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Sources of variability in the speech signal and their statistical treatment are
discussed. In the experiment, a total of 3390 vowel spectra obtained from a specially
constructed 100-word list read by ®ve male and ®ve female speakers were measured,
described in terms of ®ve variables, F1 F2, F3, F4, F5 and subjected to statistical
analysis. First, the 5D data are normalized, and then treated using a novel
discriminant analysis based on a multi-stage comparison of pairs of classes (vowel
phonemes) as represented in the data. The data of the ®ve male and the ®ve female
voices are analyzed as two separate samples and the results are compared with
those obtained using classical discriminant analysis.

1 Sources of variability in the speech signal
It has been widely recognized, at least since the early `visible speech' era in the late

1940s (Kopp & Green 1946), that the speech signal is affected by an intimate
interaction of several variability sources. This interaction was the major cause of the
near-failure of teaching `speech reading' to the deaf, initially one of the most promising
applications of `visible speech'. If the speech units to be recognized by the deaf ± or
indeed, any `speech recognizer' (man or machine) are phoneme-sized ± it may be useful
to distinguish the following sources of variability:

(i) systematic
(1) intrinsic

(a) linguistic
(b) paralinguistic

(2) extrinsic
(ii) unsystematic (random).
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A full list is not intended here, nor is it certain that all systematic sources of
variability have been identi®ed, but a tentative list may look something like this: (1a)
articulatory, coarticulatory, phonemic, tempo-related, style-related; (1b) speaker's
natural voice features, emotions, speaker's incidental conditions (such as a temporary
hoarseness or inebriation); (2) frequency characteristics of the channel, noise, rever-
beration, cross-talk, etc.

The interaction of the different sources of variability has been a serious problem in
Automatic Speech Recognition (ASR), and has lead to a situation, not palatable to
linguists and phoneticians, where contemporary ASR devices depend on the stochastic
nature of the speech signal rather than on phonetic features as was the case in the early
attempts at ASR (Denes 1975, Schroeder 1985, Ainsworth 1988, Holmes 1988, De
Mori 1998, Keller 1999). Of the main aspects named above, extrinsic (environmental)
problems belong to engineering (technological) acoustics. The intrinsic ones come
within the area of acoustic phonetics.

When quantitative experimental data are analyzed statistically, it may be impracti-
cable, or even impossible to include many, much less all, sources of variability as such,
not only because it may not be known how to de®ne the number of classes to be
distinguished, but also because a relatively large number of variables may require a
prohibitively large sample size. Also, an excessively complex statistical model may be
inoperative. So, speech data may make it necessary to ignore or exclude some
variability sources. This is why early applications of even simple statistical models to
acoustic speech data required drastic simpli®cations. For instance, many early works
on vowels based on spectrum analysis were performed on isolated steady-state
utterances spoken by a relatively small number of talkers (e.g. Arnold et al. 1958,
Jassem, KrzysÂko & Dyczkowski (1972), PapcËun 1980), or vowels spoken in phono-
logically identical context (e.g. Peterson & Barney 1952). This is permissible if there are
substantive reasons to assume that the sample is suf®ciently representative for the
particular analysis. Also, in parametric statistical analysis, it is desirable that the
distribution of the independent variable(s) should not differ very signi®cantly from uni-
or multinormal.

It is a hackneyed phrase of non-mathematical (qualitative) general phonetics that
sounds of spoken language differ in®nitely. This position often does not clearly
distinguish between systematic and random variability and is therefore largely non-
productive. For both theoretical-linguistic and applicational purposes, a statistical
approach is much more fruitful, and in fact is the best way out of the ineffective
position of quasi-unordered `in®nite variability', which makes any empirical classi®ca-
tion and taxonomy either impossible or untenable (ad hoc, heuristic or arbitrary).
When two variability sources are represented in one set of data, as in the present study,
the effect of one variability source may be reduced by normalization.

