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The Sadovskii vortex in strain
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The point vortex is the simplest model of a two-dimensional vortex with non-zero
circulation. The limitations introduced by its lack of core structure have been remedied
by using desingularizations such as vortex patches and vortex sheets. We investigate
steady states of the Sadovskii vortex in strain, a canonical model for a vortex in a
general flow. The Sadovskii vortex is a uniform patch of vorticity surrounded by a
vortex sheet. We recover previously known limiting cases of the vortex patch and
hollow vortex, and examine the bifurcations away from these families. The result is a
solution manifold spanned by two parameters. The addition of the vortex sheet to the
vortex patch solutions immediately leads to splits in the solution manifold at certain
bifurcation points. The more circular elliptical family remains attached to the family
with a single pinch-off, and this family extends all the way to the simpler solution
branch for the pure vortex sheet solutions. More elongated families below this one
also split at bifurcation points, but these families do not exist in the vortex sheet limit.

Key words: vortex dynamics, vortex flows

1. Introduction
A long-standing problem in vortex dynamics is the construction of equilibrium

vortex shapes. Given the complexity of the problem, the two-dimensional case has
been the subject of particular attention, given its relevance to situations with weak
variations in one direction, for example because of stratification. The two-dimensional
flow due to a point vortex in an otherwise irrotational flow is described by the
complex potential

w= φ + iψ =
Γ

2πi
ln z, (1.1)

where Γ is the circulation of the vortex and z = x + iy. While the point vortex is
a useful model for the behaviour of the fluid outside the vortex (where the distance
from the vortex is much larger than the core size), it is less useful for modelling
the behaviour and dynamics of the vortex core and the motion of the fluid close to
the vortex. This has motivated research into desingularizations of the point vortex, in
particular using vortex sheets and vortex patches.

A vortex sheet is a discontinuity in the velocity of the fluid, and the strength of
the sheet is related to the jump in velocity tangential to the sheet as one crosses from
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one side to the other. This configuration is a delta function of vorticity in the direction
normal to the sheet. A closed vortex sheet is one possible desingularization of a point
vortex. It can also be viewed as a bubble with circulation. Far from the vortex sheet,
the flow resembles that due to a point vortex as in (1.1).

Previous work on equilibrium vortex sheets has focused on hollow vortices, for
which the density vanishes inside the vortex. Studies of hollow vortices examined
equilibrium solutions such as pairs (Pocklington 1895; Moore & Pullin 1987;
Leppington 2006) or rows (Baker, Saffman & Sheffield 1976; Ardalan, Meiron
& Pullin 1995). More recently, Llewellyn Smith & Crowdy (2012) investigated both
the shape and stability of a single steady hollow vortex in a straining field, and gave
a description of its stability. Other work has looked at the von Kármán street of
hollow vortices (Crowdy & Green 2011) and at hollow vortices in a channel (Green
2015).

A vortex patch is an area of fluid containing non-zero vorticity. As with the vortex
sheet, far from the patch, the flow looks like the flow due to a point vortex with the
same circulation. Here, we focus only on patches of uniform vorticity. In this case, the
problem can be reduced from the underlying partial differential equations to contour
dynamics (Zabusky, Hughes & Roberts 1979), which requires only knowledge of the
boundary of the vortex patches. This method was also used to calculate new vortex
patch configurations termed V-states. Deem & Zabusky (1978) used this method to
find new rotating and translating states of vortex patches, besides the known Kirchhoff
vortices (Lamb 1932). It was used for both individual vortex patches and to look at
the interactions between multiple vortex patches.

Moore & Saffman (1971) calculated steady elliptical states of a vortex patch in a
straining field. This work also included a stability analysis that found those ellipses
that were neutrally stable and could be the starting states for bifurcated solutions of
different shapes. Kamm (1987) used Schwarz functions to investigate non-elliptical
vortex patches in strain. The bifurcation points of the family of elliptical solutions
matched those predicted by Moore & Saffman (1971), and all the non-elliptical
vortices in strain were found to be unstable. The three-dimensional stability was
investigated in Robinson & Saffman (1984) and Miyazaki, Imai & Fukumoto (1995).
Kida (1981) obtained solutions for vortex patches in uniform shear.

The Sadovskii vortex is a combination of the previously discussed vortex
desingularizations: it is a vortex patch surrounded by a vortex sheet. (Such flows
have been called ‘Batchelor flows’ in the literature, but we avoid the expression
‘Batchelor vortex’ to minimize confusion with the Batchelor vortex, which refers
to a three-dimensional vortex with axial flow.) This type of flow was previously
investigated in works on bluff-body wakes, including in Chernyshenko (1998). The
Prandtl–Batchelor theorem shows that the vorticity inside a closed streamline tends
to a constant value in the high-Reynolds-number limit (Batchelor 1956a). Batchelor
(1956b) argued that, in bluff-body wakes, the region of constant vorticity is bounded
by a jump in tangential velocity (a vortex sheet), motivating further work, including
that of Sadovskii (1971), who investigated a flow in which there is a jump in the
Bernoulli constant on the boundary of the vortex and the vorticity is organized
into two patches of equal and opposite vorticity. Outside this region, the flow is
incompressible and irrotational.

Other related works are Saffman & Tanveer (1984) and Moore, Saffman & Tanveer
(1988). The latter obtained the Prandtl–Batchelor flow past a body with a forward-
facing flap. This leads to an area of constant vorticity inside this angled section, and
irrotational flow outside a streamline going from one edge of the plate to the other,
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which is a vortex sheet, as manifested by a jump in the Bernoulli constant. This
problem was solved using conformal mappings for the inside and outside of the vortex,
and then finding the correspondence between the boundary points in each mapping.
Bunyakin, Chernyshenko & Stepanov (1996, 1998) and Chernyshenko et al. (2003)
investigated flows with vortex patches trapped in airfoil cavities.

