n (not
relabelled) and a sequence {φn} ⊂ lξ + W 1,p

0 (Y ; Rm) such that

lim
n→∞

{I(un) − I(φn)} � 0, where I(u) :=
∫

Y

L(∇u(y)) dy.

Hereafter, lξ will denote the linear function with gradient equal to ξ ∈ M and
Y := ]− 1

2 , 1
2 [N .

Theorem 1.1 (Sychev [23]). Assume that L : M → [0,∞] is continuous. Then, the
functional E is Lp-lower semi-continuous if and only if L is W 1,p-quasi-convex and
the matching condition (M) holds.

Recall that L is called W 1,p-quasi-convex at ξ if∫
Ω

L(∇φ(x)) dx � |Ω|L(ξ) for all φ ∈ lξ + W 1,p
0 (Ω; Rm).

The definition of W 1,p-quasi-convexity does not depend on Ω (see [7]), and it was
shown in [7] that this condition is necessary for lower semicontinuity with respect
to the weak convergence in W 1,p.

Theorem 1.1 also holds for Borel measurable integrands L, as this follows from
theorem 2.1. Note that condition (M) is rather general and it is unknown whether
it always holds in the case of continuous integrands (in the case of Borel measurable
integrands the condition may fail; see § 2).

In the general case considered in this paper, the theory of integral representations
of relaxed functionals Ē is not well developed, since it requires dealing with W 1,p-
quasi-convexifications QpL, where

QpL(ξ) := inf
{ ∫

Y

L(∇φ(y)) dy : φ ∈ lξ + W 1,p
0 (Y ; Rm)

}
,

and there is not much information about the behaviour of such integrands (see, for
example, [13–16]). A better theory is available when QpL = Q∞L and L is a finite-
valued function [1,11,21,22] (see [15] for a list of appropriate references). The study
of extended-valued integrands L : M → [0,∞] is dictated by the theory of elasticity
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as suggested by Ball (see, for example, [4–6]) in order to account for the physical
behaviour of materials when their volume is compressed to zero, i.e. the determinant
of the deformation gradient tends to (or is equal to) 0. This is a major problem in
elasticity and a challenge in the calculus of variations, as standard cut-offs cannot
preserve the determinant constraint. The aim of this paper is to contribute to the
development of the relaxation theory in the case of extended-valued integrands (see,
for example, [2, 10,20–22] for related works).

We shall use the following two standard lemmas about W 1,p-quasi-convexifica-
tions.

Lemma 1.2. For every ξ ∈ M and every bounded open set U ⊂ R
N with |∂U | = 0,

we have

QpL(ξ) = inf
{ ∫

U

L(∇φ(y)) dy : φ ∈ lξ + W 1,p
0 (U ; Rm)

}
. (1.1)

Proof of lemma 1.2. Let ξ ∈ M. Let U ⊂ R
N be a bounded open set with |∂U | = 0,

and denote the right-hand side of (1.1) by QpL(ξ, U). By Vitali’s covering the-
orem there exists a finite or countable family {ai + αiU}i∈I of disjoint subsets
of Y , where ai ∈ R

N and 0 < αi < 1, such that |Y \
⋃

i∈I(ai + αiU)| = 0 (and
so |U |

∑
i∈I αN

i = |Y | = 1). Fix any φ ∈ lξ + W 1,p
0 (Y ; Rm). For each i ∈ I, let

φ̂i ∈ lξ + W 1,p
0 (U ; Rm) be defined by

φ̂i(x) := lξ(x) +
1
αi

(φ(ai + αix) − lξ(ai + αix)).

Then ∫
U

L(∇φ̂i(x)) dx � |U |QpL(ξ, U)

for all i ∈ I. But,∫
Y

L(∇φ(y)) dy =
∑
i∈I

∫
ai+αiU

L(∇φ(y)) dy

=
∑
i∈I

αN
i

∫
U

L(∇φ(ai + αix)) dx

=
∑
i∈I

αN
i

∫
U

L(∇φ̂i(x)) dx.

Hence, recalling that
∑

i∈I αN
i = 1/|U |, it follows that∫

Y

L(∇φ(y)) dy �
∑
i∈I

αN
i (|U |QpL(ξ, U))

= QpL(ξ, U).

Thus, QpL(ξ) � QpL(ξ, U). By the same reasoning we prove the converse inequality,
and the proof is complete.

Lemma 1.3. Given ξ ∈ M and a bounded open set U ⊂ R
N with |∂U | = 0, there

exists a sequence {φn}n ⊂ lξ + W 1,p
0 (U ; Rm) such that φn → lξ in Lp(U ; Rm) and

lim
n→∞

∫
U

L(∇φn(x)) dx = QpL(ξ).
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Proof of lemma 1.3. Given ξ ∈ M, there exists {φn}n ⊂ lξ + W 1,p
0 (Y ; Rm) such

that
lim

n→∞

∫
Y

L(∇φn(y)) dy = QpL(ξ). (1.2)

Fix any n � 1 and k � 1. By Vitali’s covering theorem there exists a finite
or countable family {ai + αiY }i∈I of disjoint subsets of U , where ai ∈ R

N and
0 < αi < 1/k, such that |U \

⋃
i∈I(ai + αiY )| = 0 (and so

∑
i∈I αN

i = |U |). Define
φn,k ∈ lξ + W 1,p

0 (U ; Rm) by

φn,k(x) := lξ(x) + αi

[
φn

(
x − ai

αi

)
− lξ

(
x − ai

αi

)]
if x ∈ ai + αiY.

Clearly,

‖φn,k − lξ‖p
Lp(U ;Rm) � |U |

kp
‖φn − lξ‖p

Lp(Y ;Rm).