Several normalization procedures have been proposed over the last thirty-®ve years
or so in the analysis of vowel spectra. Their purpose has been to ®nd a mathematical/
geometrical formula that minimizes inter-speaker variability whilst maximizing pho-
nemic differences. The data was, in most cases, the values of the ®rst three formant
frequencies though other representations of the spectral properties of phones (mostly
vowels) have also been used, such as the levels in neighbouring frequency bands, e.g. by
PapcËun (1980) or Pols (1977). The best known normalization methods have been
compared, and assessed, by Deterding (1990), who obtained average scores of around
90 percent on relatively small samples (5 cases of each phoneme per speaker) for the
English monophthongs in the context /hVd/ using the various normalization
algorithms.

One speci®c source of variability may be featured by one variable, or a set of
several variables. For instance, phonemic distinctions between vowels require a set of
variables such as F1, F2 and F3. On the other hand, the data may be such that, say, two
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different sources of variability are described in terms of the same variable(s), as in the
present study, where we consider ®ve variables, F1, F2, F3, F4 and F5 ± the vowel
formant frequencies ± and two systematic variability sources: phonemic and speaker
speci®c. All extrinsic variation has been eliminated by recording the material in a
sound-treated room using professional (digital) recording equipment. All variability
related to connected speech was ignored as the material consisted of isolated words.
Also, variation due to intonation was eliminated by having the speakers utter the
words on a monotone. It was assumed that coarticulatory effects could be treated as
random variation due to the quasi-random selection of the words. The interaction
between the two systematic variability sources was investigated in KrzysÂko, Jassem &
Wo�ynÂski (1999). The present study is speci®cally concerned with the phonemic
distinctions between Polish vowels, whilst inter-speaker variability is reduced by
statistical normalization. For the same data, the effect of normalization over the
phonemes for a discrimination of the speakers is treated in Jassem, KrzysÂko &
Wo�ynÂski (2000), and a discriminant analysis (linear discriminant functions) of three
variability sources: phonemic, speaker gender and speaker identity is presented in
Jassem (1999 & 2000).

2 The data
A special word-list was composed, with the principal aim being that the distribution of
the individual Polish phonemes (vowels as well as consonants) should be as nearly
uniform as possible (Jassem 1997). This ensured that the a priori probabilities of each
of the six vowel phonemes (classes, or groups, in the statistical sense) were nearly equal.
The list was read by ®ve male and ®ve female voices with no speech impairment.
Conventional digital spectrograms were made of each reading of each word, and the
moments of minimal formant movements (the `targets') were found by eye. At 10 ms
intervals around the targets, three spectral sections (A, B, C) were made and the
instantaneous frequencies of formants one to ®ve were found using 14± or 16±order
LPC within a frequency range safely above F5. A total of 3390 spectra each represented
by the ®ve formant frequencies were ®rst statistically normalized so as to minimize
inter-speaker variability. This normalization consisted in computing standard devia-
tions separately for each variable within each of the two groups of speakers, male and
female, and dividing each original value of the variables by the appropriate SD.

3 The statistical model
A vowel spectrum is described here in terms of ®ve normalized formant frequencies
F1*, F2*, F3*, F4*, F5*. Let F* = (F1*, . . ., F5*)' denote a random vector whose elements
are the ®ve normalized formant frequencies. We shall assume that for each vowel
spectrum of a vowel type (a phoneme), the vector F* has a ®ve-dimensional normal
distribution, with an expected value m and positively de®ned covariance matrix S. The
covariance matrices relating to the respective vowel types are not equal. We adopt a
two-step classi®cation procedure. In the ®rst step we consider all possible pairs of
vowel types (groups) and estimate the probability of each spectrum under classi®cation
belonging to one and to the other population forming the pairs. In the second step, the
probabilities computed for the individual pairs will be combined, and we shall compute
the probabilities that each individual spectrum represents one of the six populations.

In order to classify the individual pairs of spectra, we shall use the linear
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discriminant function as shown in KrzysÂko (1999). That function was constructed for
the classi®cation of only two populations and under the assumption that the combined
probability distribution of the observed p features of the object to be classi®ed is a
multidimensional normal distribution, while the vectors of the expected values and the
respective covariance matrices in the two populations are not equal. We shall now
describe this function.

