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Simple shear is not so simple! Kinematics and shear senses
in Newtonian viscous simple shear zones
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Abstract – This work develops an analytical model of shear senses within an inclined ductile simple
shear zone with parallel rigid boundaries and incompressible Newtonian viscous rheology. Taking
account of gravity that tends to drive the material downdip and a possible pressure gradient that
drives it upward along the shear zone, it is shown that (i) contradictory shear senses develop within
two sub-zones even as a result of a single simple shear deformation; (ii) the highest velocity and
least shear strain develop along the contact between the two sub-zones of reverse shear; (iii) for a
uniform shear sense of the boundaries, a zone of reverse shear may develop within the top of the
shear zone if the pressure gradient dominates the gravity component; otherwise it forms near the
bottom boundary; (iv-a) a ‘pivot’ defined by the intersection between the velocity profile and the initial
marker position distinguishes two sub-zones of opposite movement directions (not shear sense); (iv-b)
a pivot inside any non-horizontal shear zone indicates a part of the zone that extrudes while the other
subducts simultaneously; (v) the same shear sense develops: (v-a) when under a uniform shear of the
boundaries, the shear zone remains horizontal and the pressure gradient vanishes; or alternatively (v-b)
if the shear zone is inclined but the gravity component counterbalances the pressure gradient. Zones
with shear sense reversal need to be reinterpreted since a pro-sheared sub-zone can retro-shear if the
flow parameters change their magnitudes even though the same shear sense along the boundaries is
maintained.
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1. Introduction

Simple shear in ductile shear zones is a deformation
where the boundaries of the zone move parallel to
themselves relative to each other (e.g. Twiss & Moores,
2007, pp. 330–1). Since geological deformations take
place at exceedingly slow rates, usually ranging from a
fraction of a millimetre per year (e.g. Wobus, Heimsath
& Whipple, 2005 and references therein) up to a few
centimetres per year (as referred to in Annen, Scaillet &
Sparks, 2005), simple shearing of plastically deforming
rocks inevitably leads to creep. Thus, simple shear in
geology leads to very slow laminar motion of material
points, with a Reynolds Number of the order of ≤ 10−15

(Mukherjee & Koyi, 2010a,b).
Ductile deformation of rocks is conventionally

modelled by flowing fluids (Ramsay & Lisle, 2000).
Here simple shear is equated with Couette flow (in the
sense of Schlichting & Gersten, 1999) and Poiseuille
flow to describe fluid flow through static infinitely
long parallel boundaries (Pai, 1956). The boundaries
of Poiseuille flow could have any spatial orientation,
cross-section geometry and dip (in the sense used by
Pai, 1956; Schlichting & Gersten, 1999).

Better understanding of ductile shear zones, and
hence their shear sense, is of fundamental importance in
plate tectonics since such zones define plate boundaries
(including collisional mountains) (Regenauer-Lieb &
Yuen, 2003). In the last 30 years or so, previous
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workers (such as England & Holland, 1979; Moores
& Twiss, 1995) envisaged simple shear as one of the
possible mechanisms of subduction and underplating
of sediments through inclined zones with parallel
boundaries. For example, in his figure 6.39, Stüwe
(2007) described parabolic patterns in a subduction
zone of parabolic profiles. The component of flow that
tends to extrude rocks along the channel was mentioned
as ‘hydraulic potential’, and any shear that tends to
produce a linear profile if the zone is horizontal as
‘drag’. Another reason why understanding the theory of
ductile shearing through field studies and/or modelling
is crucial is that shear can also modify pre-existing ore
deposits (e.g. Evans, 1980).

This work investigates the kinematics of simple
shear and the development of shear senses in ductile
simple shear zones and their significance in extrusion.
Shear fabrics (see Passchier & Trouw, 2005 for review;
Mukherjee, 2011) allow deducing only the relative
sense of movement of the shear zone boundaries. Not-
withstanding, this study considers absolute movement
of the boundaries. The way folds and microstructures
evolve are not addressed.