Hence, limk→∞ ‖φn,k − lξ‖Lp(U ;Rm) = 0 for all k � 1, and consequently

lim
n→∞

lim
k→∞

‖φn,k − lξ‖Lp(U ;Rm) = 0. (1.3)

On the other hand, we have∫
U

L(∇φn,k(x)) dx =
∑
i∈I

αN
i

∫
Y

L(∇φn(y)) dy = |U |
∫

Y

L(∇φn(y)) dy

for all n � 1 and all k � 1. Using (1.2) we deduce that

lim
n→∞

lim
k→∞

∫
U

L(∇φn,k(x)) dx = QpL(ξ), (1.4)

and the result follows from (1.3) and (1.4) by diagonalization.

In this paper we study the relaxation theory when condition (M) holds, i.e. when
QpL = TpL, where

TpL(ξ) := inf
{

lim
n→∞

∫
Y

L(∇φn(y)) dy : W 1,p(Y ; Rm) � φn → lξ in Lp(Y ; Rm)
}

.

Remark 1.4. From lemma 1.3 we see that

QpL(ξ) = inf
{

lim
n→∞

∫
U

L(∇φn(x)) dx :

lξ + W 1,p
0 (U ; Rm) � φn → lξ in Lp(Y ; Rm)

}

for all bounded open sets U ⊂ R
N with |∂U | = 0. In particular, we always have

TpL � QpL. So, condition (M) holds if and only if TpL = QpL.

It turns out that a better relaxation theory is available in this case.
First, W 1,p-quasi-convexifications QpL of the original integrands are lower semi-

continuous functions, and therefore the integral functionals with QpL integrands
are well defined. This follows from a simple lemma.
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Lemma 1.5. The function TpL is lower semi-continuous.

Proof of lemma 1.5. Let I : W 1,p(Y ; Rm) → [0,∞] be defined by

I(φ) :=
∫

Y

L(∇φ(y)) dy.

Then TpL(ξ) = Ī(lξ) for all ξ ∈ M, where Ī denotes the lower semi-continuous
envelope of I with respect to the strong convergence in Lp(Y ; Rm). As Ī is Lp-lower
semi-continuous, we have, in particular, limn→∞ Ī(lξn) � Ī(lξ) for all ξ ∈ M and all
{ξn}n ⊂ M such that lξn → lξ in Lp(Y ; Rm). Hence, limn→∞ TpL(ξn) � TpL(ξ) for
all ξ ∈ M and all {ξn}n ⊂ M such that ξn → ξ in M.

Moreover, for TpL we have the following.

Lemma 1.6. For every ξ ∈ M and every bounded open set U ⊂ R
N with |∂U | = 0,

we have

TpL(ξ) = inf
{

lim
n→∞

∫
U

L(∇φn(x)) dx : φn → lξ in Lp(U ; Rm)
}

. (1.5)

Proof of lemma 1.6. Let ξ ∈ M. Let U ⊂ R
N be a bounded open set with |∂U | = 0

and denote the right-hand side of (1.5) by TpL(ξ, U). By Vitali’s covering theo-
rem there exists a finite or countable family {ai + αiU}i∈I of disjoint subsets of
Y , where ai ∈ R

N and 0 < αi < 1, such that |Y \
⋃

i∈I(ai + αiU)| = 0 (and so
|U |

∑
i∈I αN

i = |Y | = 1). Fix any sequence {φn}n ⊂ W 1,p(Y ; Rm) such that φn → lξ
in Lp(Y ; Rm) and fix any n � 1. For each i ∈ I, let φ̂n,i ∈ W 1,p(U ; Rm) be defined
by

φ̂n,i(x) := lξ(x) +
1
αi

(φn(ai + αix) − lξ(ai + αix)).

As ai + αiU ⊂ Y we have

‖φ̂n,i − lξ‖p
Lp(U ;Rm) � αN−p

i ‖φn − lξ‖p
Lp(Y ;Rm),

and so φ̂n,i → lξ in Lp(U ; Rm). Then

lim
n→∞

∫
U

L(∇φ̂n,i(x)) dx � |U |TpL(ξ, U)

for all i ∈ I. But,

lim
n→∞

∫
Y

L(∇φn(y)) dy = lim
n→∞

( ∑
i∈I

∫
ai+αiU

L(∇φn(y)) dy

)

= lim
n→∞

( ∑
i∈I

αN
i

∫
U

L(∇φn(ai + αix)) dx

)

= lim
n→∞

( ∑
i∈I

αN
i

∫
U

L(∇φ̂n,i(x)) dx

)

�
∑
i∈I

αN
i lim

n→∞

∫
U

L(∇φ̂n,i(x)) dx.
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Hence, recalling that
∑

i∈I αN
i = 1/|U |, it follows that

lim
n→∞

∫
Y

L(∇φn(y)) dy �
∑
i∈I

αN
i (|U |TpL(ξ, U))

= TpL(ξ, U).

Thus, TpL(ξ) � TpL(ξ, U). By the same reasoning, we prove the converse inequality,
and the proof is complete.

Second, the values of the lower semi-continuous envelope of the original functional
are given by the values of the integral functional with a QpL integrand at all
continuous piecewise affine functions (see corollary 3.4).

Third, for all Sobolev functions in W 1,p we have

Ē(u) �
∫

Ω

QpL(∇u(x)) dx.

Finally, by using the approximation property (C[H]) with H = QpL, we obtain
a complete integral representation for Ē (see theorem 3.5).

In § 2, we prove extensions of the lower semicontinuity (theorem 1.1) to the case of
Borel measurable integrands. The theory for relaxation under validity of condition
(M) is presented in § 3. In § 4 we suggest applications of the general relaxation
theory to the case when W 1,p-quasi-convexifications have convex growth. We discuss
concrete cases of strong materials when this is so. The results of this paper were
previously announced in the note [17].

2. General lower semicontinuity theorems

The main result of this section is the following.