Let X = (X1, X2, . . ., Xp)' and Y = (Y1, Y2, . . ., Yp)' be two independent random vectors
such that X ~ Np (m1, S1) and Y ~ Np (m2, S2), where the covariance matrices S1 and S2

are positive de®nite.

For each a 2 Rp, a 6� 0, and each c 2 R let R(a' x, c) denote the discriminant rule that
assigns the observation x to the population p if a'x � c and to the population p2 if
a'x > c.

Let us observe that

a'X ~ Np (a'm1, a'S1a) and a'Y ~ Np (a'm2, a'S2a).

We have

(1) F1(c) = P(a'X � c) = P
a0Xÿ a0m1

�a0S1a�1=2
� cÿ a0m1

�a0S1a�1=2

8>>>: 9>>>; � �
cÿ a0m1

�a0S1a�1=2

8>>>: 9>>>;
and

(2) F2(c) = P(a'Y � c) = �
cÿ a0m2

�a0S2a�1=2

8>>>: 9>>>;;
where � is the c.d.f. of an N(0,1) random variable.

Each discriminant rule is characterized in terms of the two probabilities of
misclassi®cation or in terms of the two conditional probabilities of correct classi®ca-
tion. The probability of misclassifying an observation when it comes from the ®rst
population is

P(p2 j p1) = P(a'X > c) = 17P(a'X � c) = 17F1(c)

and the probability of misclassifying an observation when it comes from the other
population is

P(p1 j p2) = P(a'Y� c) = F2(c),

where F1(c) and F2(c) are given by (1) and (2), respectively.
The corresponding conditional probabilities of correct classi®cation are

P(p1 j p1) = P(a'X � c) = F1(c)

and

P(p2 j p2) = P(a'Y � c) = F2(c)

The probability P(p1 j p1) is called speci®city of the discriminant rule and the
probability P(p2 j p2) is called sensitivity of the discriminant rule.

In a parametric representation, the curve of the form

x = F1 (c), y = 17F2 (c), 71 � c � 1,

is called the Relative Operating Characteristic (ROC) curve of the class rules R(a'x, �).
An ROC curve inevitably passes (1,0) by selecting a large value of c and (0,1) by

selecting a low value of c and is concave.
Some investigators plot

x = 17F1 (c), y = 17F2 (c), 71 � c � 1,
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instead and use the term receiver operating characteristic curve (Swets & Pickett
1982).

The area D(a) under the ROC curve is the index which evaluates the accuracy of a
class of the discriminant rules R(a'x,c). A large area indicates that the linear combina-
tion a'x discriminates well between the two populations being compared. This index
has a simple probabilistic interpretation (KrzysÂko 1999). The area D(a) under the ROC
curve is equal to the probability that the random variable a'Y is stochastically large
than the random variable a'X:

D(a) = P(a'Y > a'X),

where X and Y are two independent random vectors such that X ~ Np (m1,S1) and
Y ~ Np (m2, S2), S1 > 0, S2 > 0, a 2 Rp, a 6� 0.

A comparison of the areas under the different ROC curves may be used to
determine which linear combination a'X is best.

One discriminant function is better than another if each probability of misclassi®ca-
tion of the former is not greater than the corresponding one of the latter and at least
one is less. A discriminant function is admissible if there is no other function that is
better.

The linear discriminant function for which the area under the corresponding ROC
curve is maximized and which is admissible within the class of linear rules has the
following form (KrzysÂko 1999):

(3) u(x) = a'x7c,

where

(4) a = (S1 + S2)71 (m27m1),

and

(5) c = a'm1 + a'S1a = a'm27a'S2a.

If S1 = S2 = S, then

a'x7c = 1
2 (m27m1)' S71[x71

2 (m1 + m2)].