2. The model

A kilometre-scale shear zone with parallel, dipping,
very long and rigid boundaries is here considered to
have the rheology of an incompressible Newtonian
viscous fluid, in which applied stress and the resultant
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strain rate are proportional (Schlichting & Gersten,
1999). The bottom end of the shear zone is assumed
to have a pressure higher than the top end. This gives
rise to a pressure gradient that tends to drive rock up
the shear zone. The boundaries of the shear zone are
considered to undergo reverse-sense simple shear (Figs
1–3). The ‘Poisson equation’ of flow (Eqn 1 in the
Appendix) is chosen to deduce the velocity profile.
This flow equation is equated with deformation in
ductile shear zones as it has been adopted by previous
workers (e.g. Grujic et al. 1996; Ramsay & Lisle,
2000; Grujic, Hollister & Parrish, 2002; Stüwe, 2007;
Mancktelow, 2008). The co-ordinate axes are chosen
such that the positive direction of the z-axis is in the
updip direction (Figs 1–3). A component of gravity,
given by the product of density, acceleration due to
gravity and the sine of the dip of the shear zone, tends
to drive the rock downward between its parallel dipping
boundaries (Eqns 1 and 2 in the Appendix). The gravity
component counteracts the pressure gradient and tends
to extrude the rock.

The presence of these components can be understood
from field studies and mechanical considerations.
For example, (i) the relative movement of the shear
zone boundaries is exemplified by a number of shear
sense indicators, most ubiquitously by S–C fabrics
and mineral fish (Berthé, Choukroune & Jegouzo,
1979; Passchier & Trouw, 2005; Mukherjee, 2011). (ii)
The presence of leucosomes in sheared migmatites,
boudins, pressure shadows and solutions, veins and
reaction textures indicate the activity of a pressure
gradient along the shear zone (Mancktelow, 2008; also
Hollister, 1993; Li, Gerya & Burg, 2010). Schulmann
et al. (2008) categorized tectonic models of extrusion
(of the ultrahigh pressure rocks) into (a) corner flow in
an accretionary wedge with buoyancy-driven extrusion;
(b) gravity-driven exhumation guided either by removal
of the mountain roots; and (c) focused erosion or
topographic load driven the flow of partially molten
rocks along sub-horizontal channels driven by either
focused erosion or topographic load. Apart from
these, a fourth method involving (b) and (c), i.e.
buoyancy-driven extrusion augmented by erosion, has
also recently been modelled by many (e.g. Weinberger
et al. 2006; Warren, Beaumont & Jamieson, 2008a–c;
Whipple, 2009). In all these cases, pressure gradient
is implicit in fluid mechanical derivations. Deviatoric
stress that leads to ductile deformation of rocks in
tectonic contexts (Li, Gerya & Burg, 2010) can also
create a pressure gradient, which could ultimately be
correlated with lithostatic pressure gradient (Grujic
et al. 1996; Vannay & Grasemann, 2001; Godin et al.
2006). Alternately, even a small percentage of melt
would favour buoyant extrusion along the shear zone
and develop a pressure gradient (Beaumont et al. 2001).
(iii) In tectonic scenarios, an inclined shear zone will
always have its component of weight acting in the
downdip direction.

Under these conditions, the velocity profile within
the shear zone is usually a parabola, and not a straight

line. A line passing through the vertex of the profile that
parallels the shear zone boundaries divides the whole
zone into two unequal sub-zones of opposite ductile
shear senses (Fig. 1b–f). As in a purely Poiseuille flow,
the vertex is also the point of fastest velocity and least
shear strain in the shear zone. The velocity profile
depends on the following parameters: (i) the absolute
velocities of the two boundaries; (ii) thickness and (iii)
dip of the shear zone; (iv) acceleration due to gravity;
(v) pressure gradient along the shear zone; and (vi)
density and (vii) viscosity of the rock (Eqn 3 in the Ap-
pendix). Several specific cases and the corresponding
velocity profiles are presented as follows.

I. A case in which the sense of shear throughout
the zone is identical, and, independent of density
and acceleration due to gravity, is for any dip of
the shear zone where the effect of gravity and the
pressure gradient nullify each other (the case of Eqn
11 in the Appendix). This is the case that matches the
homogeneous simple shear of a pack of cards depicted
in many textbooks.

II. When the boundaries are sheared and the pressure
gradient overpowers the component of gravity, the
convex side of the parabolic profile points updip along
the shear zone (Fig. 1b, e). While the sub-zone in
contact with the lower boundary acquires the same
shear sense as that of the shear on the boundaries, the
smaller sub-zone at the top undergoes a reverse shear.
In other words, while a narrower zone of ductile normal
shearing forms in contact with the upper boundary, a
wider zone of reverse shear develops in contact with
the lower boundary.