Our goal here is to generalize the hollow vortex in strain of Llewellyn Smith
& Crowdy (2012) and the elliptical vortex patches in strain of Moore & Saffman
(1971) by computing the Sadovskii vortex in strain. There will now be two governing
non-dimensional parameters and the solutions will form a manifold in this parameter
space. The relation between the known solutions is particularly interesting, because
the Moore–Saffman vortices have a known bifurcation structure, while no such
structure exists for the hollow vortex in strain. The case of a vortex in strain is a
canonical one, since locally any flow looks like a strain, so this flow gives the local
response of a vortex in a large-scale and more general complicated flow.

This paper is structured as follows. Section 2 describes the problem and boundary
conditions. Sections 3 and 4 use numerical continuation to recalculate solutions to the
patch and sheet cases, including families of bifurcating solutions. Section 5 presents
solutions to the Sadovskii vortex in strain, and discusses the changes in the bifurcation
diagram and vortex shapes as the contributions from interior and boundary circulation
change. Section 6 presents conclusions. A discussion of the numerical method is given
in the Appendix.

2. Formulation
The Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a

vortex sheet. Inside the vortex, we require constant vorticity ω, so we solve Poisson’s
equation

∇
2ψ =−ω, (2.1)

where ψ is the streamfunction with

u=
∂ψ

∂y
, v =−

∂ψ

∂x
. (2.2a,b)

Outside the vortex, the flow is irrotational, so we solve Laplace’s equation

∇
2ψ = 0. (2.3)

We require that, far from the vortex, the streamfunction corresponds to a straining field
along with circulation, so that

ψ ∼ γ (x2
− y2)−

Γ

2π
ln |z| as |z|→∞, (2.4)

where γ gives the strength of the strain.
We require the boundary of the vortex to be a streamline, which means that

ψ = const. (2.5)

on the boundary of the vortex. Since we can define the streamfunction ψ up to a
constant, without loss of generality we set ψ = 0 on the boundary. This condition can
also be written in terms of the velocity as

u · n̂= 0, (2.6)

where u= (u, v) is the velocity and n̂ is the normal vector to the vortex boundary.
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The second condition is the dynamic condition, which we also call the pressure
condition or Bernoulli condition. As in Saffman (1992), the Bernoulli condition for
steady inviscid incompressible flows in regions with constant vorticity and no body
forces is

ρ

2
|u|2 − ρωψ + p= const. (2.7)

In irrotational regions (in this paper, everywhere outside the vortex), ω= 0, and this
condition is the usual

ρ

2
|u|2 + p= const. (2.8)

The pressure must be continuous across the boundary of the vortex since we are
neglecting surface tension. We have taken ψ = 0 on the boundary of the vortex, so

ρout

2
|uout|

2
−
ρin

2
|uin|

2
=Q, (2.9)

where ρin is the density inside the vortex core, ρout is the density outside the vortex
and Q is the difference in Bernoulli constant between the inside and outside of the
vortex. In cases with ρin = ρout, if Q = 0 the velocity is continuous at the vortex
boundary and there is no vortex sheet: this is the vortex patch. If Q 6= 0, there is a
jump in the Bernoulli constant and velocity at the boundary, which is a vortex sheet.
When ρin 6= ρout, it is possible to have Q= 0 and a vortex sheet, since a vortex sheet
exists wherever |uout| 6= |uin|. The case in which the vorticity is zero, ω = 0, is the
vortex sheet. We consider only the case when the densities are equal or when the
second term in (2.9) vanishes, which occurs when there is no vortex patch (including
the special case of the hollow vortex with ρin = 0). Our method can still be used in
the case with different densities, but this introduces a new parameter without much
new insight.

3. Vortex patch
3.1. Elliptical solutions

The velocity field due to a vortex patch is continuous at the vortex boundary, so for
equal densities we have ρin=ρout and Q=0 in (2.9). Moore & Saffman (1971) showed
that elliptical vortex patches are steady solutions in a straining field. Solutions exist
when

e
ω
=

θ(θ − 1)
(θ 2 + 1)(θ + 1)

, (3.1)

where e = 2γ is twice the value of the strain rate and θ = a/b > 1 is the ratio of
the ellipse’s semi-major to semi-minor axes. The relation (3.1) links the shape of the
ellipse to the non-dimensional ratio of strain to vorticity. In what follows we will use
a different quantity that characterizes the shape of the ellipse, namely the ratio of the
square root of area to perimeter, since it exists for arbitrary shapes. This is not a
unique way of describing the shape (except for ellipses), but measures how far from
circular the shape is.

Along with computing this family of elliptical vortices in other flow fields such as
shear, Moore & Saffman (1971) also carried out a stability analysis and found that
the growth rate of the azimuthal mode m is

σ 2
=−

ω2

4

(
2mθ
θ 2 + 1

− 1
)2

−
1
4

(
θ − 1
θ + 1

)2m

. (3.2)
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The points where σ = 0 gives the locations of bifurcations from the elliptical family.
Kamm (1987) used a continuation method to search for bifurcations at these points.
The point for m= 2 is the fold point in the family, at which the stability of the ellipse
changes from stable to unstable and the ellipses become more eccentric for the same
value of e/ω. Kamm (1987) found the initial shapes of the next three bifurcating
families, but was unable to compute them completely because of limitations of his
continuation method. Families that bifurcate at even values of m are symmetric about
both the x- and y-axes, while those that bifurcate at odd values of m were found to
be symmetric only about the x-axis.