We see that a'x7c is a well-known Fisher linear discriminant function.
Note also that for a of the form (4) the maximum area D(a) is equal to

(6) D(a) = � [(m27m1)' (S1 + S2)71 (m27m1)]/2.

But (m27m1)' (S1 + S2)71 (m27m1) � 0 and � [(m27m1)' (S1 + S2)71 (m27m1)]1/2 � 1
2
.

Hence

1
2
� D(a) � 1,

with D close to 1 indicating that the p characteristics distinguish well between the
population p1 and p2, and D close to 1

2
indicating that the two populations are not well

separated.
Let us recall that if a'x7c � 0, then we assign the observation x to population p1

and if a'x7c > 0, the observation x is assigned to population p2.
The conditional probability of observation x belonging to population p1 under the

condition that this observation belongs to p1 or p2 is de®ned as

(7) r12(x) = P(p1 j p1 or p2) =
1

1� exp�a0xÿ c�.
The conditional probability of observation x belonging to population p2 under the
condition that observation x belongs to population p1 or p2 is de®ned as
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(8) r21(x) = P(p2 j p2 or p1) =
exp�a0xÿ c�

1� exp�a0xÿ c�.
Clearly,

r12(x) + r21(x) = 1.

The inequality r12 (x) � r21 (x) indicates that x 2 p1. But this inequality is equivalent to
inequality a'x7c � 0.

If we have k populations p1, . . ., pk, then for each pair (pi, pj), i 6� j, we can
compute rij (x) = P(pi j pi or pj).

Hastie & Tibshirani (1998) suggested that the decision on the assignment of
observation x to one of the k populations should be based on the value of the following
function

(9) pÅi (x) = 2

Xk

j 6�i

rij�x�

k k�k ÿ 1� ; i = 1,2, . . ., k.

This function takes into account all the conditional probabilities rij (x) after the
populations have been joined into pairs.

We assign the observation x to that population which has the highest value of the
function pÅi (x).

Let us denote the a posteriori probability of the observation x belonging to
population pi, i = 1, K, k by pi (x). Hastie & Tibshirani (1998) presented an algorithm
for estimating the probability pi (x) based on the values rij (x). If pÃi (x) is an estimator
of the probability pi (x), then

pÅi (x) > pÅj (x) if and only if pÃi (x) > pÃj (x)

Likewise,

pÅi (x) = pÅj (x) if and only if pÃi (x) = pÃj (x)

These relations make it possible to classify the observation x based on the values of the
functions pÅ1 (x), pÅ2 (x), . . ., pÃk (x).

Clearly, using the algorithm given by Hastie & Tibshirani (1998) it is not only
possible to assign the observation x to just one of the k populations p1, . . ., pk, but also
to compute the estimated posterior probability pÃi (x) that x belongs to pi, i = 1, . . ., k.

In our case, we have six populations corresponding to the six Polish vowel
phonemes /i q e a o u/. The characteristic features of the vowel spectra are the
normalized formant frequencies F*, K, F5*. The vowel spectra were identi®ed
separately for the female and the male speakers. Table 1 presents the sample sizes for
the ®ve female voices. The same ®gures describe the sample sizes for the male voices.

For the individual formant frequencies, the standard deviations were computed
separately for the female and the male voices and, subsequently, all values of formant
frequencies were divided by these standard deviations. This is (as mentioned above)
how the normalized formant frequencies were obtained. The means of the normalized
formant frequencies, separately for the male and the female voices, are contained in
tables 2 and 3. Tables 4 and 5 contain the sample covariance matrices for the individual
phonemes, separately for the male and the female voices.
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Table 1 Number of the individual phoneme realizations for each speaker gender.

i q e a o u total

270 270 300 285 300 270 1695
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Table 2 Normalized means; female voices.

F1* F2* F3* F4* F5*

i 6.689 16.430 13.557 15.643 17.359
q 7.712 10.308 17.515 16.784 16.686
e 5.509 7.193 14.944 20.269 19.078
a 4.790 10.425 8.670 11.532 13.950
o 4.580 10.659 10.419 13.898 15.049
u 8.513 6.184 12.772 12.015 12.603

Table 3 Normalized means; male voices.