III. When the component of gravity exceeds the
pressure gradient, and the boundaries are sheared,
the parabolic profile is convex downdip. The vertex
of the flow profile in this case is closer to the lower
boundary of the shear zone (Fig. 1c, d, f). In this case,
while a narrower sub-zone in contact with the lower
boundary develops a normal shear sense, opposite to
the reverse shear sense between the two boundaries, the
other wider sub-zone at the top acts as a ductile thrust
with the same shear as that on the boundaries.

In the two latter cases (II and III), the imaginary
lines that parallel the shear zone boundaries and pass
through the vertices demarcate a thinner sub-zone in
which the shear sense reverses. Under certain algebraic
relations among the seven flow parameters, the vertices
of the parabolic velocity profiles touch one of the
boundaries (curve A in Fig. 2a and 2b for cases II
and III, respectively), or can even plot outside the shear
zone (curve B in Fig. 2a and 2b for cases II and III,
respectively). In such situations, a uniform shear sense
develops across the complete width of the shear zone.

IV. The point at which the velocity profile (or its
extrapolation outside the shear zone) intersects the
co-ordinate axis that is perpendicular to the linear
boundaries of the zone (i.e. the ‘y-axis’ in the figures),
is denoted as a ‘pivot’ (Fig. 1a–e). The shear sense
does not alter across the pivot as it does across the
vertex. The pivot lies inside the shear zone only if the
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Figure 1. Simple shear of a shear zone of incompressible Newtonian fluid with parallel boundaries. The profile ‘3’ represents the flow
due to pressure gradient, ‘2’ indicates the flow due to gravity and ‘1’ is the resultant flow profile. The full arrows ‘2’ and ‘3’ represent
intensities of the respective flows (similar to fig. 11 of Zhao et al. 2011). Profiles ‘4’ and ‘5’ represent the profile due to shear of
the boundaries, and the resultant of profiles ‘2’ and ‘3’, respectively. V – vertex; P – pivot. Dashed lines passing through them mark
sub-zones of opposite shear senses and sub-zones of opposite bulk movements (extrusion and subduction), respectively. (a) An inclined
shear zone where the component of gravity equals the pressure gradient. The resultant is a linear velocity profile arising from shear of
the boundaries. (b) An inclined shear zone where the component of gravity is lower than the pressure gradient. The resultant of these
two flows has its vertex pointing updip. (c) An inclined shear zone where the component of gravity exceeds the pressure gradient. The
resultant parabola has its vertex pointing downdip. (d) Combination of shear of the boundaries and the flow component of gravity in
an inclined shear zone with no pressure gradient. The resultant profile ‘1’ is deduced point by point using vector addition as follows:
(nz – zl) = mz; 2 ∗ dk = dv; (th – ti) = tj. (e) The situation is as in (b) except that U2 = 0. The entire shear zone extrudes. (f) The
situation is as in (c) except that U1 = 0. The entire shear zone subducts.
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Figure 2. Two special cases of resultant velocity profiles in an
inclined shear zone. In profile ‘A’, the vertex (‘V’) is coincident
with the upper boundary of the shear zone, whereas in the profile
‘B’, it lies outside the shear zone.

two boundaries shear in opposite directions (i.e. one
downdip and the other updip). In such a case, while a
part of the non-horizontal (inclined or even vertical)
shear zone extrudes across the pivot, the remainder
subducts simultaneously. A line that parallels the shear
zone boundary and passes through the pivot demarcates
those two sub-zones. Along this line, all points remain
static throughout the shearing process. On the other
hand, (i) if both the boundaries move in the same
direction (either updip or downdip), the pivot locates
outside the shear zone (Fig. 3); (ii) if either of the
boundaries remains stationary but the other moves, the
pivot locates on the stationary boundary (Fig. 1e, f).
In the last two cases, the shear zones either entirely
extrude or subduct. In the cases of a dipping shear
zone where the effect of gravity nullifies the pressure
gradient (Fig. 1a), the position of the pivot is the same
and is defined only by: (i) the thickness of the shear
zone; and (ii) the absolute velocities of the shear zone
boundaries (Eqn 11 in the Appendix).

Figure 3. In an inclined shear zone, both boundaries’ shear move
updip, but the upper boundary moves with a greater velocity.
See caption of Figure 1 for explanation of numbers for different
profiles and those within the full arrows. The pressure gradient
and the component of gravity are equal. Extrapolation of the
resultant velocity profile meets the y-axis at ‘P’ that defines the
pivot.