3.2. Procedure
We follow the approach given in the Appendix. The complex velocity due to the
vortex patch can be calculated as a boundary integral, as shown in Luzzatto-Fegiz &
Williamson (2011):

upatch(x)=
ω

2π

∮
x− X
|x− X|2

(x− X) ·
dX
ds̃

ds̃, (3.3)

where s̃ is a parametrization of the boundary (not necessarily arclength), upatch is the
velocity due to the patch, and the total velocity is

u(x)= upatch(x)+ ustrain, (3.4)

with the velocity due to the strain field being ustrain= (−2µy,−2µx), where µ= γ /ω
is a non-dimensional measure of the straining field.

The straining field is symmetric and remains unchanged by rotations of π and
reflection across y = x. If a vortex solution for µ > 0 is reflected across the line
y = x, the straining field remains the same but the vortex now has the opposite
sign of vorticity (µ < 0). These solutions can also be found using our continuation
method by decreasing µ through 0 to negative values. This leads to solutions with
the semi-major axis aligned with the y-axis. As a result, we consider only µ> 0.

3.3. Results
We performed numerical continuation on the vortex patch with both 128 and 512
points. Using 128 points has the advantage of increased speed, but leads to difficulties
converging to solutions with sharp features. Increasing the number of points slows
down computation time, but leads to better convergence and solutions further along
solution branches. We begin with an overview of the elliptical solutions, then use a
perturbation method to switch branches and plot the overall families of solutions for
the patch vortex. We then discuss in more detail the first four bifurcating families.

The calculated Moore–Saffman elliptical patch vortex solutions match the analyti-
cally known solutions, as shown in figure 1. We start with a nearly circular ellipse at
the top of the plot, and then use pseudo-arclength continuation to follow the family
as the vortices become more elongated. This confirms the expected locations of the
bifurcation and fold points. To switch branches onto the bifurcating families, we use
the perturbation method discussed in the Appendix. These perturbed solutions are
then used as the starting solutions for continuation along the bifurcating families. The
bifurcation and fold points predicted by (3.2) are indicated by stars in figure 1. We
calculated at least part of the bifurcated families at the first 11 different bifurcation
points. As the bifurcations occur on more elongated ellipses, we need more points
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FIGURE 1. Vortex patches in strain, characterized by the relation between µ and the
non-dimensional shape parameter. The curve spanning the whole range of the latter
corresponds to the Moore–Saffman ellipses, the stars show the theoretical bifurcations and
fold points, and other curves show families of bifurcated solutions.

and modes to calculate the bifurcated shapes. It also becomes more difficult to perturb
the solutions, because the more elongated shapes of both the elliptical family and the
bifurcating branches are very similar. Figure 1 shows the solutions obtained with 512
points and 128 modes (see the Appendix). Solution families end when convergence
failed, or solutions were non-physical (when the vortex boundary crossed itself
or when high-frequency oscillations at the Nyquist mode became apparent). The
conditions under which a branch of solutions of vortex patches for a similar problem
may be continued with respect to a parameter were addressed with mathematical
rigour in Gallizio et al. (2010).

3.3.1. Bifurcation for m= 3
The first bifurcation point occurs for m=3 in (3.2). As found by Kamm (1987), this

family is not symmetric about the y-axis, and has a teardrop shape. Figure 2 shows an
overview of this family, including an intermediate shape and the limiting shape. Since
the code uses splines to rediscretize the points in inverse velocity (see the Appendix),
there is always a slightly rounded cusp on small enough scales. It is clear, however,
that a limiting cusp shape exists. Cusps on vortex patches were studied previously by
Saffman & Tanveer (1982) and Overman (1986).

The asymmetry in this shape necessitates some discussion of the symmetries of the
background straining field. In figure 2, we show shapes that have the cusp on the left
and the rounded side on the right. The numerical continuation also calculated shapes
that had the cusp on the right and the rounded side on the left, and these shapes are in
fact identical up to reflection. Given the symmetry of the strain, there is no preferred
direction for these shapes, and one can obtain vortices with cusps to either the left or
right.
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FIGURE 2. Detail of the m=3 bifurcation. The lighter curve shows the elliptical solutions,
while the black line and dots show solutions on the bifurcating branch. The stars indicate
the shapes plotted in (a) µ= 0.06747 and (b) µ= 0.06832. This family occurs only on
the side of the elliptical solutions on which µ is larger.

3.3.2. Bifurcation for m= 4
The next bifurcation point occurs for m= 4 in (3.2). This family has two different

branches, depending on whether µ is increasing or decreasing. When µ increases
(which can be thought of as a decrease in the strength of the vortex patch or as an
increase in the strength of the straining field), the shapes change from an ellipse to a
doubly symmetric rugby ball (American football) shape, with two cusps (figure 3b,d).
When µ decreases, the shapes start to pinch off at the centre while remaining doubly
symmetric (figure 3a,c). Kamm (1987) was able to calculate the cusped shape for
larger values of µ, but was unable to calculate the vortex shapes with the pinch-off.

3.3.3. Bifurcation for m= 5
Continuing along the elliptical branch, the next bifurcation occurs at m= 5. As with

the previous odd m value, this branch only occurs on the side of the elliptical family
with larger values of µ, and again has symmetry about the x-axis but not the y-axis.
As before, one side of the vortex is rounded, and the other side becomes cusped.
However, as this shape is more elongated, the maximum width occurs closer to the
cusp than the rounded side. This branch, shown in figure 4, was the last calculated
by Kamm (1987).