F1* F2* F3* F4* F5*

i 7.524 10.288 9.889 12.567 13.634
q 7.240 10.292 10.115 12.102 13.005
e 4.694 9.491 8.665 13.017 12.274
a 6.521 10.855 11.170 15.741 13.463
o 5.359 11.715 6.371 14.920 13.038
u 7.499 6.768 9.042 10.654 15.726

Table 4 Total correlation matrix for F1*, F2*, F3*,F4*, F5*; female voices.

F1* F2* F3* F4* F5*

i 0.154 70.173 0.160 70.122
q 70.149 0.133 0.402 0.436
e 70.436 70.311 0.158 0.427F1* 1
a 70.122 0.045 70.162 0.209
o 0.367 0.119 0.170 0.240
u 0.273 0.088 0.203 70.079

i 0.154 0.102 0.166 0.239
q 70.149 0.202 0.054 70.068
e 70.436 0.583 0.002 70.112F2* 1
a 70.122 0.266 0.339 0.130
o 0.367 0.027 0.130 0.115
u 0.273 70.001 70.041 70.044

i 70.173 0.102 0.245 0.439
q 0.133 0.202 0.067 70.009
e 70.311 0.583 0.055 70.188F3* 1
a 0.045 0.266 0.414 0.270
o 0.119 0.027 70.022 0.039
u 0.088 70.001 0.289 0.277

i 0.160 0.166 0.245 0.626
q 0.402 0.054 0.067 0.713
e 0.158 0.002 0.055 0.427F4* 1
a 70.162 0.339 0.414 0.656
o 0.170 0.130 70.022 0.722
u 0.203 70.041 0.289 0.447

i 70.122 0.239 0.439 0.626
q 0.436 70.068 70.009 0.713
e 0.427 70.112 70.188 0.427F5* 1
a 0.209 0.130 0.270 0.656
o 0.240 0.115 0.039 0.722
u 70.079 70.044 0.277 0.447
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Note that the ®gures in tables 2 and 3 are abstract numbers, and being derived
from the original variables and their deviations, they do not directly map the formant
frequencies.

Next, the
6

2

8>: 9>; � 15 pairs of vowel phonemes were considered. For each pair, a

linear discriminant function was created u(F*) = a'F7c replacing the vectors of means
and the covariance matrices by their respective estimators from the samples. In a given
pair, a change of the numbered populations only results in the change of the sign in the
functions. Next, for each pair (pi, pj), i, j = 1, . . ., 6, i 6� j, the values of rij(F*) were
computed, as well as ± in agreement with (9) ± the values

pÅi(F*) = 1
2

X6

j 6�i

rij (F*), i = 1,. . .,6.

On the basis of the functions pÅi (F*) the 1695 spectra were classi®ed with respect to the
six phonemes, separately for the female and for the male voices.
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Table 5 Total correlation matrix for F1*, F2*, F3*,F4*, F5*; male voices.

F1* F2* F3* F4* F5*

i 0.129 0.040 70.066 0.408
q 0.426 0.462 0.158 0.656
e 70.079 0.240 0.024 0.753F1* 1
a 0.316 0.473 0.383 0.472
o 70.092 0.462 0.406 0.528
u 0.101 0.411 0.243 0.448

i 0.129 0.759 0.777 0.283
q 0.426 0.806 0.584 0.535
e 70.079 0.720 0.424 0.119F2* 1
a 0.316 0.256 0.190 0.098
o 70.092 70.072 70.134 70.142
u 0.010 70.185 70.237 70.178

i 0.040 0.759 0.602 0.282
q 0.462 0.806 0.515 0.522
e 0.240 0.720 0.607 0.386F3* 1
a 0.473 0.256 0.491 0.412
o 0.462 70.072 0.564 0.349
u 0.411 70.185 0.432 0.499

i 70.066 0.777 0.602 0.135
q 0.158 0.584 0.515 0.306
e 0.024 0.424 0.607 0.181F4* 1
a 0.383 0.190 0.491 0.483
o 0.406 70.134 0.564 0.513
u 0.243 70.237 0.432 0.539

i 0.408 0.286 0.282 0.135
q 0.656 0.535 0.522 0.306
e 0.753 0.119 0.386 0.181F5* 1
a 0.472 0.098 0.412 0.483
o 0.528 70.142 0.349 0.513
u 0.448 70.178 0.499 0.539
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4 Results