Theorem 2.1. The relaxed functional Ē is equal to E if and only if, for every
ξ ∈ M, E is Lp-lower semi-continuous at lξ, i.e.

lim
n→∞

E(φn) � E(lξ) for all {φn}n ⊂ W 1,p(Ω; Rm) with φn → lξ in Lp(Ω; Rm).

Proof of theorem 2.1. We only need to prove that if E is Lp-lower semi-continuous
at lξ for every ξ ∈ M, then E is Lp-lower semi-continuous, i.e. for every u ∈
W 1,p(Ω; Rm) and every {un}n ⊂ W 1,p(Ω; Rm) with un → u in Lp(Ω; Rm), we have

lim
n→∞

E(un) � E(u). (2.1)

Step 1 (localization and blow-up). We can assume that limn→∞ E(un) exists and
is finite. Recalling that L is p-coercive, there is no loss of generality in assuming
that {∇un}n generates a Young measure (νx)x∈Ω and L(∇un(·)) dx

∗−⇀ µ, where µ
is a (positive) Radon measure. The measure µ can be represented as µ = µa + µs,
where µa = f(·) dx with f ∈ L1(Ω) and µs is a singular measure, i.e. its support is
contained in

⋃∞
j=1 Kj ⊂ Ω, where Kj is a compact set with |Kj | = 0 for each j � 1.

For almost every (a.e.) x0 ∈ Ω we have that x0 is a Lebesgue point of the
function f(·), and x0 is a Lebesgue point of ν(·) in the ρ-metric, where ρ is a metric
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responsible for weak-∗ convergence of probability measures (see [18] for the latter
fact).

For each k � 1 and each n � 1, consider the function uk
n : Y → R

m given by

uk
n(y) =

1
k

un(x0 + ky).

For a fixed k � 1 we have that {∇uk
n}n generates a Young measure (ν(x0+ky))y∈Y/k

and L(∇uk
n(·)) dy

∗−⇀ f(x0 + ky) dy + µk
s in Y as n → ∞. We can isolate a sequence

{kn}n, with kn → ∞ as n → ∞, in such a way that {∇ukn
n }n generates a homoge-

neous Young measure νx0 . We also have that, for a.e. x0 ∈ Ω,

L(∇ukn
n (·)) dy

∗−⇀ f(x0) dy. (2.2)

Then, the sequence {∇ukn
n }n is bounded in W 1,p(Y ; Rm) and, as a consequence,

ukn
n → l∇u(x0) in Lp(Y ; Rm). (2.3)

Step 2 (using Lp-lower semicontinuity of E at each lξ). Using lemma 1.6, we see
that the Lp-lower semicontinuity of E at each lξ is equivalent to TpL(ξ) = L(ξ) at
each ξ ∈ M. Hence, taking (2.3) into account, we can assert that

lim
n→∞

∫
Y

L(∇ukn
n (y)) dy � L(∇u(x0)). (2.4)

From (2.2) and (2.4) it follows that

f(x0) � L(∇u(x0)).

Therefore, f(x) � L(∇u(x)) for almost all (a.a.) x ∈ Ω, and (2.1) follows.

Theorem 2.1 can be reformulated as follows.

Theorem 2.2. Ē = E if and only if TpL = L.

Proof of theorem 2.2. Theorem 2.1 asserts that Ē = E if and only if, for every
ξ ∈ M, E is Lp-lower semi-continuous at lξ. But, by lemma 1.6, this is also equivalent
to TpL = L.

Theorem 2.1 can also be reformulated as follows.

Corollary 2.3. Ē = E if and only if QpL = L and condition (M) holds.

Proof of corollary 2.3. It suffices to remark that condition (M) is equivalent to
TpL = QpL (see remark 1.4).

Instead of using two conditions in theorem 1.1, we can use only one condition.

Definition 2.4. A Borel measurable function L : M → [0,∞] is said to be lim-
W 1,p-quasi-convex if

lim
n→∞

∫
Y

L(∇φn(y)) dy � L(ξ)

for all ξ ∈ M and all {φn}n ⊂ W 1,p(Y ; Rm) with φn → lξ in Lp(Y ; Rm).
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Remark 2.5. L is lim-W 1,p-quasi-convex if and only if L = TpL, which is also
equivalent to QpL = L and the validity of condition (M). So, if L is lim-W 1,p-
quasi-convex, then L is lower semi-continuous and W 1,p-quasi-convex.

The interest of definition 2.4 comes from the following result, which is yet another
formulation of theorem 2.1.

Theorem 2.6. The functional E is Lp-lower semi-continuous if and only if L is
lim-W 1,p-quasi-convex.

An open question is the following.

Question 2.7. Do continuity and W 1,p-quasi-convexity imply lim-W 1,p-quasi-con-
vexity?

This question is equivalent to clarifying whether continuous and W 1,p-quasi-
convex integrands always satisfy condition (M).

Remark 2.8. In the case of Borel measurability and even lower semicontinuity
there exist W 1,p-quasi-convex integrands that are not lim-W 1,p-quasi-convex. Con-
sider for example, in the scalar case, L : R

2 → [0,∞] given by

L(ξ) =

⎧⎪⎨
⎪⎩

1 if ξ = (0, 0),
0 if ξ ∈ {(−1, 0), (1, 0)},

∞ otherwise.

The function L is not lim-W 1,p-quasi-convex but L is lower semi-continuous and
W 1,p-quasi-convex (but not convex) because all nonlinear functions from Y ⊂ R

2

to R with a linear boundary datum give infinite energy, since it is impossible for
the gradient to stay in a line due to Cellina’s result (see [8, 9]).

3. General relaxation theorems

Denote the space of all continuous piecewise affine functions from Ω to R
m by

Aff(Ω; Rm).