V. In addition to fluid mechanical derivations,
various combinations of flow mechanisms can also be
understood graphically. After drawing velocity profiles
for different types of simple shear, vector addition
of velocities is necessary to construct the resultant
velocity profile (Fig. 1d and its caption). This is in
conformity with fluid mechanical deductions (Eqn 15
in the Appendix).

VI. The kinematics of simple shear zones that are
not a part of any large hot orogen and are devoid of
the pressure gradient along them can also be worked
out from the presented model by putting ∂P/∂x = 0
in Eqn 1 in the Appendix. For reverse ductile shearing
of the boundaries, a thicker sub-zone of reverse shear
develops within the top zone and a thinner sub-zone
of normal shear sense develops within the bottom
boundary (Fig. 1d). As in the case in Figure 2b, if the
vertex plots on the bottom boundary or even outside
the shear zone, a single shear sense will develop.

3. Discussion

Any slip at the boundaries and the pressure gradient
are considered two independent parameters although
they could act simultaneously. An example of this
is the ascent of partially molten rocks within the
upper portion of the Higher Himalayan Shear Zone
along with coeval ductile shear of its boundaries
(reviews by Godin et al. 2006; Yin, 2006). The
present model is set in the way that shear along the
boundaries is deciphered from geochronology (e.g.
Harrison et al. 1997; Catlos, et al. 2001), and the
pressure gradient from geothermobarometry (e.g. E. J.
Catlos, unpub. Ph.D. thesis, Univ. California, 2000) of
natural shear zones could be used to predict sub-zones
of reverse shear. Since the fluid mechanics (Eqn 1 in
the Appendix) on which this paper is based considers
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infinitely long shear zones, it should not be applied to
any metre-scale or smaller ‘sporadic’ shear zones.

Shear zones of conflicting (or ‘opposite’) shear
senses have commonly been attributed to a retro-shear
of the whole zone, e.g. from an initial top-to-SW into a
late top-to-NE in the South Tibetan Detachment System
in the Himalaya (Patel et al. 1993; Jain & Patel, 1999;
review by Godin et al. 2006; Yin, 2006). Such thinking
also led to postulation of specific extrusion models for
the major shear zones. The present model indicates that
two shear senses can form simultaneously well within
any shear zone subject to a uniform simple shear of its
boundaries (Fig. 1b–f).

Secondly, merely changing the magnitudes of a few
of the flow parameters (shear rate, dip of the boundaries,
density and viscosity of the rock types and the pressure
gradient) over time can invert an early pro-shear into a
late retro-shear. One such possibility could be where an
initially uniform shear persisted and the pressure gradi-
ent was balanced by the component of gravity (Fig.
1a). Later the density of the rock, dip of the shear zone
and the pressure gradient might change to the extent
that the component of gravity becomes weaker than the
pressure gradient. This would then produce an opposed
shear sense near the upper boundary of the shear zone
(Fig. 1b). (i) The pressure gradient along an orogen-
parallel shear zone can vary by about an order of mag-
nitude in different locations (E. J. Catlos, unpub. Ph.D.
thesis, Univ. California, 2000; Fraser, Worley & San-
diford, 2000; Hollister & Grujic, 2006). The extrusion
rate of an intra-continental shear zone can change sig-
nificantly with time (Ganguli et al. 2000). (ii) The rate
of slip of a shear zone boundary can vary in both space
and time (Harrison et al. 1997; Valdiya, 2001; Catlos
et al. 2001). (iii) The viscosity of the partially molten
mid-crustal rocks could vary by 14 orders of magnitude
(Scaillet, Holtz & Pichavant, 1996; Beaumont et al.
2001). (iv) In compressional regimes, shear zones may
rotate and change their dip (Leech et al. 2005).

The present analytical models of simple shear
investigate a reverse shear (top-to-updip). The starting
equation of fluid mechanics (Eqn 1 in Appendix) also
has potential for constraining shear senses for a normal
shear sense (top-to-downdip) by reversing shear senses
at the shear zone boundaries. Assuming similar vector
addition (as in Fig. 1d) allows deduction of different
flow profiles, co-ordinates of pivots and vertices, and
anticipation of the development of two opposed shear
senses in the general case, and in the special cases of a
uniform sense (similar to Fig. 1a). In general, normal
sense shear will also lead to subduction simultaneous
with extrusion (similar to Fig. 1a–d).