4.1 The predictability of the models with respect to the three sets of data
As stated above, the measurements of the spectral features of each the vowels were
taken (A) at the `target', (B) at 710 ms off the target and at + 10 ms off the target. We
were ®rst interested to test the predictability of the statistical models with respect to the
three sets of data. The results of an analysis of the model presented in section 3 above
are shown in tables 6 and 9. For comparison, the analogous results of two standard
classi®cation procedures, with linear and quadratic discriminant functions, are pre-
sented in tables 7±8 and 10±11.

Each of the three models was tested using three methods:

1 Resubstitution. The cases of the training set are used to ®nd the allocation rule and
are then substituted into it to estimate its performance.

2 Partitioning (a). Measurements A and B were used as the training set, and
measurements C as the test set. The cases in the test set were classi®ed using the
standard deviations as estimated in the training set.

3 Partitioning (b). The partitioning of the sample was the same as in 2 above, but the
standard deviations were now estimated from the test set.
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Table 6 Confusion matrix: modi®ed discriminant analysis; female voices.

Method i q e a o u %

1 270 0 0 0 0 0 100
i 2 90 0 0 0 0 0 100

3 90 0 0 0 0 0 100

1 0 270 0 0 0 0 100
q 2 0 90 0 0 0 0 100

3 0 90 0 0 0 0 100

1 0 0 300 0 0 0 100
e 2 0 0 100 0 0 0 100

3 0 0 100 0 0 0 100

1 0 0 0 272 13 0 95.44
a 2 0 0 0 93 2 0 97.89

3 0 0 0 79 16 0 83.16

1 0 0 0 29 271 0 90.33
o 2 0 0 0 8 92 0 92.00

3 0 0 0 20 80 0 80.00

1 0 0 0 0 0 270 100
u 2 0 0 0 0 0 90 100

3 0 0 0 0 1 89 98.89

Total 1 97.52
2 98.23
3 93.45
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Table 7 Confusion matrix: linear discriminant analysis; female voices.

Method i q e a o u %

1 270 0 0 0 0 0 100
i 2 90 0 0 0 0 0 100

3 90 0 0 0 0 0 100

1 0 270 0 0 0 0 100
q 2 0 90 0 0 0 0 100

3 0 89 0 0 0 0 98.89

1 0 0 300 0 0 0 100
e 2 0 0 100 0 0 0 100

3 0 0 100 0 0 0 100

1 0 0 0 247 38 0 86.67
a 2 0 0 0 89 6 0 93.68

3 0 0 0 78 17 0 82.11

1 0 0 0 19 281 0 93.67
o 2 0 0 0 5 95 0 95.00

3 0 0 0 15 85 0 85.00

1 0 0 0 0 0 270 100
u 2 0 0 0 0 0 90 100

3 0 0 0 0 1 90 100

Total 1 96.64
2 98.05
3 94.16

Table 8 Confusion matrix: quadratic discriminant classi®cation; female voices.

Method i q e a o u %

1 270 0 0 0 0 0 100
i 2 90 0 0 0 0 0 100

3 90 0 0 0 0 0 100

1 0 270 0 0 0 0 100
q 2 0 90 0 0 0 0 100

3 0 90 0 0 0 0 100

1 0 0 300 0 0 0 100
e 2 0 0 100 0 0 0 100

3 0 0 100 0 0 0 100

1 0 0 0 263 22 0 92.28
a 2 0 0 0 91 4 0 95.79

3 0 0 0 79 16 0 83.16

1 0 0 0 27 273 0 91.00
o 2 0 0 0 5 95 0 95.00

3 0 0 0 16 84 0 8400

1 0 0 0 0 0 270 100
u 2 0 0 0 0 0 90 100

3 0 0 0 0 1 89 98.89

Total 1 97.11
2 98.41
3 94.16
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Table 9 Confusion matrix: modi®ed discriminant analysis; male voices.

