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This paper aims to introduce a novel approach named IMM-UKF-TFS (Interacting Multiple
Model-Unscented Kalman Filter-Two Filter Smoother) to attain positional accuracy in the
intelligent navigation of a manoeuvring vehicle. Here, the navigation filter is designed with an
Unscented Kalman Filter (UKF), together with an Interacting Multiple Model algorithm
(IMM), which estimates the state variables and handles the noise uncertainty of the
manoeuvring vehicle. A model-based estimator named Two Filter Smoothing (TFS) is
implemented along with the UKF-based IMM to improve positional accuracy. The
performance of the proposed IMM-UKF-TFS method is verified by modelling the vehicle
motion into Constant Velocity-Coordinated Turn (CV-CT), Constant Velocity –Constant
Acceleration (CV-CA) and Constant Acceleration-Coordinated Turn (CA-CT) models. The
simulation results proved that the proposed IMM-UKF-TFS gives better positional accuracy
than the existing conventional estimators such as UKF and IMM-UKF.
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1. INTRODUCTION. Monitoring the position of a moving vehicle precisely
is one of the challenges in the field of navigation. The Kalman Filter (KF) is an
algorithm that is used to determine the position of the vehicle by combining the
position and velocity updates obtained from Inertial Navigation System (INS) and
Global Positioning System (GPS) sensors (Christopher et al., 2003). Kalman filters
have found extensive application in navigation systems, because they can significantly
improve navigational accuracy. However, the KF is a linear estimator (Grewal and
Andrews, 2008; Grewal et al., 2001; Bar-Shalom et al., 2001), and does not give a
better estimate if the trajectory of the manoeuvring vehicle is non-linear in nature and
hence the Extended Kalman Filter (EKF) was introduced to deal with non-linear
models. The EKF requires linearization of the state and measurement models using
the Taylor series (Tseng and Dae-Jung, 2009), which involves the calculation of
Jacobian matrices that leads to more complexity. To overcome this problem in
the EKF, a transformation based statistical approach called the Unscented Kalman
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Filter (UKF), which uses a set of sample points called sigma points to calculate the
mean estimated state and co-variances, is used. An InteractingMultiple Model (IMM)
algorithm was introduced to deal with the switching between different motion models
(Kim and Hong, 2004). This uses two filters running in parallel (either a KF or EKF
or UKF). Each filter is assigned a particular motion model (Rong and Bar-Shalom,
1993a). The estimation accuracy of IMM is better than the single model filter
(EKF/UKF). It was found that the estimate produced by IMM-UKF was better than
the single model EKF, UKF (Qian et al., 2010) and IMM-EKF.

1.1. Smoothing. Smoothing is the post-processing technique developed to find
the estimation problem by using the additional measurements made after the time
of the estimated state vector (Fraser and Potter, 1969). Thus smoothing can be
incorporated in the IMM algorithm to achieve better positional accuracy. There are
three types of smoothing. They are Fixed Point Smoothing, Fixed Lag Smoothing and
Fixed Interval Smoothing. The Fixed Interval Smoothing has two types. They are
the Rauch Tung Striebel Smoother (RTSS) and the Two Filter Smoother (TFS)
(Rauch et al., 1965; Liu et al., 2010). RTSS is confirmed to work well with linear
systems only. TFS gives better results than RTSS during highly non-linear vehicle
motion and the computational time of both the methods have been proved to be
similar (Liu et al., 2010). Hence in our work, TFS is used along with the IMM
algorithm for INS and GPS navigation.

2. ESTIMATION METHODS FOR MODEL-BASED
APPROACH. Selecting a suitable estimation method for a non-linear trajectory
is a vital problem for INS and GPS navigation. Several approaches exist already in the
literature. They are the Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF), IMM-based EKF, and IMM-based UKF. However, they suffer from
divergence problems i.e., estimation does not converge to the real trajectory. So the
proposed IMM-UKF-TFS system has been developed to improve the estimate.

