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COMPACTMETRIZABLE STRUCTURES AND CLASSIFICATION
PROBLEMS

CHRISTIAN ROSENDAL AND JOSEPH ZIELINSKI

Abstract. We introduce and study the framework of compact metric structures and their associated
notions of isomorphisms such as homeomorphic and bi-Lipschitz isomorphism. This is subsequently
applied to model various classification problems in analysis such as isomorphism of C∗-algebras and
affine homeomorphism of Choquet simplices, where among other things we provide a simple proof of the
completeness of the isomorphism relation of separable, simple, nuclear C∗-algebras recently established
by M. Sabok.

§1. Introduction. Thepresent paper dealswith a general approach to determining
the complexity of certain classification problems in Analyis and Topology through
representing objects as compact metric or metrizable structures. The research here
beganwith a question posed by Pierre-Emmanuel Caprace concerning the complex-
ity of isomorphism of totally disconnected locally compact groups and culminated
in the determination by the second author of the complexity of the homeomorphism
relation between compact metrizable spaces [19]. Our goal in this paper is to present
some general techniques for classifying objects via compact metric structures and
along the way produce—when taken together with [19]—a substantially simplified
proof of M. Sabok’s result on the complexity of isomorphism of separable, simple,
nuclear C ∗-algebras [15].
The concept of a compact metrizable or metric structure is fairly simple. Namely,
given a countable relational language L, a compact metrizable L-structureM is a
compact metrizable space M equipped with closed relations RM ⊆ Mn for every
n-ary relation symbol R ∈ L. The structure is metric, as opposed to metrizable, if,
moreover,M is given a fixedmetric dM compatible with its topology. One may now
talk about isometric or bi-Lipschitz isomorphism of compact metric L-structures
and, similarly, homeomorphic isomorphism of compact metrizable L-structures.
Many classical mathematical structures may be coded up to a relevant notion
of isomorphism as compact metric or metrizable structures. For an easy example,
observe that a Choquet simplex K can be coded up to affine homeomorphism by
the compact space K along with the closed ternary relation

R = {(x, 1
2
x +
1
2
y, y) | x, y ∈ K}

coding the midpoint between any two points.
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The basic fact concerning these structures is that the complexity of the relation
of homeomorphic isomorphism is independent of the relational language L.
Proposition 1.1 (See Proposition 2.1). For any countable relational language L,
the relation of homeomorphic isomorphism between compact metrizable L-structures
is Borel bireducible with the complete orbit equivalence relation Egrp induced by a
Polish group action.

The novelty here is that the relation of homeomorphic isomorphism between
compact metrizable L-structures is always Borel reducible to Egrp. The reduction in
the other direction was established in [19] relying, in turn, on [15]. Namely, in [15],
Sabok shows that the complete orbit equivalence relation Egrp is Borel reducible
to the relation of affine homeomorphism of Choquet simplices. Subsequently, in
[19], a simple method is given for reducing homeomorphic isomorphism between
compact metrizable L-structures to homeomorphism of compact metrizable spaces,
i.e., to homeomorphic isomorphism of compact metrizable structures of the empty
language. The specific languageL treated in [19] consists of a single ternary predicate
R used for coding the midpoint relation in Choquet simplices, but, as is pointed out
there, the method is completely general and easily applies to any other countable
language.
In Section 4, we show how to entirely bypass the involved construction of [15] to
obtain a simple and direct proof of the following fact.

Proposition 1.2. Let L be the language consisting of a unary predicate and two
binary relation symbols. Then the complete orbit equivalence relation Egrp induced by
Iso(U) � F (Iso(U)) is Borel reducible to homeomorphic isomorphism of compact
metrizable L-structures.
Coupling this with [19], we see that the complete orbit equivalence relation
is reducible to homeomorphism of compact metrizable spaces and thus isomor-
phism of commutative C ∗-algebras (via the map K �→ C (K)). Moreover, the map
K �→ M (K) taking a compact metrizable space to its simplex of Borel probability
measures is then a further reduction to the relation of affine homeomorphism of
Choquet simplices, thereby obtaining the main result of [15].
All this concerns homeomorphic isomorphism; turning instead to isometric and
bi-Lipschitz isomorphism of compact metric structures, the complexity is very dif-
ferent. First, a simple modification of a proof of M. Gromov [8], shows that, for
any countable relational language L, the following holds.
Theorem 1.3 (See Theorem 8.1). Isometric isomorphism of compact metric

L-structures is smooth.
Also, in [13] the relation of bi-Lipschitz homeomorphismbetween compactmetric
spaces was shown to be Borel bi-reducible with the completeK� equivalence relation
and further improvements to this allows us to add any countable languageLwithout
altering the complexity.

Theorem 1.4 (See Theorem 8.2). The relation of bi-Lipschitz isomorphism
between compact metric L-structures is bi-reducible with the completeK� equivalence
relation.
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As an application of these ideas, we investigate different classes of Polish
groups with canonical compactifications such as the locally compact and Roelcke
precompact.

Theorem 1.5 (See Theorem 3.1). The relation of topological isomorphism between
locally compact and Roelcke precompact Polish groups is classifiable by compact
metrizable structures and is thus Borel reducible to Egrp.

In case the compactification turns out to be totally disconnected, i.e., a Cantor
space, there is a further drop in complexity.

Proposition 1.6 (See Proposition 6.2). The relation of isomorphism between
locally compact or Roelcke precompact non-Archimedean Polish groups is Borel
reducible to isomorphism between countable structures.

This bound for the non-Archimedean classes has been established independently,
and through different techniques, in work of A.S.Kechris, A. Nies, andK. Tent [10].
There, they also show that these are all complete relations among those classifiable
by countable structures, a fact not previously known formetrizable profinite groups.
Moreover, the above proposition can be applied in a model theoretical context to
obtain the following.

Proposition 1.7 (See Proposition 7.1). The bi-interpretability relation for �-
categorical structures is classifiable by countable structures.

The reader primarily interested in understanding the simple proof of the com-
pleteness of homeomorphism of compact metric spaces and the connection with the
classification of C ∗-algebras may restrict the attention to the short Sections 2 and
4. The only thing needed from Section 3 to understand Section 4 is the definition of
Roelcke precompactness.

§2. Preliminaries.
2.1. Compact metric spaces with closed relations. Throughout our paper,

Q = [0, 1]N denotes the Hilbert cube. Recall that, for a Polish space,
X , K(X ) = {A ⊆ X | A compact} is the hyperspace (or exponential space) of
compact subsets of X equipped with the Vietoris topology, that is, the topology
whose basic open sets have the form

{A ∈ K(X ) | A ⊆ U & A ∩ V1 �= ∅ & · · · & A ∩ Vn �= ∅},
where U,Vi are open subsets of X . Alternatively, the Vietoris topology is that
induced by the Hausdorff metric.
Let L be a countable, relational language and, for each R ∈ L, let α(R) be a
natural number called the arity of R. A compact metrizable L-structure is a tuple

M = (M, (RM)R∈L),

whose domain, M , is a compact metrizable space and in which, for every symbol
R ∈ L, the interpretation RM is a closed subset ofMα(R).
For a fixed languange L and structures M = (M, (RM)R∈L),N =
(N, (RN )R∈L), we write M ∼=L N when M and N are homeomorphically iso-
morphic, i.e., when there is a homeomorphism f : M → N so that for every R ∈ L,
and all x1, . . . , xα(R) ∈M ,
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RM(x1, . . . , xα(R)) ⇐⇒ RN (f(x1), . . . , f(xα(R))).

We will simply writeM ∼= N when L is clear from the context.
As every compact metrizable space homeomorphically embeds into Q, every
compact metrizable L-structure is homeomorphically isomorphic to one whose
domain is a closed subset of Q. We therefore let KL be the set of such structures,
i.e.,

KL = {(M, (RM)R∈L) ∈ K(Q)×
∏
R∈L
K(Qα(R)) | RM ⊆Mα(R)}.