3.3.4. Bifurcation for m= 6
The next even bifurcation occurs for m= 6, and it begins to show the pattern for

the even bifurcating families. Again, the family with smaller µ has pinch-offs, but this
time there are two, whereas for m= 4 there was only one. For larger µ, the family
again has two cusps, but is more elongated in the middle. These shapes and the family
are shown in figure 5.

3.3.5. Later bifurcating families
The pattern of an increase in the number of pinch-offs and elongation of the cusped

shapes continues as m increases. For example, figure 6 shows the last shape for the
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FIGURE 3. Detail of the m=4 bifurcation. The lighter curve shows the elliptical solutions,
while the black line and dots show solutions on the bifurcating branch. The stars show the
limiting solutions, which are plotted in (a) µ= 0.04875, (b) µ= 0.05893, (c) µ= 0.04446
and (d) µ= 0.06072.
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FIGURE 4. Detail of the m= 5 bifurcation. The lighter curve shows the elliptical solutions
black line and dots show solutions on the bifurcating branch. The stars show the solutions
plotted in (a) µ= 0.04912 and (b) µ= 0.04980.

branch with seven pinch-offs, which occurs for m = 16. For even values of m, the
bifurcating family with smaller µ will have m/2− 1 pinch-offs.

4. Vortex sheet
4.1. Problem description

Vortex sheets are curves or surfaces of discontinuity in flow velocity. While a vortex
patch has no singularities in the vorticity, a vortex sheet corresponds to a delta
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FIGURE 5. Detail of the m=6 bifurcation. The lighter curve shows the elliptical solutions,
while the black line and dots show solutions on the bifurcating branch. The stars show
the solutions, which are plotted in (a) µ= 0.03615, (b) µ= 0.04271, (c) µ= 0.03358 and
(d) µ= 0.04492.

 0.5

 0

–0.5
10 2 3 4 5–1–2–3–4–5

FIGURE 6. Vortex shape for the bifurcating family with smaller µ at m = 16, showing
seven developing pinch-offs.

function with argument normal to the contour. According to Saffman (1992), a vortex
sheet induces the following velocity for points not on the vortex sheet:

u− iv =
1

2πi

∫
κ(s, t) ds

z− Z(s, t)
, (4.1)

where (u(x, y), v(x, y)) is the induced velocity, z = x + iy is the point of interest, Z
is position along the sheet, and κ and Z are parametrized by arclength and time. The
quantity κ is the difference in speed across the vortex sheet. This integral is the same
as the flow field due to a set of point vortices along the contour with appropriate
circulation. For points on the vortex sheet, that integral becomes a principal value
integral, and the induced velocity gives the velocity of the vortex sheet. To obtain the
limiting velocity when approaching the sheet from the right or left, half the velocity
jump is added to or subtracted from the principal value:

u− iv =
1

2πi
−

∫
κ(s, t) ds

z− Z(s, t)
±
κ

2
(x′ − iy′), (4.2)

where x′ and y′ are the components of the unit tangent vector of the boundary, and s
is arclength. The ± signs refer to the right and left sides of the curve as it is traversed
in the positive sense.
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FIGURE 7. Hollow vortex shapes: the shape parameter is plotted against λs, a
non-dimensional parameter relating the straining field strength to the vortex sheet strength.
The solid line shows the results obtained from Llewellyn Smith & Crowdy (2012), while
the dotted line shows the numerical solution. The inset shows calculated vortex shapes
plotted at the points indicated by stars. The circle indicates the limiting analytical vortex
shape, plotted in the inset in grey.

Previous research has focused on the hollow vortex, which is a vortex sheet
surrounding a constant pressure region. This corresponds to no flow inside the vortex
(as can be seen by the maximum principle), and is equivalent to setting ρin= 0 inside
the vortex in (2.9). The hollow vortex in a straining field was obtained by Llewellyn
Smith & Crowdy (2012) using a conformal mapping from the unit disc to the fluid
outside the vortex. The closed form of the conformal map from the physical z-plane
to the mapping ζ -plane that gives the shape of the vortex is

z(ζ )= a
[

1
ζ
− 2iβζ +

β2

3
ζ 3

]
, (4.3)

where a is a length scale. The boundary of the vortex is at |ζ | = 1, and

β =−
µh

1+
√

1−µ2
h

, µh =
8πγ a2

Γ
, (4.4)

where γ is the strength of the straining field and Γ is the circulation of the vortex
sheet. From the conformal mapping, it is clear that, as we go around the unit circle in
an anticlockwise direction, we traverse the vortex boundary in a clockwise direction.
Note that this formulation corresponds to a straining field with principal axes oriented
along y = ±x. We will use the Moore–Saffman choice of principal axes along the
coordinate axes in what follows.

4.2. Results
Figure 7 shows the agreement between the calculation and the analytical solutions
from Llewellyn Smith & Crowdy (2012). The inset shows the calculated vortex shapes
with 256 points at λs = 0.01706, 0.08923, 0.12431 and 0.09136 and the analytical
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limiting shape at pinch-off. The parameter λs = γL/q is a non-dimensional measure
of the straining field γ compared to the velocity on the boundary q, with L a reference
length. It is related to µh in (4.4). The analytical shapes have been rotated to align
with the straining field, and plotted along with the calculated shapes; and the two
are indistinguishable. Convergence becomes difficult as the distance between points
becomes similar to the width of the shape, so the method was not able to converge
at the pinch-off shape.