The models presented here should be compared with
natural shear zones with utmost caution because of the
following possibilities. Shear zones may develop non-
Newtonian behaviour (as interpreted from Dasgupta,
Chakraborty & Neogi’s, 2009 findings by Mukherjee
& Koyi, 2010a) or involve molten rocks (Webb &
Dingwell, 1990). The boundaries of the shear zone
act rigidly only if the ratio of viscosity between the

shear zone and its surroundings is ≤ 10−7 (Mancktelow,
2008). Melting during ductile shearing (Marchildon
& Brown, 2003) means that the shear zone is no
longer incompressible. Fluid channelling during ductile
shearing can lead to up to 60 % volume loss from the
middle of the shear zone (Selverstone, Morteani &
Staude, 1991). Thickness of orogenic shear zones can
vary by an order of magnitude (Lombardo, Pertusati
& Borghi, 1993; Jain & Anand, 1988). In natural
shear zones, a component of pure shear might apply
either uniformly (Vannay & Grasemann, 2001), or
non-uniformly (Exner, Grasemann & Mancktelow,
2006). Natural shear zones can contain more than
one lithology. Assigning single values for the density
and viscosity while modelling may obscure some of
their kinematic details. The kinematics for a ‘single
lithology’ may also be non-uniform because of local
variations in composition or grain size.

In their advanced thermal mechanical model of
extrusion induced by ductile shear, the Dalhousie group
of modellers (e.g. Beaumont et al. 2004; also Kellett
et al. 2010 as the latest example) considered a number
of additional parameters such as geothermal gradient,
radioactive heat production, thermal expansion coeffi-
cients and power law behaviour, together with density
changes due to phase transition during metamorphism
and extrusion augmented by focused erosion. However,
this work takes a minimalist approach and considers
only the most significant parameters as followed
by Ramsay (1980), Ramsay & Lisle (2000) and
Grasemann, Edwards & Wiesmayr (2006). In addition,
the following factors were also ignored: gravitational
spreading or erosion of materials extruded from
the top end of the shear zone; kinematic dilatancy
(Grasemann, Edwards & Wiesmayr, 2006); strain
partitioning (Mancktelow, 2006); and changes in rock
rheologies (von Huene, Ranero, & Scholl, 2009).

4. Conclusions

The shear senses of inclined simple shear zones with
parallel long boundaries are investigated by considering
them as having incompressible Newtonian viscous
rheologies. A parabolic velocity profile develops with
a vertex that moves fastest, denotes the point of least
shear strain and lies on a line that demarcates two
sub-zones of opposite shear senses. The flow profile
is dependent on the size and the orientation of the
shear zones, pressure gradient, density and viscosity
of the rocks, and gravity. A pressure gradient stronger
than the gravity component makes the parabolic profile
convex upward, and a weaker one downdip. Reverse
shear on this profile leads to a thinner sub-zone of
normal shear developing near the top of the shear
zone. The intersection between the velocity profile and
a line perpendicular to the flow direction/shear zone
defines the ‘pivot’ that remains static throughout the
deformation history as long as the flow parameters
remain unchanged. The pivot falls inside the shear
zone if the boundaries shear in opposite directions;
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otherwise it falls outside. For an internal pivot, a
part of a non-horizontal shear zone across the pivot
extrudes while the other part subducts. The whole shear
zone either extrudes or subducts (i) if only a single
boundary of the shear zone moves and when the pivot
falls on the stationary boundary; and (ii) if both the
boundaries move in the same direction and the pivot
falls outside the shear zone. Changes in magnitude of
flow parameters can develop a sub-zone of retro-shear
in contact with one of the boundaries of the shear zone
where initially a pro-shear was persistent.
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Appendix. Equations

The ‘Poisson equation’ of rectilinear flow of an incompress-
ible Newtonian viscous fluid in the z-direction through a very
long parallel rigid boundary inclined shear zone is given
by eqn 6.190 of Papanastasiou, Georgiou & Alexandrou
(2000):

(∂2Uz/∂x2) + (∂2Uz/∂y2) = μ−1 [∂P/∂z − d g Sinθ] (1)
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Here ‘x’ and ‘y’ are perpendicular directions and lie on the
cross-section of the shear zone; Uz is the velocity of the fluid
along the z-direction; ‘μ’ is the dynamic viscosity of the
fluid; (∂P/∂z) is the pressure gradient along the shear zone
that forces the fluid to extrude; ‘d’ is the density of the fluid,
‘g’ is the acceleration due to gravity, and ‘θ’ is the dip of the
shear zone.