We observe thatKL is a closed subset ofK(Q)×
∏
R∈LK(Qα(R)) and hence a Polish

space in its own right.
We shall also consider ∼=L as a relation on KL and thus make the following
identification,

∼=L=
{(M,N ) ∈ KL × KL

∣∣M ∼= N}.
It is not hard to see that ∼=L is an analytic set, which will also follow from
computations below.
Similarly, for a countable relational language L, we define the Polish space
Mod(L) of L-structures with universe N by

Mod(L) =
∏
R∈L
2
(
N
α(R)
)
.

Thus, a point x ∈Mod(L) can be identified with the structure (N, (xR)R∈L), where
(a1, . . . , aα(R)) ∈ xR if and only if x(R)(a1, . . . , aα(R)) = 1.

2.2. Borel reducibility. Recall that for equivalence relations E and F on Polish
spaces X and Y , respectively, E is Borel reducible to F (written E �B F) when there
is a Borel-measurable function f : X → Y so that x E y ⇐⇒ f(x) F f(y) for all
x, y ∈ X . When F �B E �B F, we write E ∼B F (“E and F are Borel bi-reducible”),
and when F �B E �B F we write E <B F.
Suppose G � X is a continuous action of a Polish group on a Polish space X .
This action gives rise to an orbit equivalence relation, EXG , according to which, for
any x, y ∈ X ,

x EXG y ⇐⇒ ∃g ∈ G g · x = y.
As was shown in [3], for every Polish group G there is a Polish group action
G � X whose orbit equivalence relation, EG = EXG , is complete among all orbit
equivalence relations induced by G , i.e., so that, for any other continuous action
G � Y on a Polish space Y , one has EYG �B EG . Similarly, if G is a universal
Polish group, that is, containing every other Polish group as a closed subgroup, e.g.,
G = Homeo(Q) or G = Iso(U), then EG is complete among all orbit equivalence
relations induced by Polish groups. We let Egrp denote some realisation of this
complete orbit equivalence relation.
In other words, if EXG is any orbit equivalence relation of a continuous action
G � X of a Polish group on a Polish space, then EXG �B EG , while EG �B Egrp.
We observe now that, up to Borel bi-reducibility, we may take any ∼=L to be a
representative for Egrp.
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Proposition 2.1. Let L be any countable relational language. Then the isomor-
phism relation ∼=L between compact metrizable L-structures is Borel bireducible with
Egrp.

Proof. First observe that the relation of homeomorphic isomorphism in the
empty language,∼=∅, is simply that of homeomorphism between compact metrizable
spaces, and so ∼=∅ ∼B Egrp by the main result of [19]. Furthermore, for any L, the
map K(Q) → KL taking M �→ (M, (Mα(R))R∈L) (the structure, with domain
M , for which R holds on every α(R)-tuple) is clearly a reduction, showing that
∼=∅ �B ∼=L.
It then remains to show that ∼=L is below a group action. Let � : Q → Q be
�((xn)n∈N) = (12xn +

1
4)n∈N. The particulars of this map are unimportant, but

rather we note the following two features: First, � is a homeomorphic embed-
ding, and second, its image satisfies �[Q] ⊆ (0, 1)N ⊆ Q. Thus, by work of R.D.
Anderson (see [18] Chapter 5), for all compact A,B ⊆ �[Q], every homeomor-
phism between A and B extends to an element of the homeomorphism group
Homeo(Q).
Now, for each n ∈ N, � induces a map �n : Qn → Qn by �n(x1, . . . , xn) =
(�(x1), . . . , �(xn)). Each �n, in turn, induces a map �n∗ : K(Qn) → K(Qn) by
A �→ �n[A]. Finally, let

�L = �1∗ ×
∏
R∈L
�α(R)∗ : KL → KL.

Similarly, every g ∈ Homeo(Q) induces maps gn, gn∗ , and gL, the latter of which
determines a natural action of Homeo(Q) on K(Q) ×∏R∈LK(Qα(R)), for which
KL is an invariant subspace. We claim that �L is a reduction from ∼=L to the orbit
equivalence relation of this action Homeo(Q)� KL.
Indeed, if g ∈ Homeo(Q) is such that gL(�L(M)) = �L(N ), then �−1 ◦ g ◦ �
is a homeomorphic isomorphism betweenM and N . Conversely, if h : M → N
determines a homeomorphic isomorphismM → N , then (� ◦ h ◦ �−1)L is a home-
omorphic isomorphism between �L(M) and �L(N ). But as the domain of �L(M)
and �L(M) are �[M ] and �[N ], and both are subsets of �[Q], � ◦ h ◦ �−1 extends to a
g ∈ Homeo(Q). But gL(�L(M)) = (� ◦ h ◦ �−1)L(�L(M)) = �L(N ). So �L(M) and
�L(N ) are orbit equivalent. �
On the other hand, the isomorphism relation between countableL-structures, i.e.,
between points in Mod(L), is induced by the canonical action of S∞ on Mod(L)
and thus is Borel reducible to ES∞ .

§3. Polish groups with canonical compactifications. In this section, we begin with
a family of Polish groups, namely, locally compact or Roelcke precompact groups,
and show how, for an appropriateL, one may—in a Borel manner—assign compact
metrizable structures as complete invariants to these groups. That is, we show
that these groups are classifiable (up to topological isomorphism) by compact
metrizable structures: there is a Borel reduction from the relation of topological
group isomorphism to the relation of homeomorphic isomorphism of compact
L-structures.
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Theorem 3.1. The relation of topological isomorphism between locally compact
and Roelcke precompact Polish groups is classifiable by compact metrizable structures
and is thus Borel reducible to Egrp.

By contrast, the complexity of isomorphism between all Polish groups is maxi-
mum among all analytic equivalence relations. Indeed, in [6, Theorem 6 (see proof
of Corollary 34)], it is shown that the complexity of isomorphism between separable
Banach spaces is complete analytic. And as two Banach spaces are linearly isomor-
phic if and only if the underlying additive topological groups are isomorphic, the
same holds for isomorphism of Polish groups.

3.1. The reduction. We begin by first showing how to assign compact metrizable
structures as complete invariants and will subsequently verify that this assignment
may be done in a sufficiently constructive manner in order to be Borel.

3.1.1. Locally compact groups. The case of locally compact groups is essentially
trivial. First of all, every compactPolish groupG is canonically a compactmetrizable
structure, by viewing G as the tuple (G,MultG), where

MultG = {(g,f, h) ∈ G3 | gf = h}
is the graph of multiplication in G . In this way, isomorphisms of compact groupsG
andH are simply isomorphisms of the corresponding compactmetrizable structures
(G,MultG ) and (H,MultH ).
Now, suppose instead that G is a locally compact noncompact Polish group and
let MG denote the Alexandrov one-point compactification G∗ = G ∪ {∗MG}. In
this case, MultG is no longer compact inM 3G , so instead we consider its closure

RMG = MultG
M 3G .

Observe that, sinceMultG is closed inG3, we have thatMultG = RMG∩G3. It is now
easily seen that the structureMG = (MG,RMG , ∗MG ) is a complete invariant forG ,
i.e., that two locally compact noncompact Polish groups G and H are isomorphic
if and only if their associated structures are homeomorphically isomorphic.
Indeed, supposeϕ : G → H is a topological group isomorphism. Thenϕ extends
to a homeomorphism G∗ → H ∗ mapping ∗MG to ∗MH and RMG to RMH . So also
MG andMH are isomorphic.
Conversely, if MG and MH are isomorphic via some homeomorphism
ϕ : MG → MH , then φ maps ∗MG to ∗MH and thus maps G = MG \ {∗MG}
to H =MH \ {∗MH}. Since also ϕ maps RMG to RMH and MultG = RMG ∩ G3,
MultH = RMH ∩ H 3, we find that ϕ maps MultG to MultH and thus is an
isomorphism of topological groups.
As we have restricted ourselves to relational languages,MG = (MG,RMG , ∗MG )
is strictly speaking not a compactmetrizable structure. But this can easily be repaired
simply by replacing the constant ∗MG be a unary predicate holding exactly at this
single pont.