Theorem 3.1. The following two inequalities always hold:

Ē(u) �
∫

Ω

TpL(∇u(x)) dx for all u ∈ W 1,p(Ω; Rm); (3.1)

Ē(u) �
∫

Ω

QpL(∇u(x)) dx for all u ∈ Aff(Ω; Rm). (3.2)

Proof of theorem 3.1. We begin by proving (3.1). Consider u ∈ W 1,p(Ω; Rm) and
{un}n ⊂ W 1,p(Ω; Rm) such that

‖un − u‖Lp(Ω;Rm) → 0, (3.3)

and prove that

lim
n→∞

E(un) �
∫

Ω

TpL(∇u(x)) dx. (3.4)
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Step 1 (localization). Without loss of generality we can assume that

∞ > lim
n→∞

E(un) = lim
n→∞

E(un), and so sup
n

∫
Ω

L(∇un(x)) dx < ∞. (3.5)

For each n � 1, we define the (positive) Radon measure λn on Ω by

λn := L(∇un(·)) dx.

From (3.5) we see that supn λn(Ω) < ∞, and so there exists a (positive) Radon
measure λ on Ω such that (up to a subsequence) λn

∗−⇀ λ, i.e.

lim
n→∞

∫
Ω

φ dλn =
∫

Ω

φ dλ for all φ ∈ Cc(Ω),

or, equivalently, the following two equivalent conditions hold:

(a)

lim
n→∞

λn(U) � λ(U) for all open sets U ⊂ Ω,

lim
n→∞

λn(K) � λ(K) for all compact sets K ⊂ Ω;

(b) limn→∞ λn(B) = λ(B) for all bounded Borel sets B ⊂ Ω with λ(∂B) = 0.

By Lebesgue’s decomposition theorem, we have λ = λa + λs, where λa and λs

are (positive) Radon measures such that λa 	 dx and λs ⊥ dx, and from the
Radon–Nikodým theorem we deduce that there exists f ∈ L1(Ω; [0,∞[) given by

f(x) = lim
r→0

λa(x + rY )
rN

= lim
r→0

λ(x + rY )
rN

for a.a. x ∈ Ω, (3.6)

such that
λa(A) =

∫
A

f dx for all measurable sets A ⊂ Ω.

To prove (3.4) it suffices to show that

f(x) � Tp(∇u(x)) for a.a. x ∈ Ω. (3.7)

Indeed, from (a) we see that

lim
n→∞

E(un) = lim
n→∞

λn(Ω) � λ(Ω) = λa(Ω) + λs(Ω) � λa(Ω) =
∫

Ω

f(x) dx.

But, by (3.7), we have ∫
Ω

f(x) dx �
∫

Ω

Tp(∇u(x)) dx,

and (3.4) follows.

Step 2 (blow up). Fix x0 ∈ Ω \ N , where N ⊂ Ω is a suitable set such that
|N | = 0, and prove that

f(x0) � TpL(∇u(x0)). (3.8)
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As λ(Ω) < ∞ we have λ(x0 + rY ) = 0 for all r ∈ ]0, 1] \ D, where D is a countable
set. From (b) and (3.6) we deduce that

f(x0) = lim
r→0

lim
n→∞

λn(x0 + rY )
rN

= lim
r→0

lim
n→∞

∫
x0+rY

L(∇un(x)) dx. (3.9)

As u ∈ W 1,p(Ω; Rm) it follows that u is almost everywhere Lp-differentiable (see [25,
theorem 3.4.2, p. 129]), i.e. for a.e. x0 ∈ Ω,

lim
r→0

1
rN+p

‖u(x0 + ·) − u(x0) − ∇u(x0)y‖p
Lp(rY ;Rm) = 0. (3.10)

From (3.3) we see that (up to a subsequence), for a.e. x0 ∈ Ω,

|un(x0) − u(x0)|p → 0. (3.11)

Without loss of generality we can assume that x0 ∈ Ω \ N is such that (3.9)–(3.11)
hold. Fix r0 > 0 such that x0 + rY ⊂ Ω for all r ∈ ]0, r0]. For each n � 1 and each
r ∈ ]0, r0], let ur

n ∈ W 1,p(Y ; Rm) be given by

ur
n(y) :=

1
r
(un(x0 + ry) − un(x0)).

Then (3.9) can be rewritten as

f(x0) = lim
r→0

lim
n→∞

∫
Y

L(∇ur
n(x)) dx. (3.12)

On the other hand, we have

‖ur
n − l∇u(x0)‖

p
Lp(Y ;Rm) =

∫
Y

|ur
n(y) − l∇u(x0)(y)|p dy

=
1

rN+p
‖un(x0 + ·) − un(x0) − l∇u(x0)‖

p
Lp(rY ;Rm),

and, consequently,

‖ur
n − l∇u(x0)‖

p
Lp(Y ;Rm) � c

rN+p
‖un − u‖p

Lp(Ω;Rm) +
c

rN+p
|un(x0) − u(x0)|p

+
c

rN+p
‖u(x0 + ·) − u(x0) − l∇u(x0)‖

p
Lp(rY ;Rm)

with c > 0, which depends only on p. Using (3.3), (3.11) and (3.10) we deduce that

lim
r→0

lim
n→∞

‖ur
n − l∇u(x0)‖Lp(Y ;Rm) = 0. (3.13)

According to (3.12) and (3.13), by diagonalization there exists a mapping n → rn

decreasing to 0 such that

φn → l∇u(x0) in Lp(Y ; Rm), (3.14)

f(x0) = lim
n→∞

∫
Y

L(∇φn(y)) dy, (3.15)

where φn := urn
n .
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Step 3 (end of the proof of (3.1)). According to (3.14), by the definition of TpL
we see that

lim
n→∞

∫
Y

L(∇φn(y)) dy � TpL(∇u(x0))

and (3.8) follows by using (3.15).
We now prove (3.2). Given u ∈ Aff(Ω; Rm) there exists a finite family {Ui}i∈I of

open disjoint subsets of Ω such that |Ω \
⋃

i∈I Ui| = 0 and, for each i ∈ I, |∂Ui| = 0
and ∇u(x) = ξi in Ui with ξi ∈ M. Thus,

∫
Ω

QpL(∇u(x)) dx =
∑
i∈I

|Ui|QpL(ξi). (3.16)

Using lemma 1.3, for each i ∈ I, we can assert that there exists {φi
n}n ⊂ lξi +

W 1,p
0 (Ui; Rm) such that

lim
n→∞

‖φi
n − lξi

‖Lp(Ui;Rm) = 0, (3.17)

lim
n→∞

∫
Ui

L(∇φi
n(x)) dx = QpL(ξi). (3.18)

Define {un}n ⊂ W 1,p(Ω; Rm) by

un(x) := u(x) + φi
n(x) − lξi

(x) if x ∈ Ui.