5. Sadovskii vortex
5.1. Governing parameters

Our solution method takes the velocity field of the steady solution to be the
superposition of the velocity due to the vortex patch, vortex sheet and the straining
field. To compare sheet and patch solutions, as well as all Sadovskii solutions
in between, requires two non-dimensional parameters. To calculate the circulation
outside the vortex, we use the definition

Γout =

∮
∂S

uout · ds, (5.1)

where uout is the total velocity just outside the vortex boundary and ∂S is the
boundary of the vortex. Since the flow is irrotational outside the vortex, any contour
that encloses the vortex will give the same value for Γout. To calculate Γin, we again
use the definition of circulation, but evaluate the contour just inside the vortex sheet
on the boundary:

Γin =

∮
∂S

uin · ds. (5.2)

An equivalent way to write these circulations to show the effect of the different parts
of the vortex is

Γin =ωA, Γout = Γin +

∮
∂S
κ ds, (5.3a,b)

where A is the area of the vortex patch and κ is the vortex sheet strength.
For the parameter relating the vortex patch strength to the vortex sheet strength, we

use the parameter

Λ=
Γin

Γout
. (5.4)

The vortex patch has Λ = 1, the vortex sheet has Λ = 0, and Sadovskii vortices lie
in the range 0<Λ< 1. For the parameter relating the straining field strength to the
vortex strength, we use

Sr =
γL2

Γout
. (5.5)

This parameter goes to 0 for solutions that are circular, where the vortex is much
stronger than the straining field, and it has an upper bound for all patch, sheet and
Sadovskii solutions. This parameter is similar to the parameter µh used in Llewellyn
Smith & Crowdy (2012); see (4.4). These two parameters, Λ and Sr, allow us to plot
all Sadovskii solutions in a finite area in the parameter space.
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FIGURE 8. Overview of the Sadovskii solution manifold. Each panel shows a different
view. Different shades of grey are associated with different families of solutions; these
families connect to each other for Λ= 1, but are separate for Λ< 1. Solutions near Λ= 1
were calculated using the patch non-dimensionalization, while solutions near Λ= 0 were
calculated using the sheet non-dimensionalization (see the Appendix).

5.2. Results
Figure 8 shows the manifold of Sadovskii vortices. While the manifold is a three-
dimensional surface, the figure shows only points corresponding to specific solutions
that we calculated. Each point shown on the manifold corresponds to a vortex shape.
At Λ= 1, it includes the vortex patch data; and at Λ= 0, it includes the vortex sheet
data. The crosses mark calculated bifurcation points, while the stars are the expected
bifurcation points of the patch family from Moore & Saffman (1971). It is hard to
absorb all the details of the Sadovskii solutions from figure 8, so the rest of this
section discusses the interesting parts of the solution manifold.

The bifurcation point for the patch case for m = 4 was seen to lead to a split
in the solution families of the Sadovskii vortex. While the variables Λ and Sr are
convenient for showing the entire manifold, the details of the behaviour as one moves
away from the vortex patch solutions are more easily discussed in terms of λ= q/ωL
and µ = γ /ω. As soon as λ > 0 (i.e. Λ < 1), the solution curves are no longer
all connected. Instead, as shown in figure 8 for the m = 4 bifurcation, the elliptical
solutions with larger shape parameter remain joined to the bifurcated solutions with
smaller µ, which are the pinch-off solutions, while the elliptical solutions with smaller
shape parameter remain joined to the solutions with larger µ. The latter tend to cusped
rugby ball (American football) solutions in the patch case, but as will be shown later,
for λ> 0, while the solutions have the same overall shape, they do not develop cusps.
The pinch-off solutions connect to the vortex sheet solutions when Λ= 0, while the
rugby ball solutions cannot, since it is the pinch-off solutions that become the vortex
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FIGURE 9. Split in Sadovskii vortex families near the m= 4 bifurcation point. (a) Patch
solutions with λ= 0. (b–d) Sadovskii solutions at constant values of λ. The upper family
is shown by the solid line and the more elongated family is shown by the dashed line.
As λ increases, these families get further from each other.

sheet solutions found by Llewellyn Smith & Crowdy (2012). The rugby ball solutions
presumably cease to exist at a finite positive value of Λ, but we did not attempt to
find the final solutions.

Figure 9 shows the split between the families occurring. As λ increases, the families
get farther apart: in figure 9(a), the vortex patch case, the families are still connected;
in figure 9(b), with λ = 0.05059, the dashed line shows the more elongated family;
figure 9(c) and (d) correspond to λ= 0.07190 and λ= 0.08880, respectively.

This split in the solution families at even m bifurcation points is important. It
explains the difference between the vortex patch and vortex sheet bifurcation diagrams.
In the case of the vortex patch, there exist bifurcation points with even m values,
and at these points the elliptical solution family is crossed by two branches; one of
these has a pinch-off point and the other has cusps at both ends. The addition of any
amount of vortex sheet (Λ < 1) removes the cusps, and in doing so also separates
these families. What had previously been a single elliptical family is split into two,
with the more circular shapes staying connected to the shapes that include a pinch-off.
The more elongated elliptical shapes stay connected to the family with cusps at both
ends. This pattern continues at each even value of m on the patch family. It seems
that the only solutions that exist for Λ= 0 are the upper branch, which connects the
circular solutions to the solutions with a single pinch-off.