3.1.2. Roelcke precompact groups. Every topological group comes equippedwith
several natural uniform structures [12], including the left, right, two-sided (or upper,
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or bilateral), and the Roelcke (or lower) group uniformities. TheRoelcke uniformity
is that generated by entourages of the form

{(g, h) ∈ G2 | h ∈ VgV}
as V varies over symmetric identity neighborhoods. Alternatively, if d is any
compatible left-invariant metric on G , then

d∧(g, h) = inf
f∈G
max{d (f, g), d (f−1, h−1)}

is a compatible metric for the Roelcke uniformity. The Roelcke precompact groups
are precisely those groups whose completions with respect to this latter uniformity
are compact. Equivalently, these are the groups, G , for which, given any open
identity neighborhood V , there is a finite F ⊆ G so that G = VFV . Similarly, if G
is metrizable, it is Roelcke precompact if and only if d∧ is totally bounded on G .
Now, for a Roelcke precompact Polish group G , letMG be the completion of G

with respect to the Roelcke uniformity and let, as before,RMG = MultG
M 3G denotes

the closure in MG of the graph of the group multiplication. So MG is a compact
metrizable space and RMG ⊆M 3G a closed subset. SetMG = (MG,RMG ).
Now, if ϕ : G → H is a topological group isomorphism, it is then by definition
a homeomorphism and moreover induces a bijection between symmetric, open,
identity neighborhoods. By the description of the Roelcke uniformity above, it is
therefore a bijection between entourages of the Roelcke uniformity, i.e., a uniform
homeomorphism.
As such, if G and H are Roelcke precompact, ϕ extends uniquely to a homeo-
morphism ϕ : MG →MH , and asϕ3 : M 3G →M 3H maps the graph of multiplication
in G surjectively to the graph of multiplication in H , it extends to a map between
their respective closures, namely it maps RMG onto RMH , and soMG

∼=MH .
Conversely, suppose � :MG → MH is a homeomorphic isomorphism. Letting
G ′ = �[G ] ⊆ MH , we see that the set MultG′ = �3[MultG ] defines the graph of a
group multiplication on G ′. Also, as MultG = RMG ∩G3, we have

MultG′ = �3[MultG ] = RMH ∩ (G ′)3.

Moreover, as� is a homeomorphism, the topologyG ′ inherits fromMH is the same
as the one induced by G via �, and so makes G ′ into a Polish topological group,
and isomorphic to G as such.
As G is a Polish group, it must be G	 and dense inMG , whence also G ′ is dense
G	 in MH . Similarly, H dense G	 in MH . Therefore, H ∩ G ′ is comeagre in MH ,
and in both G ′ andH as well.
We claim that, for elements f, h ∈ H ∩ G ′, the product hf−1 is independent of
whether it is calculated in H or in G ′. To see this, let x ∈ H and y ∈ G ′ be the
two results of these calculations performed, respectively, in H and in G ′, i.e., so
that (x,f, h) ∈ MultH , while (y,f, h) ∈ MultG′ . It follows that both (x,f, h) ∈
MultH ⊆ RMH and (y,f, h) ∈ MultG′ ⊆ RMH . As RMH is the closure of MultH ,
there are thus tuples (kn, fn, hn) ∈ MultH converging to (y,f, h), i.e., kn → y,
fn → f and hn → h. However, from (kn, fn, hn) ∈MultH , we see that kn = hnf−1

n

as calculated inH . So, by the continuity of the group operations inH , we have that
kn = hnf−1

n → x, i.e., x = y.
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It follows that the intersectionH∩G ′ is closed under the operation (f, h) �→ hf−1

and so, being nonempty, is both a subgroup ofH and a subgroup of G ′. But, since
it is a comeagre subgroup, all of its cosets in H and in G ′ must be comeagre too,
which means that there can only be one coset, i.e., H = H ∩ G ′ = G ′. Therefore,
�[G ] = G ′ = H , and so � � G is a topological group isomorphism between G
andH .
Summing up, we arrive at the following.

Proposition 3.2. For a Roelcke precompact Polish group G , letMG be the com-

pletion of G in the Roelcke uniformity and RMG = MultG
M 3G denote the closure in

MG of the graph of the group multiplication on G .
Then two Roelcke precompact Polish groups G and H are isomorphic as topolo-
gical groups if and only if the compact metrizable structuresMG = (MG,RMG ) and
MH = (MH,RMH ) are homeomorphically isomorphic.

3.2. Definability of the reduction. Our goal in this section is now to show that
the reductions described above may be made in a Borel manner, i.e., that they
correspond to Borel reductions from appropriate standard Borel spaces of Pol-
ish groups to the space KL of compact metrizable structures over a countable
language L.
3.2.1. Parametrisations of Polish groups. Choose a universal Polish groupG such
as Iso(U) or Homeo(Q), i.e., containing every Polish group, up to isomorphism, as
a closed subgroup. Fix also a compatible, left-invariant metric d on G of diameter
1. As is well-known, the family GRP of closed subgroups of G is a Borel subset
of the Effros–Borel space F (G) of closed subsets of G, that is, equipped with the
standard Borel structure generated by the sets {F ∈ F (G) | F ∩ U �= ∅}, where U
varies over open subsets of G. So GRP is a standard Borel space parametrizing the
family of all Polish groups.
We note that as the elements of GRP inherit the group operation and metric
from G, both metric properties and group-theoretic properties of elements of GRP
may be described in a uniform, Borel manner. For example, we may show that the
classes of compact CG, locally compact LCG and Roelcke precompact RPC are
Borel subsets of GRP.
For this, we choose a sequence (sn)n≥0 of Kuratowski–Ryll-Nardzewski selectors,
that is, Borel functions sn : F (G)→ G so that, for nonempty F ∈ F (G), {sn(F )} is
a dense subset of F as in [9] Theorem 12.3.
Then G ∈ GRP is compact if and only if the metric space (G, d ) is totally
bounded, i.e., exactly when

∀ε ∈ Q+ ∃n ∀k ∃i � n d (sk(G), si (G)) < ε.
Similarly, G is locally compact if and only if

∃	 ∈ Q+ ∀ε ∈ Q+ ∃n ∀k (d (sk(G), 1) < 	 ⇒ ∃i � n d (sk(G), si(G)) < ε
)
.

Finally, G is Roelcke precompact if and only if the corresponding Roelcke metric

dG∧ (f, g) = inf
h∈G
max{d (f, h), d (h−1, g−1)}

is totally bounded on G , i.e., if
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∀ε ∈ Q+ ∃n ∀k ∃i � n ∃j (d (sk(G), sj(G)) < ε & d (sj(G)−1, si(G)−1) < ε).
This shows that CG, LCG, and RPC are all three Borel in GRP.

3.2.2. Definability of compatible metrics. Observe that, both for locally com-
pact noncompact and Roelcke precompact Polish groups, the universeMG of the
associated compact metrizable structure is the completion of G with respect to a
compatible metric for the Alexandrov, respectively, Roelcke compactification. We
now verify that such metrics can be computed in a Borel manner from G .

Lemma 3.3. ForG ∈ LCG\CG, respectively,G ∈ RPC, we may choose a compat-
ible metric dG∗ on the Alexandrov compactification, respectively, a compatible metric
dG∧ on the Roelcke completion, in such a way that, for n,m, k ∈ N, the maps

dG∗ (sn(G), sk(G)), d
G
∗ (sn(G)sm(G), sk(G)), d

G
∗ (∗, sk(G)),

and
dG∧ (sn(G), sk(G)), d

G
∧ (sn(G)sm(G), sk(G))

are all Borel in the variable G .