Using (3.17) it is easy to see that ‖un −u‖Lp(Ω;Rm) → 0, and combining (3.18) with
(3.16) we deduce that

lim
n→∞

L(∇un(x)) dx =
∫

Ω

QpL(∇u(x)) dx,

and (3.2) follows.

Remark 3.2. Analysing the previous proof, it is easily seen that we have in fact
proved the following lemma.

Lemma 3.3. Let H : M → [0,∞] be a Borel measurable function. For every u ∈
Aff(Ω; Rm) there exists {un}n ⊂ W 1,p(Ω; Rm) such that

lim
n→∞

‖un − u‖Lp(Ω;Rm) = 0,

lim
n→∞

∫
Ω

H(∇un(x)) dx =
∫

Ω

QpH(∇u(x)) dx.

As a consequence of theorem 3.1 we have the following.

Corollary 3.4. If TpL = QpL, or, equivalently, condition (M) is satisfied, then

Ē(u) �
∫

Ω

QpL(∇u(x)) dx for all u ∈ W 1,p(Ω; Rm);

Ē(u) �
∫

Ω

QpL(∇u(x)) dx for all u ∈ Aff(Ω; Rm).
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In particular, we have

Ē(u) =
∫

Ω

QpL(∇u(x)) dx (3.19)

for all u ∈ Aff(Ω; Rm).

For each Borel measurable function H : M → [0,∞] we consider the following
condition:

(C[H]) for every u ∈ W 1,p(Ω; Rm) \ Aff(Ω; Rm) there exists {uk}k ⊂ Aff(Ω; Rm)
such that

lim
k→∞

‖uk − u‖Lp(Ω;Rm) = 0,

lim
k→∞

∫
Ω

H(∇uk(x)) dx �
∫

Ω

H(∇u(x)) dx.

Theorem 3.5. If TpL = QpL, or, equivalently, condition (M) is satisfied, and if
(C[QpL]) holds, then (3.19) holds for all u ∈ W 1,p(Ω; Rm).

In particular, QpL is W 1,p-quasi-convex and condition (M) holds for QpL.

Proof of theorem 3.5. As TpL = QpL, by corollary 3.4 we have

Ē(u) �
∫

Ω

QpL(∇u(x)) dx for all u ∈ W 1,p(Ω; Rm);

Ē(u) �
∫

Ω

QpL(∇u(x)) dx for all u ∈ Aff(Ω; Rm).

Then, it is sufficient to prove that

Ē(u) �
∫

Ω

QpL(∇u(x)) dx for all u ∈ W 1,p(Ω; Rm) \ Aff(Ω; Rm).

Let u ∈ W 1,p(Ω; Rm) \ Aff(Ω; Rm). By (C[QpL]) there exists {uk}k ⊂ Aff(Ω; Rm)
such that

lim
k→∞

‖uk − u‖Lp(Ω;Rm) = 0,

lim
k→∞

∫
Ω

QpL(∇uk(x)) dx �
∫

Ω

QpL(∇u(x)) dx.

⎫⎪⎬
⎪⎭ (3.20)

From lemma 3.3 we deduce that for every k � 1 there exists {un,k}n ⊂ W 1,p(Ω; Rm)
such that

lim
n→∞

‖un,k − uk‖Lp(Ω;Rm) = 0,

lim
n→∞

∫
Ω

L(∇un,k(x)) dx =
∫

Ω

QpL(∇uk(x)) dx.

⎫⎪⎬
⎪⎭ (3.21)

Combining (3.21) with (3.20), we conclude that

lim
k→∞

lim
n→∞

‖un,k − u‖Lp(Ω;Rm) = 0,

lim
k→∞

lim
n→∞

∫
Ω

L(∇un,k(x)) dx �
∫

Ω

QpL(∇u(x)) dx.

⎫⎪⎬
⎪⎭ (3.22)

and the result follows by diagonalization.
Theorem 1.1 implies that QpL is W 1,p-quasi-convex and condition (M) holds

for QpL.
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4. Applications

In this section we everywhere assume that Ω is a star-shaped domain, i.e. there
exists x0 ∈ Ω such that −x0 + Ω ⊂ t(−x0 + Ω) for all t > 1. (This assumption is
needed for applying lemma 4.3.)

We begin with the following theorem.

Theorem 4.1. If TpL = QpL, or, equivalently, condition (M) is satisfied, and if
QpL has continuous convex growth, i.e. there exists a continuous convex function
J : M → [0,∞] such that

αJ(·) � QpL(·) � β(1 + J(·)) for some α, β > 0, (4.1)

then (3.19) holds for all u ∈ W 1,p(Ω; Rm).

Proof of theorem 4.1. Since J is continuous, its domain is necessarily open. Hence,
the domain of QpL is also open because it is equal to that of J by (4.1). Thus,
using lemma 4.2 with H = L, we can assert that QpL is continuous.

Lemma 4.2 (Fonseca [13]). Let H : M → [0,∞] be a Borel measurable function.
Then, QpH is continuous on the interior of its domain.