Method i q e a o u %

1 194 69 1 3 0 3 71.85
i 2 57 24 4 5 0 0 63.33

3 49 34 3 1 1 2 54.44

1 58 207 5 0 0 0 76.67
q 2 19 68 3 0 0 0 75.56

3 44 40 6 0 0 0 44.44

1 4 7 245 43 1 0 81.67
e 2 0 3 81 15 1 0 81.00

3 0 3 83 13 1 0 83.00

1 8 4 5 267 1 0 93.68
a 2 1 3 3 88 0 0 92.63

3 0 0 1 88 6 0 92.63

1 0 0 0 7 293 0 97.67
o 2 0 0 0 1 99 0 99.00

3 0 0 0 1 99 0 99.00

1 4 0 0 0 0 266 98.52
u 2 3 0 1 0 0 86 95.56

3 0 0 0 0 0 90 100

Total 1 86.84
2 84.78
3 79.47

Table 10 Confusion matrix: linear discriminant analysis; male voices.

Method i q e a o u %

1 193 65 1 8 0 3 71.48
i 2 53 23 4 9 0 1 58.89

3 59 17 4 1 0 9 65.56

1 75 187 8 0 0 0 69.26
q 2 20 67 3 0 0 0 74.44

3 42 40 7 0 0 1 44.44

1 18 1 244 37 0 0 81.33
e 2 1 0 86 13 0 0 86.00

3 1 0 88 11 0 0 88.00

1 6 4 9 266 0 0 93.33
a 2 2 1 5 87 0 0 91.58

3 0 0 1 91 3 0 95.79

1 0 0 0 8 292 0 97.33
o 2 0 0 0 1 99 0 99.00

3 0 0 0 1 99 0 99.00

1 0 0 0 0 0 270 100
u 2 0 0 0 0 0 90 100

3 0 0 0 0 0 90 100

Total 1 85.66
2 85.31
3 82.65
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4.2 Summary
The results can be summed up under 5 headings: (i) Speaker gender, (ii) Vowel
phonemes (vowel-gender interaction), (iii) Testing methods, (iv) Analysis methods, and
(v) Predictivity.

(i) All results are better in the female voices than the male voices.
(ii) For the front vowels /i q e/, the results for the female voices are better than for the

male voices everywhere.
(iii) There are no signi®cant differences between the testing methods (ii) and (iii).
(iv) The quadratic discriminant functions tend to result in better scores than the linear

functions, but this difference is not signi®cant. The new method proposed in this
article (cf. section 3 above) results in scores that are, on the whole, closer to the
scores obtained with quadratic discriminant functions than those obtained with
the linear discriminant functions.

(v) The overall testing result is that the models are highly predictive with respect to
the three sets of measurement data.

4.3 The inter-speaker predictability of the three models
Another aspect of our data is its predictability with respect to vowel classi®cation for
the individual voices. This reduces to the question: how well can the vowels of each of
the speakers in a set (male or female, in our case) be predicted on the basis of the data
from the remaining speakers in the set? We have tested all the ten of our speakers in
this way, each one against the remaining four in the set. Detailed results will be given
here, in tables 12 and 13, for one of the male and one of the female voices, respectively.
For reasons of space, the results for the other eight speakers will be treated summarily.
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Table 11 Confusion matrix for quadratic discriminant analysis; male voices.