Proof. Consider first G ∈ LCG\CG. Let kG � 1 be the minimal integer so that
VG = {g ∈ G | d (g, 1) < 1

kG
} is relatively compact in G . We define a compatible

left-invariant proper metric ∂G on G by setting

∂G(f, g) = inf

(
n∑
i=1

w(xi) | g = fx1x2 . . . xn & xi ∈ VG ∪ {sm(G)}m
)
,

where w(x) = d (x, 1) for x ∈ VG and w(x) = m, where m is minimal such that
x = sm(G) otherwise.
We may then apply the construction in [11] to obtain a compatible metric dG∗ on
the Alexandrov compactification G ∪ {∗}. Concretely, let �G(g) = 1

1+∂G (g,1) and set

dG∗ (f, g) = min{∂G(f, g), �G (f) + �G(g)}
and dG∗ (∗, g) = �G(g). It is now straightforward to check that the appropriate
functions have analytic graphs and hence are all Borel measurable.
For G ∈ RPC, we immediately see that, e.g.,
dG∧ (sn(G), sk(G)) = inf

m∈N

max
{
d (sn(G), sm(G)), d (sm(G)−1, sk(G)−1)

}
,

is Borel in the variable G . �
3.2.3. Definability of the mapping. Recall that, if (X, d ) is a metric space of
diameter � 1 with a dense sequence (xn)n , then the map φ : x �→ (d (x, xn))∞n=1
defines a homeomorphic embedding of X into the Hilbert cube [0, 1]N. Moreover,
φ is uniformly continuous with respect to the unique compatible uniformity on
the compact space [0, 1]N, e.g., induced by the metric ∂(a, b) =

∑
n

|an−bn |
2n . It

therefore follows that, if (X, d ) is totally bounded, then φ extends continuously to
the completion (X, d ) and thus maps (X, d ) homeomorphically onto the closure
φ[X ] inside [0, 1]N.
Let the language L consist of a ternary relation symbol R. We must now show
how to construct a Borel map RPC→ KL that to each Roelcke precompact closed
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subgroup of G computes a homeomorphically isomorphic copy of the invariant
MG = (MG,RMG ) defined in the preceeding section. For this, we use themetric dG∧
given by Lemma 3.3. Indeed, for all n,m, define Borel functions φn, φn,m : RPC →
[0, 1]N by

φn(G) =
(
dG∧
(
sn(G), sk(G)

))∞
k=1, φn,m(G) =

(
dG∧
(
sn(G)sm(G), sk(G)

))∞
k=1.

Then φn(G) is simply the image in [0, 1]N of the point sn(G) under the embedding
φ defined by the dense sequence (sk(G))k in G . Similarly, φn,m(G) is the image of
sn(G)sm(G). We set

MG =
{
φn(G) ∈ [0, 1]N

∣∣ n ∈ N
}

and observe that, since the conditions MG ∩ U �= ∅ are Borel in G for all open
U ⊆ [0, 1]N, the map G �→MG is Borel. Similarly, setting

RMG =
{(
φn(G), φm(G), φn,m(G)

) ∈ ([0, 1]N)3 ∣∣ n,m ∈ N
}
,

G �→ RMG is Borel.
Now,MG is clearly homeomorphic to the Roelcke completion ofG , while, as the
set of (sn(G), sm(G), sn(G)sm(G)) is dense in MultG , the relation RMG is similarly
the closure in MG of the image of the graph of the multiplication. It follows that
MG = (MG,RMG ) ∈ KL is homeomorphically isomorphic to the invariant defined
in the preceeding section.
For the case of locally compact noncompact G , our language L now has an
additional symbol ∗ for the point at infinity in the Alexandrov compactification,
which we may take to be a unary predicate P holding exactly at this point. The set
MG and the relation RMG are defined as in the Roelcke precompact case, except
that we use dG∗ in place of the metric d

G
∧ . Now to see that G �→ PMG is Borel, we

simply note that

PMG ∩
∏
k

]αk, 
k[ �= ∅ ⇔ ∀k αk < dG∗ (∗, sk(G)) < 
k,

for any αk, 
k ∈ R.
These computations conclude the proof of Theorem 3.1.

§4. Reducing a complete Polish group action. In the proof of Proposition 2.1,
we have seen that for every countable language L, the relation of homeomorphic
isomorphism of compact L-structures is reducible to the orbit equivalence relation
induced by a Polish group action. Conversely, by the main result of [19], even for
L = ∅, the relation of homeomorphic isomorphism is complete for the class of
all orbit equivalence relations. The argument there proceeds as follows: first it is
established that for a certainL, homeomorphic isomorphism of compact metrizable
L-structures is a complete orbit equivalence relation. Then it is seen that this relation
reduces to that of homeomorphism between compact metrizable spaces without any
additional structure.
There, this first step is achieved by representing the affine structure of a compact,
convex subset ofQ as a compact metrizable structure. Thus, the completeness of the
homeomorphic isomorphism relation might appear to depend on the completeness
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of the affine homeomorphism relation of these convex sets, established in [15], or
on the corresponding result about the isometry of separable complete metric spaces
[7] from which it follows, in turn.
In this section, we adapt the arguments of Section 3 to produce a reduction
from a complete orbit equivalence relation to homeomorphic isomorphism between
compact metrizable structures that obviates the reliance on the completeness of
these other relations. And in fact, the completeness of both these relations, as well
as others like the isomorphism of separable C ∗-algebras [15] can now be seen as
consequences of this fact for the homeomorphisms of compacta.
For this, recall that the prototypical example of a complete orbit equivalence
relation was given in [3]: it is the orbit equivalence relation of a universal Polish
group, G, acting by left translation on the space of its closed subsets, F (G). Let us
take G to be Iso(U)—this choice is not necessary for such a reduction, but it does
simplify the language L of the resulting structures. Specifically, let L be a language
with two binary relations and one unary predicate.

Proposition 4.1. The orbit equivalence relation, Egrp, of Iso(U) � F (Iso(U)) is
reducible to homeomorphic isomorphism of compact metrizable L-structures, for L a
language containing two binary relation symbols and a unary predicate symbol.

Proof. In [16], it is shown that G = Iso(U) is topologically 2-generated, i.e.,
there are a, b ∈ G so that a and b generate a dense subgroup, 〈a, b〉. Let Ra =
{(g, ga) ∈ G2 | g ∈ G} be the graph of right multiplication by a, and likewise let
Rb be the graph of right multiplication by b. Recall that the isometry group of the
Urysohn sphere, Iso(U1), is also a universal Polish group, and moreover is Roelcke
precompact [14, 17]. Fix a topological group embedding G ↪→ Iso(U1), and let

X = Iso(U1)
∧
be the Roelcke compactification. IdentifyG with its embedded copy

in X . Then the map F (G) � A �→ (G, Ra,Rb,A) is a reduction, where the closures
are taken in X and X 2.
For suppose A,B ∈ F (G) with A Egrp B. Then there is an f ∈ G so that
fA = B. The left multiplication action of Iso(U1) on itself extends to an action
Iso(U1) � X , and so viewing f as an element of Iso(U1), f extends to a home-
omorphism �f : X → X . As �f [G] = G, its closure is also fixed set-wise by �f .
Likewise, as fA = B, �f [A] = B . Moreover,

(�f × �f)[Ra ] = {(fg,fga) ∈ G2 | g ∈ G} = {(g, ga) ∈ G2 | f−1g ∈ G} = Ra.
Therefore also (�f × �f)[Ra ] = Ra and the same holds, mutatis mutandis,
for Rb . Therefore, �f � G is a homeomorphic isomorphism (G, Ra,Rb,A) →
(G, Ra,Rb, B).
On the other hand, suppose � is a homeomorphic isomorphism (G, Ra,Rb,A)→
(G, Ra,Rb, B). For a binary relation, R, let R−1 = {(x, y) | (y, x) ∈ R}. Then

Ra−1 = {(g, ga−1) ∈ G2 | g ∈ G} = {(ga, g) ∈ G2 | g ∈ G} = R−1
a ,

and so Ra−1 = R
−1
a =

(
Ra
)−1
. Thus (� × �)[Ra−1 ] = Ra−1 , and likewise for

b−1. Also, note that for any g ∈ G, G2 ∩ Rg = Rg , as Rg is closed in G2. Let
C ′ = �−1[G] ∩ G. As G is comeagre in its closure, C ′ is comeagre in G, and
therefore so is C =

⋂
w∈〈a,b〉 C

′w. Observe that Cw = C for all w ∈ 〈a, b〉.
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Suppose g ∈ C and s ∈ {a, b, a−1, b−1}. Then (�(g), �(gs)) = (� × �)(g, gs) ∈
(� × �)[Rs ] = Rs . Moreover,

�(g) ∈ �[C ] ⊆ G

and
�(gs) ∈ �[Cs] = �[C ] ⊆ G.