So, we can apply lemma 4.3 with H = QpL, and we see that (C[QpL]) holds.

Lemma 4.3 (Anza Hafsa and Mandallena [3, § 3.3]). If H : M → [0,∞] is continu-
ous and has convex growth, then for every u ∈ W 1,p(Ω; Rm) with

∫
Ω

H(∇u(x)) dx <
∞ there exists {un}n ⊂ Aff(Ω; Rm) such that

un → u in W 1,p(Ω; Rm),

lim
n→∞

∫
Ω

H(∇un(x)) =
∫

Ω

H(∇u(x)) dx.

Hence, theorem 4.1 follows from theorem 3.5.

Corollaries 4.4, 4.5 and 4.6 are consequences of theorem 4.1. These results, which
are concerned with the case of extended-valued integrands, generalize known relax-
ation theorems for finite integrands, and are motivated by an open question of Ball
in [5, 6] to prove that W 1,p-quasi-convexification gives the relaxation in the case
of extended-valued integrands. These corollaries are contributions in this direction
(see, for example, [2, 10,20–22]).

Corollary 4.4. Assume that p > N , and L : M → [0,∞[ is such that

αG(| · |) � L(·) � β(1 + G(| · |)) for some α, β > 0, (4.2)

where G : [0,∞[ → [0,∞[ is a non-decreasing function with the following property:

G(t + s) � θ(|s|)G(t) + θ̂(|s|) for all t, s ∈ [0,∞[, (4.3)

where θ, θ̂ : [0,∞[ → [0,∞[ are non-decreasing functions. If QpG(| · |) has a convex
growth, then (3.19) holds for all u ∈ W 1,p(Ω; Rm).
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Proof of corollary 4.4. The proof follows by applying theorem 4.1.
We first prove that TpL = QpL or, equivalently, that condition (M) is satisfied.

For this, consider ξ ∈ M and {φn}n ⊂ W 1,p(Y ; Rm) such that

‖φn − lξ‖Lp(Y ;Rm) → 0, (4.4)

and prove that there exists {ψn}n ⊂ lξ + W 1,p
0 (Y ; Rm) such that

lim
n→∞

∫
Y

L(∇φn(y)) dy � lim
n→∞

∫
Y

L(∇ψn(y)) dy. (4.5)

Without loss of generality we can assume that

lim
n→∞

∫
Y

L(∇φn(y)) dy = lim
n→∞

∫
Y

L(∇φn(y)) dy < ∞

and so
sup

n

∫
Y

L(∇φn(y)) dy < ∞. (4.6)

Consequently, there exists a (positive) Radon measure λ on Y such that, up to a
subsequence,

λn := L(∇φn(·)) dy
∗−⇀ λ in the sense of measure.

Moreover, as L is p-coercive, from (4.6) we have

sup
n

‖∇φn‖Lp(Y ;Rm) < ∞. (4.7)

As p > N , from (4.4) and (4.7) it follows that, up to a subsequence,

‖φn − lξ‖L∞(Y ;Rm) → 0. (4.8)

As λ(Y ) < ∞ we have λ(∂(rY )) = 0 for all r ∈ ]0, 1[ \D, where D is a countable
set. Fix any r ∈ ]0, 1[ \D and any ε ∈ ]0, r[. Let ψ ∈ C∞

c (Y ; [0, 1]) such that ψ = 1
on Q := ]12 (ε − r), 1

2 (r − ε)[N and ψ = 0 on Y \ rȲ with ‖∇ψ‖L∞(Y ) � 2/ε. Define
ψn ∈ lξ + W 1,p

0 (Y ; Rm) by

ψn := lξ + ψ(φn − lξ).

Then

∇ψn =

⎧⎪⎨
⎪⎩

∇φn on Q,

ξ(1 − ψ) + ψ∇φn + ∇ψ ⊗ (φn − lξ) on Sε := rY \ Q̄,

lξ on Y \ rȲ .

Hence, |∇ψn(y)| � |ξ| + |∇φn(y)| + (2/ε)‖φn − lξ‖L∞(Y ;Rm) for a.a. y ∈ Sε. Using
(4.8) we can assert that there exists nε � 1 such that

|∇ψn(y)| � |ξ| + 1 + |∇φn(y)|

for all n � nε and a.a. y ∈ Sε. Recalling that G, θ and θ̂ are non-decreasing
functions and using (4.3), we deduce that

G(|∇ψn(y)|) � θ(|ξ| + 1)G(|∇φn(y)|) + θ̂(|ξ| + 1),
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and so
L(∇ψn(y)) � γL(∇φn(y)) + δ (4.9)

for all n � nε and a.a. y ∈ Sε with γ := βθ(|ξ| + 1)/α and δ := β(1 + θ̂(|ξ| + 1)).
Fix any n � nε. It is clear that∫

Y

L(∇ψn(y)) dy =
∫

Q

L(∇ψn(y)) dy +
∫

Sε

L(∇ψn(y)) dy +
∫

Y \rȲ

L(∇ψn(y)) dy

�
∫

Y

L(∇φn(y)) dy +
∫

Sε

L(∇ψn(y)) dy + L(ξ)(1 − rN ).

But, using (4.9), we see that∫
Sε

L(∇ψn(y)) dy � γ

∫
Sε

L(∇φn(y)) dy + δ|Sε| = γλn(Sε) + δ|Sε|,

and hence∫
Y

L(∇ψn(y)) dy �
∫

Y

L(∇φn(y)) dy + γλn(Sε) + δ|Sε| + L(ξ)(1 − rN ). (4.10)

Moreover, as Sε ⊂ S̄ε we have λn(Sε) � λn(S̄ε), and so limn→∞ λn(Sε) � λ(S̄ε).
So, passing to the limsup in (4.10) we obtain

lim
n→∞

∫
Y

L(∇ψn(y)) dy � lim
n→∞

∫
Y

L(∇φn(y)) dy + γλ(S̄ε) + δ|Sε| + L(ξ)(1 − rN )

for all r ∈ ]0, 1[ \D and all ε ∈ ]0, r[, and (4.5) follows by letting ε → 0 (on noting
that limε→0 λ(S̄ε) = λ(

⋂
ε S̄ε) = λ(∂(rY )) = 0) and then r → 1.