5.3. Connecting branch
The connecting branch is shown in figure 10. This is the portion of the Sadovskii
solution manifold that connects the vortex patch solutions with the vortex sheet
solutions. As figure 10 shows, this includes only the solutions that were circular or
had a single pinch-off, but does not include those that had cusps at both ends, were
more elongated or had more than one pinch-off.
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FIGURE 10. The connection between the connecting portion of the patch vortex solutions
and the entire vortex sheet solution family. The connecting branch is plotted in the darker
colour, while the rest of the Sadovskii solutions are plotted in light grey.

Generally, it seems the vortex sheet leads to more rounded shapes, as the vortex
sheet cannot exist at cusps (S. Tanveer, private communication; see also Saffman &
Tanveer 1982). As Λ is decreased from 1, the sharp features that exist on the limiting
patch vortex shapes become smooth. In the case of the circular vortices, which have
a large shape parameter but small Sr, the shapes do not change. This is because they
have circular vortices for the limiting cases of the patch and sheet vortices, and all
Sadovskii vortices in between. This the expected result, since a circular shape is a
known solution for a vortex with no other flow field.

The effect of the combination of the two sources of circulation is evident in the
limiting shapes of vortices with a single pinch-off. This type of vortex exists for
both the patch and sheet cases, although with different shapes. In figure 11, the last
converged shapes are shown for various values of Λ. In the patch case, the limiting
shape had sharp cusps at the pinch-off points, shown in figure 11(a). In the vortex
sheet case, there is a much smoother transition from the ends to the pinch-off in
the centre, shown in figure 11(d). Beginning at the vortex patch, as the vortex sheet
strength is increased, the shape of the vortex in the area of the pinch-off smooths out
and begins to look more like the vortex sheet shape, as shown in figure 11(b,c). The
Sadovskii shapes did not converge all the way to the pinch-off point. The code had
difficulty converging when the distance between the boundary points became similar
to the minimum width of the shape.

5.3.1. Bifurcation for m= 3
While the bifurcation point for m = 4 caused a split in the solution families

for Λ < 1, the asymmetric bifurcating family for m = 3 remained attached to the
connecting family. This pattern of splitting of families at even-numbered values of
m, while the bifurcating families at odd values of m remain attached to the family,
seems to continue for higher values of m on other branches.

Figure 12 shows the vortex shapes at the m= 3 bifurcation point for three different
points on the solution manifold. As the bifurcation points move to smaller values
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FIGURE 11. A plot of the closest shapes to pinch-off for various sheet and vorticity
strengths. (a) The vortex patch shape, with Λ=1, using 512 points (see figure 3c). (b) The
last converged Sadovskii shape with Λ=0.62533, using 128 points. (c) The last converged
Sadovskii shape with Λ = 0.29238, using 256 points. (d) The theoretical limit for the
vortex sheet, from Llewellyn Smith & Crowdy (2012) (see figure 7).
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FIGURE 12. The shapes of Sadovskii vortices at the m = 3 bifurcation point at three
different locations on the solution manifold. (a) The vortex at the bifurcation point for
Λ= 0.98807 and Sr = 0.02110. (b) The vortex at Λ= 0.74368 and Sr = 0.01555. (c) The
vortex at Λ= 0.53038 and Sr = 0.01192.
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FIGURE 13. Comparison of patch and Sadovskii asymmetric shapes. (a) The limiting
shape for the patch vortex (Λ = 1) showing the cusp. This comes from the bifurcating
family for m= 3. (b) The last converging shape for the related bifurcating family at (Λ=
0.93196, Sr = 0.02051). The vortex sheet forces a round shape, and in this case begins to
extend the side where the cusp was. There is also a slight curve to the narrow finger that
occurs where the cusp was. This curve becomes more pronounced with increasing Sr.

 0
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FIGURE 14. Asymmetric branch for a Sadovskii vortex. (a) The symmetric shape at
the bifurcation point (Λ= 0.53038, SR = 0.01192). (b) The last converged shape for the
Sadovskii vortex (Λ= 0.52351, Sr = 0.01191) showing the asymmetry. This comes from
the bifurcating family for m= 3.

of the shape parameter and strain ratio, they take on more of the characteristics of
the shapes that were originally on the bifurcating branch for m = 4 (see figure 3a),
showing the flattening out and then beginnings of the pinch-off in the centre.

To calculate the shapes of the asymmetric vortices on the bifurcating families for
m = 3, we calculated a perturbed solution near the bifurcation point, then used this
perturbed solution as a starting point for continuation in µ. Using increased weights
on the centroid and area constraints (a = b = c = 105 instead of 100) gave better
convergence to solutions.

In the vortex patch case, the limiting shape for this solution branch had a cusp,
shown in figure 13(a). As the vortex sheet strength increases, the vortex can no longer
support a cusp. Instead, the effect of the sheet is to round the cusp out, and it begins
to extend in a thin finger. As the straining field and vortex sheet become stronger
(but remain in the large Λ regime), this thin finger also begins to curve. This shape
is shown in figure 13(b).

As Λ decreases (and the sheet strength increases), the vortex shape becomes more
rounded, with a wider minimum width. Figure 14(a) shows the symmetric solution
at the bifurcation point when nearly half the circulation is due to the vortex sheet.
Figure 14(b) shows the last converged asymmetric solution on the bifurcating branch,
showing the wider radius of curvature where the cusp or finger existed in vortices with
weaker vortex sheets (figure 13). We calculated the asymmetric solutions for many
solution families that had the bifurcation point, but did not attempt to discover where
these asymmetric families ceased to exist as Λ tends to zero.
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FIGURE 15. Split in Sadovskii vortex families near the m= 6 bifurcation point. (a) Patch
solutions with λ= 0. (b–d) Sadovskii solutions at constant values of λ= 0.05051, 0.07191
and 0.08880, respectively. The family between m = 4 and m = 6 is shown by the solid
line and the more elongated family is shown by the dashed line. As λ increases, these
families get farther from each other.