So for all g ∈ C and s ∈ {a, b, a−1, b−1}, (�(g), �(gs)) ∈ Rs ∩ G2 = Rs , and so
�(gs) = �(g)s . As Cw = C for all w ∈ 〈a, b〉, by induction on length, �(gw) =
�(g)w for all such w.
Now fix g ∈ C , and let h ∈ G be arbitrary. Take (wn)n∈N ⊆ 〈a, b〉 with wn → h.
Then

�(gh) = lim
n
�(gwn) = lim

n
�(g)wn = �(g)h,

where the first and third equalities are consequences of the continuity of � and of
multiplication in G.
Pick any g ∈ C . Then as �(g) ∈ G, and by the above, �(1G) = �(gg−1) =
�(g)g−1. So �(1G) is a product of two elements of G, and so in G itself. Next fix
h ∈ G, and let (gn)n∈N be a sequence from C converging to 1G. Then as before,

�(h) = �(1Gh) = lim
n
�(gnh) = lim

n
�(gn)h = �(1G)h.

Therefore, on G, � agrees with the left translation by �(1), and so it must be the
unique extension of this map. In particular, �[G] = G, and so �(1)A = �[A] =
�[A ∩G] = B ∩G = B. So A Egrp B. �

§5. Polish heaps. As we are interested in translating subsets of Polish groups, it
is useful to investigate the concept of abstract cosets (see [2,4] for some early papers
on the subject), that is, structures in which left and right translations become actual
automorphisms.

Definition 5.1. A heap (a.k.a. groudor abstract coset) is a pair (H, [ ]) consisting
of a nonempty set H and a ternary operation [ ] : H 3 → H satisfying, for all
a, b, c, d, e ∈ H ,

[[a, b, c], d, e] = [a, b, [c, d, e]] (para-associativity)

and
b = [a, a, b] = [b, a, a] (identity law).

Heaps are best understood as the remaining structure of a group when we have
suppressed the knowledge of the identity. Concretely, there is a correspondence
between heaps with a distinguished element and groups given as follows.
If (H, ·) is a group, then [x, y, z] = xy−1z produces a heap operation on H .
Conversely, if (H, [ ]) is a heap and e ∈ H is fixed, then x · y = [x, e, y] defines
a group operation on H , with respect to which e is the identity and the inverse is
given by x−1 = [e, x, e]. Moreover, these constructions are inverses of each other.
As is easy to see, the subheaps of (H, [ ]), that is nonempty subsets closed under
the heap operation, are simply left or, equivalently, right-cosets of subgroups of the
group (H, ·).

https://doi.org/10.1017/jsl.2017.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.39


COMPACTMETRIZABLE STRUCTURES AND CLASSIFICATION PROBLEMS 177

Note that, ifH is a heap and · and ∗ are the two group operations x ·y = [x, e, y]
and x ∗ y = [x, a, y] corresponding to the choices e and a of identity element and
a−1 = [e, a, e] denotes the inverse of a in (H, ·), then the para-associativity and
identity laws give us

x ∗ y = [x, a, y] = [x, a, [e, e, y]] = [[x, a, e], e, y] = [[[x, e, e], a, e], e, y]
= [[x, e, [e, a, e]], e, y] = x · a−1 · y.

It follows from this that the mappings

�a· : x �→ a · x and �·a : x �→ x · a
are both isomorphisms between the groups (H, ·) and (H, ∗).
With this, we can also describe the isomorphisms between two heaps (H, [ ])
and (G, [ ]). Indeed, letting (H, ·) and (G, �) be the groups corresponding to some
choices of identity, every isomorphism α : (H, [ ])→ (G, [ ]) can be written as

α = �a� ◦ 
 = ��b ◦ 	 = � ◦ �c· = � ◦ �·d ,
for some a, b ∈ G , c, d ∈ H and group isomorphisms 
, �, 	, � : (H, ·)→ (G, �).
A topological heap is simply a heap (H, [ ]) in whichH is a topological space and
the heap operation is continuous. Observe that, in this case, for any choice of e ∈ H ,
the group operation and the inverse operation defined above are both continuous
and so (H, ·) is a topological group. Conversely, a topological group gives rise to a
topological heap.
Anotherway of looking at heaps is by considering the graphG[ ] of the heap opera-
tion. That is, if (H, [ ]) is a heap andwe consider the group operations corresponding
to some choice of identity element e ∈ H , then

G[ ] = {(x, y, z, u) | [x, y, z] = u}
= {(g, ga, gb, ga−1b) | g, a, b ∈ H}
= {(g, ag, bg, a−1bg) | g, a, b ∈ H}.

For example, to see the equality of the last two sets, note that, for g, a, b ∈ H ,
(g, ga, gb, ga−1b) = (g, (gag−1)g, (gbg−1)g, (gag−1)−1(gbg−1)g).

Lemma 5.2. Suppose G and H are Polish heaps homeomorphically and densely
embedded in Polish spaces X and Y , respectively, and that G[ ]G and G[ ]H are the
closures of the graphs of the heap operations inside X 4 and Y 4, respectively. Assume
that

φ : (X,G[ ]G )→ (Y,G[ ]H )
is a homeomorphic isomorphism. Then φ maps G onto H and thus restricts to an
isomorphism of topological heaps.

Proof. Observe first that, being Polish,G andH are denseG	 and thus comeagre
subsets of X and Y , respectively. It follows that also φ−1(H ) is comeagre in X and
thus that φ[G ]∩H �= ∅. Note also that, as the heap operations are continuous, their
graphs are closed subsets of G4 andH 4, respectively, whence G[ ]G ∩G4 = G[ ]G and
G[ ]H ∩H 4 = G[ ]H .
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So fix e ∈ G ∩ φ−1(H ). We will view G and H as Polish topological groups
with e and φ(e) as identities, that is, so that the group operations are given by
a ·G b = [a, e, b]G and x ·H y = [x, φ(e), y]H , respectively.
Observe first that, for all x, y, z ∈ G with x, y, z, [x, y, z] ∈ φ−1(H ), we have
(x, y, z, [x, y, z]) ∈ G[ ]G and thus (φ(x), φ(y), φ(z), φ([x, y, z])) ∈ G[ ]H ∩ H 4 =
G[ ]H , whence

φ([x, y, z]) = [φ(x), φ(y), φ(z)].

Observe now that, for a, b ∈ G , the set of g ∈ G so that g, ga, gb, [g, a, b] =
ga−1b ∈ φ−1(H ) is comeagre, asG ∩φ−1(H ) is comeagre inG and right translation
by a, b and a−1b are homeomorphisms of G . Therefore, given a, b ∈ G ∩φ−1(H ),
we can find a sequence gn ∈ G converging to e so that gn, gna, gnb, [gn, a, b] ∈
φ−1(H ) for all n. It thus follows by continuity of the heap operations in G and H
and by continuity of φ that

φ(a−1b) = φ([e, a, b])
= limφ([gn, a, b])

= lim[φ(gn), φ(a), φ(b)]

= [φ(e), φ(a), φ(b)]

= φ(a)−1φ(b).