2.1. Unscented Kalman Filter (UKF). The UKF is a derivative-free alternative
to the EKF, which uses a deterministic sampling approach. The state distribution is
represented using a minimal set of carefully chosen sample points, called sigma points.
Like EKF, UKF consists of the same two steps: model forecast and data assimilation;
except they are now preceded by another step for the selection of sigma points. The
UKF is founded on the intuition that, it is easier to approximate a probability
distribution than it is to approximate an arbitrary non-linear function or
transformation. The sigma points are chosen so that their mean and co-variance
are exactly x̄ and Pxx respectively. Each sigma point is then propagated through the
non-linear functions yielding a cloud of transformed points at the end. The new
estimated mean and co-variance are then computed based on their statistics. This
process is called unscented transformation (Haykin, 2001). The n-dimensional
random variable with mean x̄ and co-variance Pxx is approximated by (2n+1)
weighted points given by

χ0 = x̄, W0 = κ/(n+ k)
χi = x̄+ ������������(n+ κ)Pxx

√( )
i , Wi = 1/2(n+ κ)

χi+n = x̄− ������������
n+ κ( )Pxx

√( )
i, Wi+n = 1/2(n+ κ)


 (1)

860 M. MALLESWARAN AND OTHERS VOL. 66

https://doi.org/10.1017/S0373463313000404 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000404


In Equation (1), χ denotes the sigma point,W denotes weight, and κ is a constant. The
sigma points are passed through the non-linear function to yield the set of transformed
sigma points.

ςi = f (xi) (2)
The mean and co-variance are given by the weighted average and the weighted outer
product of the transformed points.

ȳ =
∑2n
i=0

wi
sςi (3)

Pyy =
∑2n
i=0

wi
c(ςi − ȳ)(ςi − ȳ)T (4)

The time prediction and the measurement update are completed using this mean and
co-variance. The time update involves the prediction of next state variables given by

χi,k = F [χi,k−1] (5)
The mean state space vectors and its priori co-variance are given by

x̄−k =
∑2n
i=0

Wi χi,k (6)

(7)

The measurement model is given by

Zi,k = H[χi, k−1] (8)
The estimated measurement vector is given by

ẑ−k =
∑2n
i=0

WiZi,k (9)

And the co-variance is given by

(10)

The cross co-variance between the state and measurement is given by

(11)

The gain equation is given by

k = PxkzkP
−1
zkzk (12)

The final state and co-variance estimates are given by

x̂k = x̂−k + k zk − ẑ−k
( ) (13)

Pk = P−
k − kPxkzkk

T (14)
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By using the above algorithm, the state of the system can be accurately predicted.
Since the motion model of the vehicle has been changing frequently, more than one

estimator is considered to meet the changing environment; IMM has been introduced.
As the name implies, multiple models can be utilized simultaneously (Honghui, 2002;
Rong and Bar-Shalom, 1993b; Rong and Vesselin, 2003). To incorporate soft switch-
ing between different motion models, the IMM-UKF is introduced (Qian et al., 2010).

2.2. Proposed Method (IMM-UKF-TFS). To improve positional accuracy,
IMM-based fixed interval Two Filter Smoothing is introduced in this paper. The
proposed method incorporates a smoothing algorithm into the Interacting Multiple
Model approach as shown in Figure 1. The inputs to the IMM-UKF-TFS are
the modelled state space and measurement vectors. The motion segmented initial
state vectors are input in the IMM algorithm. The IMM algorithm provides a
soft switching between the different inputs. The IMM algorithm switches the vectors
(x̂01k−1 , x̂

02
k−1) to the appropriate manoeuvring models. These segmented inputs are then

fed to the UKF-TFS filter. The Two Filter Smoother (TFS) has two filters, one
running forward in time and the other running backward in time (Liu et al., 2010). The
idea is to obtain a smooth improved estimate by fusion of these forward and backward
estimates, and its associated co-variances (Helmik et al., 1996). The forward and
backward estimates produced by the filter are combined to form a suitable estimate in
TFS (Fraser and Potter, 1969). The measurement vector Zk comprising the position
and velocity updates is given to the UKF filter. The IMM smoothed estimate x̂ik,s of x

i
k

is thus estimated as a linear combination of two IMM filters x̂ik,f and x̂ik,b. Let x̃
i
k,s be

the IMM smoothed estimate error given by:

x̃ik,s = x̂ik,s − xik (15)