Finally, as L satisfies (4.2) we have

αQpG(| · |) � QpL(·) � β(1 + QpG(| · |)).

Moreover, since G(| · |) is finite, QpG(| · |) is continuous by applying lemma 4.2
with H = G(| · |). Hence, QpL has continuous convex growth because QpG(| · |) is
assumed also to have convex growth, and the proof is complete.

Corollary 4.5. Assume that p > N and L : M → [0,∞] is such that

m∑
i=1

Fi(ξi) � L(ξ) � c

( m∑
i=1

Fi(ξi) + 1
)

for all ξ ∈ M and some c � 1, (4.11)

where, for each i ∈ {1, . . . , m}, ξi is the ith row of the matrix ξ and Fi : R
N → [0,∞]

is a continuous function such that lim|v|→∞ Fi(v)/|v|p = ∞. Then (3.19) holds for
all u ∈ W 1,p(Ω; Rm).

Proof of corollary 4.5. As is well known in the scalar case G : R
N → [0,∞], the

QpG-quasi-convexification is given by convexification Gc, where

Gc(v) = inf
{ k∑

i=1

ciG(vi) : ci � 0, vi ∈ R
N ,

∑
ci = 1,

∑
civi = v, k � 1

}
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(see, for example, [20]). In particular Gc : R
N → [0,∞] is a continuous convex

function. Therefore, we have
m∑

i=1

F c
i (ξi) � QpL(ξ) � c

( m∑
i=1

F c
i (ξi) + 1

)
.

So QpL has convex growth and is continuous. Then (4.1) is valid and, due to
theorem 4.1, the corollary is valid if condition (M) holds.

The remainder of the proof is devoted to establishing validity of condition (M)
for L satisfying (4.11).

Let ξ ∈ M and assume un → lξ in Lp(Y ; Rm), where un ∈ W 1,p(Y ; Rm). We
have to show that for a subsequence un (not relabelled) there exists {φn}n ⊂
lξ + W 1,p

0 (Y ; Rm) such that

lim
n→∞

∫
Y

{L(∇un(y)) − L(∇φn(y))} dy � 0. (4.12)

Without loss of generality we can assume that

lim
n→∞

∫
Y

L(∇un(y)) dy =: I < ∞

and, as L is p-coercive, that {∇un}n generates a Young measure (νy)y∈Y . Moreover,
we can assume that L(∇un) ∗−⇀ µ, where µ is a (positive) Radon measure.

Given δ > 0 we can always isolate 0 < δ2 < δ1 < δ such that if Yδ = ]− 1
2 + δ, 1

2 −
δ[N and Y1 = Yδ1 , Y2 = Yδ2 , then

µ(Ȳ2 \ Y1) � δ. (4.13)

We also have
I �

∫
Y

∫
M

〈L(·); νy〉 dy

(see, for example, [18]). Therefore, for a.a. y ∈ Y we have 〈L(·); νy〉 < ∞. Fix such
a y ∈ Y and define ν = νy. Note that ξ is the centre of mass of the probability
measure ν.

We have 〈 m∑
i=1

Fi; ν
〉

=
m∑

i=1

〈Fi; νi〉, (4.14)

where νi is a probability measure with support in R
N and is the projection of ν on

the space of vi ∈ R
N variable, i ∈ {1, . . . , m}.

By the results of [19] in the scalar case G : Y → [0,∞], any probability measure λ
with finite action on G is a homogeneous G-gradient Young measure, which means
there exists a sequence of finitely piecewise affine functions wn : Y → R such that
wn ∈ lξ + W 1,∞

0 (Y ), where ξ is the centre of mass of λ, and

lim
n→∞

∫
Y

G(∇wn(y)) dy = 〈L; λ〉.

Here, finitely continuous piecewise affine means that the gradient of wn takes only
a finite collection of values. Then, by (4.14), for each i ∈ {1, . . . , m}, we can find a
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function wi ∈ lξi + W 1,∞
0 (Y ), where ξi is the ith row of ξ such that wi is finitely

piecewise affine, i.e. ∇wi ∈ {vi
1, . . . , v

i
ki

} and

Fi(vi
j) < C < ∞ for all i ∈ {1, . . . , m} and all j ∈ {1, . . . , ki}. (4.15)

Given ε > 0, consider a piecewise affine function f ∈ lξ + W 1,∞
0 (Y2; Rm) such

that ‖f − lξ‖W 1,∞ � ε and f i > lξi in Y2 for all i ∈ {1, . . . , m}. In Y \Y2 we assume
f = lξ.

Furthermore, without loss of generality we can assume that, for every n � 1 and
every i ∈ {1, . . . , m},

ui
n > lξi in Y.

(Recall that ui
n converge uniformly to lξi as n → ∞ since p > N .)

Now, given n � 1, define a function ψn : Y → R
m as follows:

ψi
n = min{ui

n, f i} for i = 1, . . . , m.