In other words, if a, b ∈ G ∩ φ−1(H ), then φ(a−1b) = φ(a)−1φ(b) ∈ H and so
a−1b ∈ G ∩ φ−1(H ). In particular, as G ∩ φ−1(H ) is comeagre in G ,

G =
(
G ∩ φ−1(H ))−1 · (G ∩ φ−1(H )) ⊆ G ∩ φ−1(H ),

so φ(G) ⊆ H and φ : G → H is a homomorphism. It follows that φ[G ] is a
comeagre subgroup ofH , which thus can have only one coset inH , i.e., φ[G ] = H .
Again, as φ maps G[ ]G ∩ G4 = G[ ]G to G[ ]H ∩ H 4 = G[ ]H , we see that it is an
isomorphism of the topological heaps (G, [ ]G ) and (H, [ ]H ). �
Now, if G is a Polish heap and · and ∗ are the group operations corresponding
to different choices e and a of identity, then (G, ·) and (G, ∗) are isomorphic as
topological groups. Moreover, an isomorphism is given by the map �a· : x �→ a · x.
Now, if we equip each of (G, ·) and (G, ∗) with their Roelcke uniformities, then,
since left-multiplication by the · inverse a−1 of a is a uniform homeomorphism of
(G, ·), we see that

(G, ·) �a−1·−→ (G, ·) �a·−→ (G, ∗)
is a series of uniformhomeomorphisms composing to the identity idG onG . In other
words, theRoelcke uniformity onG (andnot just its uniformhomeomorphism type)
is independent of the choice of group identity.We call this the Roelcke uniformity of
the heapG . In particular,G is said to beRoelcke precompact if some or equivalently
all induced groups are Roelcke precompact.
Now, if G is a Roelcke precompact Polish heap, we let G denote its Roelcke
completion. Also, let G[ ]G denote the closure of the graph of the heap operation
inside G

4
.
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Proposition 5.3. Let G and H be Roelcke precompact Polish heaps. Then G
and H are isomorphic if and only if the compact metrizable structures (G,G[ ]G ) and
(H,G[ ]H ) are homeomorphically isomorphic.
Moreover, every homeomorphic isomorphism between (G,G[ ]G ) and (H,G[ ]H )
extends an isomorphism of the heaps G andH .

Proof. By the preceding lemma, it suffices to note that every topological isomor-
phism betweenG andH extends to a homeomorphic isomorphism of (G,G[ ]G ) and
(H,G[ ]H ). But this is trivial since an isomorphism of G and H will be a uniform
homeomorphism with respect to the Roelcke uniformities. �

§6. Non-Archimedean groups. Our next step is to consider the non-Archimedean
versions of the above classes of groups, i.e., those possessing a neighborhood basis
at the identity consisting of open subgroups. As it turns out, when restricting to
uncountable groups, the Alexandrov, respectively, the Roelcke compactifications
will be homeomorphic to Cantor space 2N, whence we obtain a better upper bound
for the complexity of isomorphism.
First, it is trivial to see that the Alexandrov compactification of an uncountable
non-Archimedean locally compact Polish group is perfect and zero-dimensional,
whence, by a theorem of L. E. J. Brouwer, homeomorphic to Cantor space. Simi-
larly, ifG is a non-Archimedean Polish group, thenG has a compatible left-invariant
metricd taking values only in {0}∪{ 1n}n∈N, whereby theRoelckemetricd∧ also takes
values in the same set. As { 1n}n∈N is discrete, it follows that the Roelcke completion
of G has a compatible metric whose positive values lie in the same set, whereby the
completionmust be zero-dimensional. Thus, by the theoremofBrouwer, ifG isRoel-
cke precompact and non-Archimedean, the Roelcke completion is homeomorphic
to Cantor space.
Second, ifM = (M, (RM)R∈L) is a compact metrizable L-structure so thatM is
homeomorphic to 2N, let

A = (clopen(M ), 0A, 1A,¬A,∧A,∨A, (RA)R∈L)

be the countable first-order structure, whose universe is the algebra, clopen(M ), of
clopen subsets ofM and where 0A, 1A,¬A,∧A,∨A are, respectively, {∅}, {M} and
the graphs of the functions: complementation, intersection and union. Moreover,
for each R ∈ L,

RA = {(a1, a2, . . . , an) ∈ clopen(M )n | RM ∩ (a1 × · · · × an) = ∅},
which simply codes the complement of the closed set RM in M . Thus, as M is
homeomorphic to Cantor space, the algebra of clopen set is a countable atomless
Boolean algebra and so, by Stone duality, we see that A is a complete invariant
forM, that is, that two compact metrizable structuresM andM′ with universes
homeomorphic to Cantor space are homeomorphically isomorphic if and only if
the associated countable structures A and A′ are isomorphic.

Lemma 6.1. Assume L is a countable relational language and define the expanded
language L′ = L ∪ {0, 1,¬,∧,∨}. Let also CL = {(M, (RM)R∈L) ∈ KL |M ∼= 2N}
be the Borel set of compact metrizable L-structures with universe homeomorphic to
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2N. Then there is a Borel map

M ∈ CL �→ AM ∈Mod(L′),

so thatM ∼=M′ if and only if AM ∼= AM′ .

Proof. Fix a countable basis {Un}n∈N for the topology onQ closed under finite
intersections and unions. Observe first that the collection C ⊆ K(Q) consisting of
compact subsets M homeomorphic to Cantor space is G	 . Also, if M ∈ C and
C ⊆M is a clopen subset, then, since the basis is closed under finite unions, there
are p, q so that C = M ∩ Up and X\C = M ∩ Uq . Again, for fixed p, q, the
conditionsM ∩Up ∩ Uq = ∅ andM ⊆ Up ∪ Uq are Borel in the variableM ∈ C.
It follows that the condition

M ∩Up is clopen inM
is also Borel inM ∈ C, whereby the same holds for the condition
M ∩Up is clopen inM & M ∩Uq is clopen inM & M ∩Up =M ∩Uq.

It follows that the set of p so thatM ∩Up is clopen andM ∩Up �=M ∩Uq for all
q < p can be computed in a Borel manner fromM . Identifying clopen(M ) with the
set these p, we obtain a representation of the clopen algebra in which the algebra
operations are similarly Borel inM .
In other words, the complete invariant

A = (clopen(M ), 0A, 1A,¬A,∧A,∨A, (RA)R∈L)

has an isomorphic realisation with universe included in N that can be computed
in a Borel manner fromM ∈ CL. Reenumerating the universe as N, we obtain a
complete invariant AM ∈Mod(L′). �
Separating into the discrete and uncountable case, we arrive at the following
conclusion.

Proposition 6.2. The relation of isomorphism between locally compact or Roelcke
precompact non-ArchimedeanPolish groups is Borel reducible to isomorphism between
countable structures, i.e., to the complete orbit equivalence relation ES∞ induced by
an action of S∞.

As noted in the introduction, Proposition 6.2 has been established independently
in [10], where it is also shown that the relation of topological group isomorphism
between compact non-Archimedian Polish groups (i.e., metrizable profinite groups)
is Borel bireducible with ES∞ .