Figure 1. Block diagram of IMM-UKF-TFS.
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The IMM smoothed estimate is given by

x̂ik,s = k1x̂
i
k,f + k2x̂

i
k,b (16)

From Equation (15),

xik + x̃ik,s = k1(xik + x̃ik,f ) + k2(xik + x̃ik,b) (17)
In Equation (17), x̃ik,f , x̃

i
k,b are the estimated errors of the IMM forward and backward

filter respectively.

x̃ik,s = (k1 + k2 − I )xik + k1x̃ik,f + k2x̃ik,b (18)
For an unbiased estimate, E(x̃ik,s) = 0,

k1 + k2 − I = 0 (19)
k2 = I − k1 (20)

Substituting k2 in Equation (16), the smoothed estimate is given by

x̂ik,s = k1.x̂
i
k,f + (I − k1)x̂ik,b (21)

Also it can be written as

x̂ik,s = x̂ik,b + k1(x̂ik,f − x̂ik,b) (22)
Next, the error co-variance of the smoothed estimate is obtained by

x̃ik,s = k1x̃ik,f + k2x̃ik,b = k1x̃ik,f + (I − k1)x̃ik,b (23)
Pi
k,s = k1Pi

k,f .k
T
1 + (I − k1)Pi

k,b(I − k1)T (24)
By minimizing the Equation (24) for gain K1

2k1Pi
k,f − 2(I − k1)Pi

k,b = 0 (25)
k1 = Pi

k,b(Pi
k,f + Pi

k,b)−1 (26)
I − k1 = I − Pi

k,b(Pi
k,f + Pi

k,b)−1 (27)
I − k1 = Pi

k,f (Pi
k,f + Pi

k,b)−1 (28)
Substituting Equations (26) and (28) in the Equation (24)

Pi
k,s

−1 = Pi
k,f

−1 + Pi
k,b

−1 (29)
Thus, the equation for smoothed co-variance of forward and backward IMM filter
can be written as,

Pi
k,s = [Pi

k,f
−1 + Pi

k,b
−1]−1 (30)

Equation (30) proves that the smoothed uncertainty co-variance is less than the
uncertainty co-variance of both forward and backward IMM-UKF. The equation for
the IMM smoothed estimate is obtained by substituting (26) and (28) in Equation (21)

x̂ik,s = Pi
k,b(Pi

k,f + Pi
k,b)−1.x̂ik,f + Pi

k,f .(Pi
k,f + Pi

k,b)−1.x̂ik,b (31)

x̂ik,s =
Pi
k,b.P

i
k,f

(Pi
k,f + Pi

k,b)
[(Pi

k,f )−1.x̂ik,f + (Pi
k,b)−1.x̂ik,b] (32)
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Thus, the IMM smoothed estimate is obtained by using the forward and backward
uncertainty co-variance, which is given by

x̂ik,s = Pi
k,s[(Pi

k,f )−1 · x̂ik,f + (Pi
k,b)−1 · x̂ik,b] (33)

The model conditioned smoothed estimate xk,s
j and its uncertainty co-variance Pk,s

j is
given by the equation

xjk,s =
∑n
i=1

μs,i/jk+1x̂
i
k,s (34)

Pj
k,s =

∑n
i=1

μs,i/jk+i . Pi
k,s + x̂ik,s − xjk,s

( )
x̂ik,s − xjk,s

( )T[ ]
(35)

The mixed smoothed probability is calculated by

μs,i/jk+1 =
1
rj
p jiΛ

ji
k (36)

The term rj is computed by

rj =
∑n
1

p jiΛ
ji
k (37)

The likelihood Λk
ji is given by

Λ ji
k = N(Δ ji

k ,D
ji
k ) (38)

Where,

N () is the probability function of measurement in innovation distribution.
Δ ji
k = x̂b,ik − x f ,i

k is equivalent to measurement innovation.
Dji

k = P̂
b,i
k + Pf ,i

k is combined co-variance of forward and backward filter.
x̂b,ik , P̂

b,i
k are model conditioned backward-time one-step predicted mean and

co-variances.
xk

f,i, Pk
f,i are model-conditioned forward-time filtered mean and co-variances.