Obviously, ψn ∈ lξ +W 1,p
0 (Y2; Rm) and ψn = un in Ωn, where Ωn ⊂ Y2 is such that

|Y2 \ Ωn| → 0 as n → ∞ and for sufficiently large n � 1 we also have Y1 ⊂ Ωn.
For each n � 1 and each i ∈ {1, . . . , m} we have ψi

n = ui
n in Ωi

n ⊂ Y2, where
Ωn ⊂ Ωi

n. In Y \ Ωi
n we have ψi

n = f i.
We assume φi

n = ui
n in Ωi

n. In each piece Ω̂ of Y \ Ωi
n, where ψi

n is affine,
i.e. ∇ψi

n = ζi, we assume φi
n = lζi + ŵi − lξi . Here ŵi : Ω̂ → R is a rescaling of

wi : Y → R as suggested in the proof of lemma 1.3. In particular, ŵi has the
same values of the gradient in Ω̂ as wi in Y and ŵi ∈ lξi + W 1,∞

0 (Ω̂). Then φi
n ∈

lζi + W 1,∞
0 (Ω̂) and in case of sufficiently small ε > 0 we have by (4.15) that

Fi(∇φi
n(y)) < C for a.e. y ∈ Ω̂. (4.16)

Therefore, φn ∈ lξ + W 1,p
0 (Y ; Rm) and we have

∫
Y

{L(∇un(y)) − L(∇φn(y))} dy � −
∫

Y \Y1

L(∇φn(y)) dy.

But, by (4.13) and (4.16) we have

lim
n→∞

∫
Y2\Y1

L(∇φn(y)) dy � cµ(Ȳ2 \ Y1) + (2c + cmC)|Ȳ2 \ Y1|

� (3c + cmC)δ,

lim
n→∞

∫
Y \Y2

L(∇φn(y)) dy � (cmC + c)|Y \ Y2|

� (cmC + c)δ.

Hence,

lim
n→∞

∫
Y

{L(∇un(y)) − L(∇φn(y))} dy � −(4c + 2cmC)δ,

and (4.12) follows by letting δ → 0.
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In corollaries 4.4 and 4.5, we considered the case of so-called strong materials,
i.e. when L is p-coercive with p > N . This is an old conjecture by Sychev: in this
case the relaxation theory has a better shape (see [20–22, 24]). In corollaries 4.4
and 4.5, this conjecture results in validity of condition (M). For other conjectures
about strong materials; see [24].

It is also possible to derive a new result in the scalar case.

Corollary 4.6. Let L : R
N → [0,∞] be continuous and p-coercive. Then

Ē(u) =
∫

Ω

Lc(∇u(x)) dx for all u ∈ W 1,p(Ω),

where Lc is the convexification of L.

In the case of L with p-growth, this result is a classical theorem of Ekeland and
Temam (see [12]). Sychev proved this result for p > N in the context of his theory
for strong materials (see [20]). As we shall see, the result remains valid for p-coercive
integrands without additional requirements on p > 1.

The result is a straightforward consequence of theorem 4.1, since W 1,p-quasi-
convexification of L is just Lc in the scalar case (see, for example, [20]), and condi-
tion (M) always holds in the scalar case.

Lemma 4.7. Let L : R
N → [0,∞] be continuous and p-coercive. Then condition (M)

holds.

Proof. Without loss of generality we can assume that the gradients of a subsequence
{un}n generate a Young measure {νx}x∈Y . Then,

lim
n→∞

I(un) �
∫

Y

〈L; νx〉 dx.

There exists an x0 ∈ Y such that

〈L; νx0〉|Y | �
∫

Y

〈L; νx〉 dx.

But νx0 is a homogeneous L-gradient Young measure, which means there exists a
sequence {φn}n ⊂ lξ + W 1,∞

0 (Y ) with the property

lim
n→∞

∫
Y

L(∇φn(x)) dx = 〈L; νx0〉|Y |

(see [19]). Then the sequence {φn}n is just the appropriate one for condition (M)
to hold.
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3 O. Anza Hafsa and J.-P. Mandallena. Homogenization of nonconvex integrals with convex
growth. J. Math. Pures Appl. 96 (2011), 167–189.

4 J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch.
Ration. Mech. Analysis 63 (1977), 337–403.

5 J. M. Ball. Review of ‘nonlinear problems of elasticity’ by Stuart S. Antman. Bull. Am.
Math. Soc. 33 (1996), 269–276.

6 J. M. Ball. Some open problems in elasticity. In Geometry, mechanics, and dynamics,
pp. 3–59 (New York: Springer, 2002).

7 J. M. Ball and F. Murat. W 1,p-quasi-convexity and variational problems for multiple inte-
grals. J. Funct. Analysis 58 (1984), 225–253.

8 A. Cellina. On minima of a functional of the gradient: necessary conditions. Nonlin. Analy-
sis 20 (1993), 337–341.

9 A. Cellina. On minima of a functional of the gradient: sufficient conditions. Nonlin. Analysis
20 (1993), 343–347.

10 S. Conti and G. Dolzmann. On the theory of relaxation in nonlinear elasticity with con-
straints on the determinant. Arch. Ration. Mech. Analysis 217 (2015), 413–437.

11 B. Dacorogna. Quasi-convexity and relaxation of nonconvex problems in the calculus of
variations. J. Funct. Analysis 46 (1982), 102–118.

12 I. Ekeland and R. Temam. Convex analysis and variational problems. Studies in Mathe-
matics and Its Applications, vol. 1 (New York: Elsevier, 1976).

13 I. Fonseca. The lower quasi-convex envelope of the stored energy function for an elastic
crystal. J. Math. Pures Appl. 67 (1988), 175–195.

14 I. Fonseca and P. Marcellini. Relaxation of multiple integrals in subcritical Sobolev spaces.
J. Geom. Analysis 7 (1997), 57–81.

15 J. Kristensen. A necessary and sufficient condition for lower semicontinuity. Nonlin. Analy-
sis TMA 120 (2015), 41–56.

16 J.-P. Mandallena. Localization principle and relaxation. Adv. Calc. Var. 6 (2013), 217–246.
17 J.-P. Mandallena and M. A. Sychev. New classes of integral functionals for which the

integral representation of lower semi-continuous envelopes is valid. Dokl. Math. 94 (2016),
430–433.

18 M. A. Sychev. A new approach to Young measure theory, relaxation and convergence in
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