5.4. Branches for m= 4 and m= 6

The natures of the m= 4 and m= 6 bifurcation points are the same: the top family
of more circular vortices remains attached to the family with pinch-offs, while the
family of patch vortices with sharp cusps becomes attached to the lower family of
more elongated shapes. Now the lower family (dashed line) in figure 9 is attached to
the family with two pinch-off points (see figure 15). However, neither of these families
exists all the way to Λ= 0. The separation is shown in figure 15, while the family
between m= 4 and m= 6 are shown in figure 16.

The behaviour of the cusps is similar to the single cusp in the m = 3 branch. In
this case, it occurs on both sides, and it does not appear to exhibit the slight curve
shown in figure 13(b). As the sheet strength is increased, thin fingers again extend
outwards from where the cusps were. As the sheet continues to increase in strength,
these fingers get wider at the edges, and the shape appears closely related to one
with two pinch-off points (see figure 18). As the sheet strength increases, there is less
variance in vortex shape between the edges of the family. In figure 17, we show the
cusped patch shape and compare it to a Sadovskii shape showing the bulging fingers
on both ends.

As figure 18 shows, as the vortex sheet strength increases, the pinch-off points on
the m= 6 branch are smoothed out much as occurs in the hollow case. No solutions
for Λ< 0.6 converged for this family between m= 4 and m= 6. It is likely that this
family ends at a point where the only solution is at the m= 5 bifurcation point.

As Λ is decreased, the shape of the vortices at the bifurcation point begins to show
the signature of two pinch-off locations, as shown in figure 19. The two shapes, one
with the two sharp ends, and one with the two pinch-off points, become more similar
as the vortex sheet becomes stronger, as can be seen from the shape of figure 19(b).
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FIGURE 16. The family of Sadovskii solutions connecting the doubly cusped solutions
at the m= 4 patch bifurcation with the solutions with two pinch-off points at the m= 6
patch bifurcation is shown in the darker color. All other Sadovskii solutions are shown in
lighter grey.
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FIGURE 17. Comparison of patch and Sadovskii shapes for m=4 branch. (a) The limiting
shape for the patch vortex (Λ=1, µ=0.06072) showing the cusps (see figure 3d). (b) The
last converging shape for the related bifurcating family at (Λ = 0.75920, Sr = 0.01326).
The vortex sheet forces a round shape, which leads to the skinny fingers on each side
where the cusps had been. This shape is the end of the family of solutions represented
by the dashed lines in figure 9.
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FIGURE 18. Comparison of patch and Sadovskii shapes for m=6 branch. (a) The limiting
shape for the patch vortex (Λ = 1, µ = 0.03358) showing the sharp pinch points (see
figure 5c). (b) The last converging shape for the related bifurcating family at (Λ=0.71162,
Sr = 0.00775). The vortex sheet leads to pinch-off points that are closer to those of the
hollow vortex, or the vortex sheet alone.

Figure 20 shows the asymmetric shape of a vortex on the bifurcating family, at
Λ= 0.76452, Sr = 0.01190. One side looks like the symmetric shape in figure 19(b),
while the other side looks more like the shape in figure 17(b).
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FIGURE 19. Sadovskii vortex shapes for m= 5 bifurcation points. (a) The shape at Λ=
0.98070 and Sr = 0.015224. (b) The shape at Λ= 0.76783 and Sr = 0.01134.
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FIGURE 20. Sadovskii vortex asymmetric shape at the m= 5 bifurcation point, with Λ=
0.76452 and Sr = 0.01190. One side of this asymmetric vortex looks like the shape on
the symmetric family, while the other side is narrower. Compare this to the patch shape
in figure 4(b).

6. Conclusions

We have obtained the shapes of steady Sadovskii vortices in strain. Using numerical
continuation, we were able to trace out the solution manifold described by two
parameters, taken here to be Λ=Γin/Γout and Sr= γL2/Γout. The limiting cases of the
vortex patch and vortex sheet are recovered and match previously obtained solutions.

For vortex patches, we obtained families that bifurcate from the elliptical solutions,
as in Kamm (1987). We took the calculations further than before, and found that
families at higher values of m had more pinch-offs. Even bifurcation points led to
asymmetric vortex shapes that extended only into larger values of Sr. Odd bifurcation
points lead to families that extend in both directions along Sr, with either a pinch-off
point or a sharp cusp at either end.

For Sadovskii vortices, we calculated points on the solution manifold in the
parameter space. The addition of the vortex sheet to the vortex patch solutions
immediately leads to a split in the solution manifold at bifurcation points for even
values of m. It is this splitting of the families that leads to the much simpler solution
branch for the vortex sheet. The more circular vortex patch solutions remain connected
to the family with a single pinch-off at m = 4, while becoming disconnected from
the more elongated elliptical solutions and the family with cusps at both ends.

The addition of the vortex sheet to the vortex patch smooths out sharp features.
As the vortex sheet strength is increased, the radius of curvature also increases, so
features such as fingers become wider and less pronounced. This leads to a shrinking
of the solution manifold, as the more deformed shapes do not seem to exist for strong
enough vortex sheet strengths and the existing shapes become more similar. It also
appears that the more elongated families that exist below the m= 4 family only exist
for small values of the vortex sheet strength, which explains why they do not appear
as vortex sheet solutions.