§7. An application to model theory. The Borel reducibility theory for equivalence
relations has played an important role in understanding the isomorphism relation
between countable structures in a countable language. We note here, however, a
consequence for the bi-interpretability relation for�-categorical structures.We recall
that the automorphismgroupof any�-categorical structure isRoelcke-precompact,
and by [1], two such structures are bi-interpretable if and only if their automorphism
groups are isomorphic as topological groups. Combining this with the results of the
last section gives,

https://doi.org/10.1017/jsl.2017.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.39


COMPACTMETRIZABLE STRUCTURES AND CLASSIFICATION PROBLEMS 181

Proposition 7.1. The bi-interpretability relation for �-categorical structures is
classifiable by countable structures.
To make sense of this proposition, we first let L̂ be a language with infinitely
many predicate symbols of each arity. The space Mod(L̂) of countable structures
in the language L̂ we view as parameterizing all countable structures up to bi-
interpretability, by associating a structure M = {a1, a2, . . . } in a language L
with the structure in Mod(L̂) obtained by taking any arity-preserving injection
j : L → L̂ and letting R(k1, . . . , kn) hold for R ∈ L̂ if and only if R ∈ j[L] and
M |= j−1(R)(ak1 , . . . , akn ).
Second, we let C ⊆Mod(L̂) consist of the�-categorical structures, and note that
this set is Borel. For by the theorem of Engeler, Ryll-Nardzewski, and Svenonius,
M ∈ C if and only if M realizes only finitely many n-types for each n. Let
Fn = {ϕ | ϕ is an L̂-formula in n free variables}, and let Sn = 2Fn , with compatible
metric d . For ā ∈ �n, let fā : Mod(L̂)→ Sn be

fā(M )(ϕ) =

{
1 |M |= ϕ(ā),
0 |M �|= ϕ(ā),

and as Mod(ϕ, ā) = {M ∈ Mod(L̂) | M |= ϕ(ā)} is Borel for any tuple ā and
L̂-formula (in fact, L�1�-formula), ϕ, the functions fā are Borel-measurable.
Then

M ∈ C iff ∀n,∃m,∀ā, b̄ ∈ �n,
[
fā(M ) = fb̄(M ) ∨ d (fā(M ), fb̄(M )) �

1
m

]
,

so C is Borel.
Let ∼=, ≡, and ≈ denote, respectively, the relations of isomorphism, elementary
equivalence, and bi-interpretability on Mod(L̂). Observe that C is an invariant set
for each relation.

Proof of Proposition 7.1. First, we note that ≡ is a smooth equivalence rela-
tion on Mod(L̂). (The collection {Mod(�) | � is a sentence} is a countable Borel
separating family.) In particular, ≡, and so ≡� C, is a Borel equivalence relation
(where C ⊆ Mod(L̂) is the set of �-categorical structures, as in the preceding
discussion). But ≡� C is ∼=� C, or in other words, the action of S∞ that induces
the isomorphism relation has a Borel orbit equivalence relation. Therefore, by
[3] Theorem 7.1.2, the function C → F (S∞) taking M �→ Stab(M ) is Borel-
measurable. But Stab(M ) = Aut(M ), so this function is a reduction to isomorphism
of non-Archimedean Roelcke-precompact Polish groups, and hence classifiable by
countable structures. �

§8. Comparing classes of structures. As it turns out, the viewpoint of abstract
topological or metric structures is useful when comparing complexities of nat-
urally occurring classification problems. So let us consider some of the various
types of structures that appear in the literature. For this, fix a countable relational
language L.
First, a Polish metric L-structure is a tupleM = (M,d, (RM)R∈L), where (M,d )
is a separable, complete metric space and each RM is a closed subset ofMα(R). In
case that (M,d ) is not only separable and complete, but actually compact, we say
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thatM is a compact metric L-structure. Similarly, if d is a proper metric or if M
is locally compact,M is called a proper metric L-structure, respectively, a locally
compact metric L-structure.
We also define the relations of isometric isomorphism, bi-Lipschitz isomorphism,
uniformly homeomorphic isomorphism and homeomorphic isomorphism between
Polish metric structures. Namely, an isomorphism φ : M → N between the under-
lying discrete structures (M, (RM)R∈L) and (N, (RN )R∈L) will be an isometric,
bi-Lipschitz, uniformly homeomorphic or homeomorphic isomorphism if, respec-
tively, φ and φ−1 are isometries, Lipschitz, uniformly continuous or continuous.
Evidently, any homeomorphic isomorphism between compact metric structures is
automatically a uniformly homeomorphic isomorphism. In general, however, all
these notions differ.
We may parametrize Polish metric structures by identifying them with subsets of
the Urysohn metric space equipped with a set of closed relations. As all the classes
of spaces are Borel, this provides a Borel parametrisation of each of these classes of
structures. Moreover, except possibly for the case of homeomorphic isomorphism
of Polish metric structures, this gives rise to an analytic equivalence relation. For
example, to see that the relation of uniformly homeomorphic isomorphism of Polish
metric structures is analytic, observe that two Polish metric L-structuresM andN
are uniformly homeomorphically isomorphic if and only if

∃(xn) ∈M ∃(yn) ∈ N
(
{xn} =M & {yn} = N &

∀R ∈ L RM = RM ∩ {xn}α(R) & RN = RN ∩ {yn}α(R)
& ∀ε > 0 ∃	 > 0 (d (xi , xj) < 	 → d (yi , yj) < ε)
& ∀ε > 0 ∃	 > 0 (d (yi , yj) < 	 → d (xi , xj) < ε)
& ∀R ∈ L ((xi1 , . . . , xiα(R) ) ∈ RM ↔ (yi1 , . . . , yiα(R) ) ∈ RM)).

The only relation standing out is homeomorphic isomorphism between Polish
metric structures of which the exact complexity is still unknown.
Let us also mention that the choice of considering only relational languages is
no real restriction. Indeed, if F is an n-ary function symbol in L and FM is an
interpretation of F as a continuous function onM, then we could simply introduce
a symbol for the graph of FM, which is a closed subset of Mn+1. Moreover,
isomorphisms preserving the graphs will also necessarily preserve the functions and
vice versa.
One way of phrasing the statement of Proposition 2.1 is that, for any countableL,
homeomorphic isomorphism between compact L-structures is Borel bi-reducible
with homeomorphism between compact metric spaces (i.e., homeomorphic iso-
morphism of compact structures in the empty language). That is, the imposition of
the additional structure from L does not actually make the corresponding relation
more complicated from the perspective of Borel reducibility. As it turns out, this
same can be said for all of the relations
• homeomorphic isomorphism,
• uniformly homeomorphic isomorphism,
• bi-Lipschitz isomorphism,
• isometric isomorphism,
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when considered between compact metric structures. Moreover, with the possible
exception of homeomorphic isomorphism, this remains true for the class of Polish
metric structures.
Indeed, for isometric isomorphism in class of Polish metric structures, this was
established in [5]. And as bi-Lipschitz isomorphism and uniform homeomorphism
of Polishmetric spaces are both complete analytic equivalence relations [6], the same
is true a posteriori for the corresponding relations for Polish metric L-structures.
Moreover, as any homeomorphism between compact metric spaces is a uniform
homeomorphism, the claim for uniformly homeomorphic isomorphism of compact
metric structures holds by Proposition 2.1.
So it remains to see that this is true for isometry and bi-Lipschitz isomor-
phism of compact metric spaces, a smooth and a complete K� equivalence relation,
respectively.
In the following, we consider a fixed language L = {R1, R2, . . . }, where Rk is
a relation symbol of arity k. Since L has symbols of unbounded arity, isometric
isomorphism of arbitrary compact metric structures is easily reducible to isometric
isomorphism of compact metric L-structures. Also, if (X, d ) is a compact metric
space, we equip each power Xn with the compatible metric d∞ defined by

d∞
(
(x1, . . . , xn), (y1, . . . , yn)

)
.

Theorem 8.1. Isometric isomorphism of compact metric L-structures is smooth.
Proof. For each tuple � = (S1, S2, . . . , Sn) with Sk ⊆ {1, . . . , n}k and every
compact metric structure X = (X, (RX

k )), let

C�(X ) =
{
[d (xi , xj)]i,j�n

∣∣ xi ∈ X & (xs1 , . . . , xsk ) ∈ RX
k ,∀k � n, s ∈ Sk

}
.

Clearly, each C�(X ) is a compact subset of Rn2 , invariant for the isometric
isomorphism type of X .
Conversely, suppose that X = (X, (RX

k )) and Y = (Y, (RY
k )) are two com-

pact metric L-structures so that C�(X ) = C�(Y) for all �. Pick a sequence
(xm)m∈N enumerating a countable dense subset of X so that also the set of tuples
(xs1 , . . . , xsk ) ∈ RX

k is dense in R
X
k for each k.