The overall optimal smoothed estimate and its uncertainty co-variance is given by

x̂sk =
∑n
i=1

μs,jk xjk,s (39)

P̂
s
k =

∑n
i=1

μs,jk . Pj
k,s + xjk,s − x̂sk

( )
xjk,s − x̂sk

( )T[ ]
(40)

The smoothed model probabilities are computed as

μs,jk = 1
r
rjμ

j
k (41)

In Equation (41), μk
j is the forward time filtered model probability and the term ‘r’ is

the normalization constant that is given by

r =
∑n
j=1

rjμ
j
k (42)
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2.3. GPS-INS Integration. GPS-INS integration can be achieved by combining
the GPS and INS state vectors (Hide et al., 2003; Almagbile and Wang, 2010) as
shown in Figure 2. The difficulty in the modelling of the INS sensor errors has led to
the integration of INS and GPS sensors. The difference (δZk) between the output of
INS and the output of GPS (Zk) is given to the input of the IMM-UKF-TFS to
calculate the gain factor. The gain factor is used to update the INS position vectors to
obtain the corrected INS position.

3. MODELLING OF THE TRAJECTORY FOR GPS-INS
INTEGRATION. The trajectory of the moving vehicle is modelled using three
dynamic motion models. They are Constant Velocity (CV) model, Coordinated Turn
or Circular Turn (CT) model and Constant Acceleration (CA) model (Rong and
Vesselin, 2003). A two-dimensional Cartesian co-ordinate system is considered, where
the positive x and positive y axes correspond to East and North of the navigation axis
respectively. The state space equation of the moving vehicle is given by

x(k) = F (x(k − 1),w(k − 1)) (43)
In Equation (43), x(k) is the state vector, F is the transition matrix and w(k) is the
process noise. The state vector x(k) is defined as the set of elements needed to describe
the vehicle. The measurement model is given by

z(k) = H(x(k), v(k)) (44)
In Equation (44), H is the observation matrix and v(k) is the measurement noise. The
measurement vector has two elements

z(k) = [zx(k) zy(k)]T (45)
3.1. Constant Velocity Model. The Constant Velocity model has position and

velocity components of the vehicle along x and y directions. The state vector of the
Constant Velocity model is given by

x(k) = [xe(k)yn(k)ẋe(k)ẏn(k)]T (46)

Figure 2. GPS-INS integrated navigation using IMM-UKF-TFS.

865IMM-UKF-TFS MODEL-BASED APPROACHNO. 6

https://doi.org/10.1017/S0373463313000404 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000404


The state space representation of the Constant Velocity model is

xe(k)
yn(k)
ẋe(k)
ẏn(k)





 =

1 0 T O
0 1 0 T
0 0 1 0
0 0 0 1







xe(k − 1)
yn(k − 1)
ẋe(k − 1)
ẏn(k − 1)





+

1/2T
2 0

T 0
0 1/2T

2

0 T





w(k − 1) (47)

The observation matrix is given by

H = 1 0 0 0
0 1 0 0

( )
(48)

3.2. Coordinated Turn Model (Circular Turn Model). The Coordinated Turn
model has position and velocity components of the vehicle along x and y directions
and a turn rate parameter \rmOmega. The state vector of the Coordinated Turn model
is given by,

x(k) = [xe(k)yn(k)ẋe(k)ẏn(k) Ω(k)]T (49)
The state space representation of the Coordinated Turn model is given by,

xe(k)
yn(k)
ẋe(k)
ẏn(k)
Ω(k)







=

1 0
sinΩT

Ω
− 1− cosΩT

Ω
0

0 0 cosΩT sinΩT 0

0 1
1− cosΩT

Ω

sinΩT
Ω

0

0 0 sinΩT cosΩT 0

0 0 0 0 1







xe(k − 1)
yn(k − 1)
ẋe(k − 1)
ẏn(k − 1)
Ω(k − 1)







+

1/2T
2 0

T 0

0 1/2T
2

0 T

0 0






w k − 1( )

(50)
The observation matrix is given by

H = 1 0 0 0 0
0 1 0 0 0

( )
(51)