If only the y–z cross-section of the flow is considered, then
(∂2Uz/∂x2) = 0. Thus,

(∂2Uz/∂y2) = μ−1 [∂P/∂z − d g Sinθ] (2)

Integrating twice, taking the thickness of the shear zone to be
2y0 units, and considering the boundary conditions of simple
shear on both the boundaries, i.e. at y = y0, Uz = U1, and at
y = −y0, Uz = −U2 leads to the following flow profile:

Uz = 0.5 μ−1 [∂P/∂z − d g Sinθ]
(
y2 − y2

0

)

+ 0.5 {y y−1
0 (U1 + U2) + (U1 − U2)} (3)

The vertex of the parabolic profile (3) is given by

z1 = 0.5 (U1 − U2) − 0.125 μ y−2
0 (U1 + U2)2 (∂P/∂z

− d g Sinθ)−1 − 0.5 μ−1y2
0 (∂P/∂z − d g Sinθ) (4)

and, y1 = −0.5 y−1
0 μ (U1 + U2) (∂P/∂z − d g Sinθ)−1 (5)

For the absolute value of ∂P/∂z > than that of ‘d g Sinθ’, and
U1, U2 �= 0, both the ‘z-’ and the y-ordinates of the vertex
are > 0 (Fig. 1b). For the absolute value of ∂P/∂z < than
that of ‘d g Sinθ’, and U1, U2 �= 0, both the ‘z-’ and the
y-ordinates of the vertex are < 0 (Fig. 1c, d).

∂P/∂z being < 0 (this is because, as ‘z’ increases, ‘P’
falls), ‘y1’ is always > 0. Thus, using (5), the thickness of
the sub-zone with a shear sense opposed to the remainder of
the master zone is:

y′
1= y0−0.5 y−1

0 μ (U1 + U2) (∂P/∂z − d g Sinθ)−1 (6)

The thickness of the studied master shear zone is ‘2y0’ units.
The remaining sub-zone where the shear sense is the same
as that given by shearing of the boundaries is given by:

y′
2= y0 + 0.5 y−1

0 μ (U1 + U2) (∂P/∂z − d g Sinθ)−1 (7)

Clearly, y1
′ < y2

′.
For y1 > y0 (profile ‘B’ in Fig. 2a, b), the vertex of the

profile is outside the shear zone.

For y1 = y0 (profile ‘A’ in Fig. 2a, b), the vertex lies on
the upper boundary of the shear zone.

To find the co-ordinate of the point of intersection between
the y-axis and the velocity profile given by (3), Uz = 0 is
inserted in (3):

0 = 0.5 μ−1 [∂P/∂z − d g Sinθ] (y2−y2
0)

+ 0.5 {y y−1
0 (U1+U2) + (U1−U2)} (8)

Now if U2 = 0 (Fig. 1e), (8) simplifies to:

0 = 0.5 μ−1 [∂P/∂z − d g Sinθ] (y2−y2
0)

+ 0.5 U1 (y y−1
0 +1) (9)

The point (0, −y0) is satisfied in (9). Thus (0, −y0) is the
pivot.

Similarly, if U1 = 0 (Fig. 1f), (8) simplifies to:

0 = 0.5 μ−1 [∂P/∂z − d g Sinθ] (y2−y2
0)

+ 0.5 U2{y y−1
0 −1} (10)

The point (0, y0) is satisfactory with respect to (10). Thus
(0, y0) is the pivot.

For ∂P/∂z = d g Sinθ (Fig. 1a), the co-ordinate of the pivot
is derived from (8) as:

[0, y0 (U2−U1) (U2 + U1)−1] (11)

When θ �= 0, and U1 = U2 = ∂P/∂z = 0, the velocity profile
in (3) simplifies to:

U′
z= −0.5 μ−1 [d g Sinθ] (y2−y2

0) (12)

And, for θ = 0, and U1 = U2 �= 0,

U′′
z = 0.5 μ−1 ∂P/∂z (y2−y2

0) + 0.5 {y y−1
0 (U1 + U2)

+ (U1−U2)} (13)

When θ, U1, U2, ∂P/∂z �= 0,

U′′′
z = 0.5 μ−1 [∂P/∂z − d g Sinθ] (y2−y2

0)

+ 0.5 {y y−1
0 (U1+U2) + (U1−U2)} (14)

From (12)–(14):

U′′′
z = (U′

z + Uz
′′) (15)
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