We have shown that our approach successfully calculates the known vortex patch
and sheet shapes and used it to find new shapes. It can also be applied to cases with
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rotational background flows by decomposing the flow appropriately. For example, it
can be used to obtain the hollow vortex in shear solutions of Zannetti, Ferlauto &
Llewellyn Smith (2016). Other possible situations include multiple vortex equilibria
to desingularize the classical rotating same-sign point vortices.

Future work may investigate the stability of the steady solutions we have calculated.
This will be particularly interesting in the presence of surface tension, which may
serve to mitigate the possibility of Kelvin–Helmholtz instability in the stagnant case
when the inner fluid has non-zero density.
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Appendix A. Numerical method
Numerical continuation is performed using a predictor–corrector scheme for pseudo-

arclength continuation. For details on such schemes, see Govaerts (2000). Since we
use an inverse velocity formulation, points are clustered in areas where the speed on
the vortex sheet is lower. The inverse velocity discretization (see Luzzatto-Fegiz &
Williamson 2011) is

s̃(s)= A
∫ s

0

ds′

|u(s′)|
, (A 1)

where A is chosen so 0 6 s̃ 6 2π, s is the arclength and u is the velocity in the
reference frame of interest. This method assumes that the solution is a superposition
of three velocity fields: the background straining flow, the vortex patch and the vortex
sheet. Given a vortex solution, the basic method for the continuation is:

(i) rediscretize points by inverse velocity using cubic splines;
(ii) predict new vortex solution using the null space of Jacobian;

(iii) correct the guess using the Gauss–Newton solver to converge to the actual
solution;

(iv) repeat until convergence is achieved.

To reduce the number of variables in the problem, the boundary points of the vortex
are only allowed to move along the normal vectors. We are calculating the scalar
functions α and αk, where

xn
i = xi + α(s̃i)nx, (A 2)

yn
i = yi + α(s̃i)ny, (A 3)
κn

i = κi + ακ(s̃i). (A 4)

The (xi, yi) are the boundary points and κi represent the vortex sheet strengths at the
point. The functions α and ακ are calculated based on their Fourier coefficients, where

α(s̃i)=
1
N

N/2−1∑
j=−N/2

α̂je2πs̃iji/N, (A 5)

with α̂j the complex Fourier coefficients. While we define the shapes using N points,
we only allow M modes in the adjustment functions α and ακ , where M 6 N, so
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we require that α̂j = 0 for | j| > M. We are using M as a way to set the maximum
wavenumber we keep when we apply an ideal low-pass filter to the adjustment of the
shape. A similar approach is used for ακ . The unknowns that are actually found by
the predictor–corrector method are the Fourier coefficients α̂ and α̂κ .

The two boundary conditions used to calculate these Fourier coefficients are
the Fourier transforms of the kinematic condition (2.6) and the dynamic (Bernoulli)
condition (2.9). The total velocity is u=upatch+usheet+ustrain, where upatch is calculated
from (3.3) and usheet is calculated from (4.2). The integrals in these calculations are
calculated using the trapezoidal rule, applied at the midpoints to avoid poles at the
points of interest. The values at midpoints are calculated using Fourier transforms, as
in Baker & Nachbin (1998). Just as the average velocity on the vortex boundary is
used for the discretization of the points, the same average velocity, which is the
principal value integral in (4.2), is used in the kinematic condition. This works
because the additional term that comes from the vortex sheet cannot affect the
normal velocity.

Depending on the solution regime, different non-dimensionalizations of these
boundary conditions were used. For solutions near the vortex patch, the equations
were non-dimensionalized using

x= Lx∗, u= Lωu∗, µ=
γ

ω
, λ=

q
ωL
, ρ =

ρi

ρo
, (A 6a−e)

while solutions near the vortex sheet were non-dimensionalized using

x= Lx∗, u= Lγ u∗, µs =
ω

γ
, λs =

γL
q
, ρ =

ρi

ρo
. (A 7a−e)

These non-dimensionalizations are used for numerical purposes and are not needed in
the discussion of § 5.

We actually solve a constrained problem, in which each of the boundary conditions
has added terms to ensure the vortex is centred at the origin and has a fixed area. The
area and centroids are calculated using the trapezoidal rule from

A=
∮

x
dy
ds̃

ds̃, xC =−
1

2A

∮
x2 dy

ds̃
ds̃, yC =

1
2A

∮
y2 dx

ds̃
ds̃. (A 8a−c)

The constraints added to (2.6) and (2.9) are

axct1(sr)+ byct2(sr)+ c(A−π)t3(sr)= 0, (A 9)

where a, b and c are weights and t1, t2 and t3 are the first three Legendre polynomials
evaluated at sr = (s̃/π) − 1. We used weights of a = b = c = 100, unless otherwise
noted, to ensure that the area and centroid conditions were satisfied. These constraints
are added before the Fourier transform is taken.

Results were checked to make sure the area and centroid constraints were satisfied.
After reviewing the results, we found that high-frequency Nyquist mode oscillations or
non-physical (self-intersecting) shapes occurred when |xc|> 5× 10−7, |yc|> 5× 10−7

or |A−π|> 5× 10−6. Only solutions with centroid and area errors smaller than these
values were retained.

Branch switching was performed by solving a perturbed problem, where a constant
term was added to the boundary conditions. This perturbation causes a splitting of
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the families at the bifurcation point, allowing continuation to go smoothly from one
branch to the other. Once on the other branch, the perturbation was removed and the
actual problem was solved, using as a starting guess the perturbed solution on the
new branch.
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