3.3. Constant Acceleration Model. The Constant Acceleration model has
position, velocity and acceleration components of the vehicle along x and y directions.
The state vector of the Constant Acceleration model is given by

x(k) = [xe(k)yn(k)ẋe(k)ẏn(k)ẍe(k)ÿn(k)]T (52)
In Equations (46) to (50), xe(k),yn(k) represent position parameters in east and north
directions, ẋe(k), ẏn(k) are the velocity parameters in east and north directions and
ẍe(k), ÿn(k) are the acceleration parameters in east and north directions respectively.
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The state space representation of the Constant Acceleration model is given by,

xe(k)
yn(k)
ẋe(k)
ẏn(k)
ẍe(k)
ÿn(k)







=

1
0
0
0
0
0

0
1
0
0
0
0

T
0
1
0
0
0

0
T
0
1
0
0

T2/2
0
T
0
1
0

0
T2/2
0
T
0
0







xe(k − 1)
yn(k − 1)
ẋe(k − 1)
ẏn(k − 1)
ẍe(k − 1)
ÿn(k − 1)







+

T3/6 0
T2/2 0
T 0
0 T3/6
0 T2/2
0 T






w(k − 1) (53)

The observation matrix is given by

H = 1 0 0 0 0 0
0 1 0 0 0 0

( )
(54)

4. SIMULATION SCENARIO OF MODEL BASED APPROACH
(IMM-UKF-TFS) . The vehicle trajectory is modelled into combinations of
different motion models CV-CT, CV-CA and CA-CT. Selection of process noise co-
variance matrix, model transition probability, priori model probability is crucial. The
assumption is that the process noise co-variance w(k) has zero mean and its co-
variance is denoted by Q. The co-variance matrix of process noise (Q) can be
considered as shown below.

For CV Model : Q = 0·02 0
0 0·02

[ ]

For CT Model : Q = 0·2 0
0 0·2

[ ]

For CA Model : Q = 0·2 0
0 0·2

[ ]

The model transition probability and initial model probabilities are the same for CV,
CT and CA models. The model transition probability matrix is set to

Pji = 0·8 0·2
0·2 0·8

[ ]

The initial model probabilities are set to μ0= [0·9, 0·1].
4.1. Constant Velocity (CV)-Coordinated Turn (CT) Model. The simulated

trajectory of the CV-CT model is shown in Figure 3. The simulation scenario is
explained as follows. The trajectory of the vehicle motion is modelled to cover up
dynamic characteristics such as Constant Velocity and Coordinated Turn as shown in
Table 1. The vehicle starts from the origin. At 4ths, the vehicle starts to turn left with
turn rate Ω=1. At 9ths, the vehicle stops turning and moves in a linear manner for
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2 seconds. At 11ths, the vehicle starts to turn right with rateΩ= −1. At 16ths, the vehicle
stops turning and moves linear manner for 4 seconds with the same velocity. The
position estimates of the vehicle using the different estimation methods are plotted in
Figure 4. The Mean Square Errors (MSEs) of position estimates are listed in Table 4.
In the time interval, where the vehicle follows the CV model, the estimates of the

corresponding UKF are approximately equal. But the multiple model-smoothed

Figure 3. Two-dimensional trajectory of simulated vehicle.

Table 1. CV-CT modelled vehicle trajectory.

Segmented trajectory Time step Manoeuvring model

1 [0–40] Constant Velocity
2 [41–90] Coordinated Turn
3 [91–110] Constant Velocity
4 [111–160] Coordinated Turn
5 [161–200] Constant Velocity