AsC�(X ) = C�(Y) for all �, for each n, wemayfind an n-tuple, (yn1 , . . . , ynn ) ∈ Yn
with the same distance matrix [d (yni , y

n
j )]i,j as (x1, . . . , xn) so that

(xs1 , . . . , xsk ) ∈ RX
k ⇒ (yns1 , . . . , ynsk ) ∈ RY

k ,

for all k � n and s ∈ {1, . . . , n}k .
Then, by a diagonalization and passing to limits, wemay find an infinite sequence
(y1, y2, . . .) in Y with the same distance matrix as (x1, x2, . . .) and still satisfying

(xs1 , . . . , xsk ) ∈ RX
k ⇒ (ys1 , . . . , ysk ) ∈ RY

k ,

for all k and s ∈ Nk . Extending the map xi �→ yi to the completion determines an
isometric embedding f : X → Y . Moreover, for every k, f maps RX

k into R
Y
k .

A symmetric argument produces an isometric embedding g : Y → X that maps
each RY

k into R
X
k . It thus follows that g ◦ f is an isometric embedding of the

compact metric space X into itself and hence must be surjective. Similarly, for each
k, g ◦ f : RX

k → RX
k is an isometric embedding with respect to the product metric

d∞ on Xn and thus again surjective.
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It therefore follows that f is an isometric isomorphism of X with Y and so the
sequence

(
C�(X )

)
�
is a complete invariant for isometric isomorphism. �

Just as the family of distancematrices corresponding to finite subsets of a compact
metric space is a complete invariant for the isometry type and hence induces a
smooth equivalence relation as shown byM.Gromov (Propositions 3.2 and 3.6 [8]),
Theorem 8.1 demonstrates that the isometric isomorphism type of a compact metric
structure is captured by a slightly modified invariant that accounts for the distance
matrices for finite sets satisfying constraints given by the relational structure.
The relation of bi-Lipschitz isomorphism between compact metric spaces was
shown to be bi-reducible with a complete K� equivalence relation in [13]. In par-
ticular, it is reducible to a K� relation; one sees this by associating, to a given
metric space, a more complicated invariant derived from distance matrices of finite
sets in X . Next we augment this construction in a manner similar to the proof of
Theorem 8.1. Consequently, for any countableL, the relation of bi-Lipschitz isomor-
phism between compact metric L-structures is reducible to a K� , and is therefore
bi-reducible with the complete K� equivalence relation.

Theorem 8.2. The relation of bi-Lipschitz isomorphism between compact metric
L-structures is bi-reducible with the complete K� equivalence relation.
Proof. Since in [13] this was already proved for the empty language L = ∅, it
suffices now to consider the other extreme, namely, when L = {R1, R2, . . .} where
eachRk has arity k.Wemust show that bi-Lipschitz isomorphism between compact
metric L-structures is Borel reducible to aK� equivalence relation. For α > 0, an α-
perturbation of amatrix [aij ] is defined to be amatrix [bij ] so that 1α aij � bij � αaij
for all i, j.
For every tuple � = (Sk, rk, tp,k)p�k�n with Sk ⊆ {1, . . . , n}k and rk, tp,k ∈ Q+,
and every compact metric L-structure X = (X, d, (RX

k )), let D�(X ) denote the
compact set of all n-tuples (x1, . . . , xn) ∈ Xn satisfying
(1) {x1, . . . , xk} is rk-dense in X for all k � n,
(2) (xs1 , . . . , xsk ) ∈ RX

k for all s = (s1, . . . , sk) ∈ Sk , and
(3) the set

{
(xs1 , . . . , xsp )

∣∣ s ∈ Sp ∩ {1, . . . , k}p} is tp,k-dense in RX
p for all

p � k � n (with respect to the d∞ metric).
Let also E�,α(X ) ⊆ Rn×n denote the compact set of all α-perturbations of distance
matrices [d (xi , xj)] of tuples (x1, . . . , xn) ∈ D�(X ).
We claim that two compact metric L-structures X and Y are bi-Lipschitz
isomorphic if and only if

∃c ∈ Q+ ∀�, α E�,α(X ) ⊆ Ec�,cα(Y),
where c� = (Sk, crk, ctp,k)p�k�n. As this relation is essentially K� (see Example (ii)
below Definition 18 [13]), this claim establishes the theorem.
So suppose f : X → Y is a bi-Lipschitz isomorphism with bi-Lipschitz constant
c ∈ Q+. Then it is straightforward to verify that E�,α(X ) ⊆ Ec�,cα(Y) for all tuples
� and α ∈ Q+.
Conversely, suppose that c > 0 is so that

E�,α(X ) ⊆ Ec�,cα(Y),
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for all �,α. Pick a sequence (xm) enumerating a dense subset ofX so that,moreover,
the set of tuples (xs1 , . . . , xsk ) ∈ RX

k is dense in R
X
k for all k. For all k � n, let

Snk =
{
s ∈ {1, . . . , n}k ∣∣ (xs1 , . . . , xsk ) ∈ RX

k

}
.

Fix also rn ∈ Q+ so that {x1, . . . , xn} is rn-dense in X and pick tk,n ∈ Q+ so that
the set {

(xs1 , . . . , xsk )
∣∣ s ∈ {1, . . . , n}k & (xs1 , . . . , xsk ) ∈ RX

k

}
is tk,n-dense in RX

k , but so that they are not
rn
2 -dense, respectively,

tk,n
2 -dense (or, in

case these sets exhaustX or RX
k , we let rn = 0, respectively, tk,n = 0). We note that,

for p � k � n, we have Skp = Snp ∩ {1, . . . , k}p, so

Spp ⊆ Sp+1p ⊆ Sp+2p ⊆ · · · ⊆
⋃
n

Snp = {s ∈ Np | (xs1 , . . . , xsp ) ∈ RX
p }.

Observe also that limn→∞ rn = 0 and limn→∞ tk,n = 0 for all k.
Set �n = (Snk , rk, tp,k)p�k�n and note that (x1, . . . , xn) ∈ D�n (X ) and hence

[d (xi , xj)]i,j�n ∈ E�n,1(X ) ⊆ Ec�n ,c(Y),
for all n.
So let (yn1 , . . . , y

n
n ) be a tuple in Y witnessing that [d (xi , xj)]i,j�n ∈ Ec�n,c(Y),

i.e.,

(1) 1c d (xi , xj) � d (yni , ynj ) � cd (xi , xj) for all i, j � n,
(2) {yn1 , . . . , ynk} is crk-dense in Y for all k � n,
(3) (yns1 , . . . , y

n
sk
) ∈ RY

k for all s ∈ Snk , and
(4) the set

{
(yns1 , . . . , y

n
sp )
∣∣ s ∈ Snp ∩ {1, . . . , k}p} is ctp,k-dense in RY

p for all
p � k � n.

By diagonalization, we may produce an increasing sequence (nl ) so that yk =
liml y

nl
k exists for every k. It then easily follows that

(1) 1c d (xi , xj) � d (yi , yj) � cd (xi , xj) for all i, j,
(2) {y1, . . . , yk} is crk-dense in Y ,
(3) (ys1 , . . . , ysk ) ∈ RY

k whenever (xs1 , . . . , xsk ) ∈ RX
k , and

(4) the set
{
(ys1 , . . . , ysp )

∣∣ s ∈ {1, . . . , k}p & (xs1 , . . . , xsp ) ∈ RX
p

}
is ctp,k-dense

in RY
p for all p � k � n.

Since limk→∞ rk = limk→∞ tp,k = 0 for all p, it follows that (yk) is a dense
sequence in Y and that{

(ys1 , . . . , ysp )
∣∣ (xs1 , . . . , xsp ) ∈ RX

p

}
is dense in RY

p for every p. The map xi �→ yi therefore extends to a bi-Lipschitz
isomorphism betweenX andY with constant c, mapping eachRX

p surjectively onto
RY
p . In other words, X and Y are bi-Lipschitz isomorphic. �
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