Method i q e a o u %

1 185 74 9 0 0 2 68.52
i 2 63 21 4 2 0 0 70.00

3 66 17 3 1 0 3 73.33

1 56 204 10 0 0 0 75.56
q 2 18 67 5 0 0 0 74.44

3 41 42 7 0 0 0 46.67

1 3 7 258 32 0 0 86.00
e 2 0 2 88 10 0 0 88.00

3 0 2 90 8 0 0 90.00

1 12 1 7 264 1 0 92.63
a 2 4 0 2 89 0 0 93.68

3 0 0 1 92 2 0 96.84

1 0 0 0 8 292 0 97.33
o 2 0 0 0 1 99 0 99.00

3 0 0 0 2 98 0 98.00

1 3 0 0 0 0 267 98.89
u 2 0 0 0 0 0 90 100

3 0 0 0 0 1 90 100

Total 1 86.73
2 87.79
3 84.60
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Table 12 Partitioning test for speaker JI (male).
JI

Method i q e a o u %

1 25 29 0 0 0 0 46.30
i 2 20 34 0 0 0 0 37.04

3 24 30 0 0 0 0 44.44

1 7 47 0 0 0 0 87.04
q 2 10 44 0 0 0 0 81.48

3 7 47 0 0 0 0 87.04

1 3 2 55 0 0 0 91.67
e 2 5 6 49 0 0 0 81.67

3 13 2 45 0 0 0 75.00

1 1 0 16 40 0 0 70.18
a 2 1 0 16 40 0 0 70.18

3 1 0 22 34 0 0 59.65

1 0 0 0 0 60 0 100
o 2 0 0 0 0 60 0 100

3 0 0 0 0 60 0 100

1 0 0 0 0 0 54 100
u 2 0 0 0 0 0 54 100

3 0 0 0 0 0 54 100

Total 1 82.8
2 78.76
3 77.88

Table 13 Partitioning test for speaker AI (female).
AI

Model i q e a o u %

LDF 54 0 0 0 0 0 100
i QDF 54 0 0 0 0 0 100

MDF 54 0 0 0 0 0 100

LDF 0 54 0 0 0 0 100
q QDF 0 52 0 0 0 2 96.30

MDF 0 52 0 0 0 2 96.30

LDF 0 0 60 0 0 0 100
e QDF 0 0 60 0 0 0 100

MDF 0 0 60 0 0 0 100

LDF 0 0 0 57 0 0 100
a QDF 0 0 0 57 0 0 100

MDF 0 0 0 57 0 0 100

LDF 0 0 0 5 55 0 91.67
o QDF 0 0 0 8 52 0 86.67

MDF 0 0 0 5 55 0 91.67

LDF 0 0 0 0 0 54 100
u QDF 0 0 0 0 0 54 100

MDF 0 0 0 0 0 54 100

Total 1 98.53
2 97.05
3 97.94
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The remaining results, for the model presented in section 3 above, are shown in
table 14 in a condensed form.

A (partial) visual representation of the reduction of speaker-related variability and
the enhancement of the phonetic distinctiveness of the vowel spectra by the normalization
proposed here can be gained from ®gures 1 and 2. These map our female vowel spectra
into a Root 1 vs. Root 2 plane of a classical linear discriminant analysis. The complete
images are multi-dimensional but roots no. 1 and 2 are the most strongly distinctive.

5 Conclusions
If the formant frequencies of Polish vowels (all monophthongal) are measured at or
near the `targets', and then very simply normalized statistically, tokens of the six
phonemes /i q e a o u/ can be classi®ed, and recognized, with high accuracy, speaker-
independently, separately in male and female voices. This hypothesis was con®rmed on
a large corpus including 3390 cases of vowel spectra in special word lists constructed in
such a way that each of the six vowel phonemes occurred in various phonetic contexts.
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Table 14 Mean percent scores for all vowels by speaker.

speaker JK PW TZ WJ AD AL KK LR
score 67.85 78.76. 81.12 75.52 100 99.71 92.04 91.45

JK, PW, TZ and WJ are male speakers.
AD, AL, KK and LR are female speakers.
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Figure 1 Unnormalized female vowels in the (Root 1, Root 2) plane.
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The lists were read by ®ve male and ®ve female speakers, and the measurements were
analyzed using three discriminant models, using substitution and partitioning tests.
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