Figure 4. Estimates of the vehicle position.
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estimation utilizes more measurements in forward as well as backward estimation;
the resultant smoothed estimates of IMM-UKF-TFS are better than IMM-UKF
and UKF. In the time interval where the vehicle follows the Coordinated Turn model,
the mismatches of the model leads to a reduction in performance of both single
model filters such as UKF and multiple model filters such as IMM-UKF. However,
IMM-UKF-TFS is more efficient in detecting the changes in vehicle dynamics,
prevents the divergence and achieves better positional accuracy.
Figures 5 and 6 give the variation of CV model and CT model probability for both

the IMM filter and IMM smoothed filter. Figures 5 and 6 give a clear idea about the
changes in model probability between the CV and CT models with respect to the
actual vehicle dynamics. The probability weight value gives higher priority to the CV
model when the vehicle is in the non-manoeuvring region, and gives higher priority to
the CT model when the vehicle is in the manoeuvring region. Figures 7 and 8 give the
positional error of the vehicle using UKF, IMM-UKF, RTSS and IMM-UKF-TFS
approaches in north and east directions. This shows that the estimate of IMM-UKF-
TFS converge to the true value so that the error becomes less.

Figure 6. Coordinated Turn model probability.

Figure 5. Constant Velocity model probability.
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4.2. Constant Velocity (CV)-Constant Acceleration (CA)Model. The simulated
trajectory of the CV-CA model is shown in Figure 9. The simulation scenario is as
follows: The trajectory of the vehicle motion is modelled to cover dynamic
characteristics such as Constant Velocity and Constant Acceleration as shown in
Table 2. The trajectory is simulated for 200 time steps with step size T=0·1.

Figure 7. Vehicle position estimate error in north.

Table 2. CV-CA modelled vehicle trajectory.

Segmented trajectory Time step Manoeuvring model

1 [0–40] Constant Acceleration
2 [41–100] Constant Velocity
3 [101–120] Constant Velocity
4 [121–190] Constant Velocity
5 [191–200] Constant Acceleration

Figure 8. Vehicle position estimate error in east.
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The movement of the vehicle is described below. The vehicle starts from origin with
velocity and acceleration ẋ, ẏ, ẍ, ÿ

( )
=(0, 1, 0, 1). At 4ths, the vehicle starts to move in

the east direction with a constant velocity. At 10ths, the vehicle moves in the north
direction for 2 seconds with a constant total velocity of one. At 12ths, the vehicle starts
move in a northeast direction with constant velocity for 6 seconds. At 19ths, the vehicle
moves with the constant acceleration in east direction. Figure 10 shows the estimates
of different position estimation techniques.
Figures 11 and 12 give a clear idea about the changes in the model probability

between the CV and CA models with respect to the actual vehicle dynamics. The
probability weight value of the CV model is more when the vehicle is in the non-
manoeuvring region and the weight value of the CA model is more when the vehicle is
in the manoeuvring region. Figures 13 and 14 show the positional error of the vehicle
in the north and east directions. The vehicle’s position error estimate shows that
the proposed approach gives the most accurate navigation estimate in the vehicle’s
manoeuvring and non-manoeuvring region, when compared to the other estimates.

Figure 9. Two-dimensional trajectory of simulated vehicle.

Figure 10. Estimates of vehicle position.
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Figure 12. Constant Acceleration model probability.

Figure 11. Constant Velocity model probability.

Figure 13. Vehicle position estimate error in north.
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4.3. Constant Acceleration (CA) and Coordinated Turn (CT) Model. The
simulated trajectory of the CA-CT model is shown in Figure 15. The simulation
scenario is explained as follows. The trajectory of the vehicle motion is modelled to
cover dynamic characteristics such as Constant Acceleration and Coordinated Turn as
shown in Table 3. The trajectory is simulated for 200 time steps with step size T=0·1.
The movement of vehicle is as follows: The vehicle starts from origin with acceleration

Figure 15. Two dimensional trajectory of simulated vehicle.

Figure 14. Vehicle position estimate error in east.

Table 3. CA-CT modelled vehicle trajectory.

Segmented trajectory Time step Manoeuvring model

1 [0–20] Constant Acceleration
2 [21–90] Coordinated Turn
3 [91–130] Constant Acceleration
4 [131–190] Coordinate turn
5 [191–200] Constant Acceleration
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(ẍ, ÿ)=(1, 0). At 2 s, the vehicle starts to turn left with rate Ω=1. At 9ths, vehicle stops
turning and moves for 4 seconds with a constant total acceleration of one. At 13ths,
vehicle starts to turn left with rate Ω=1. At 19ths, vehicle stops turning and moves for
2 seconds with the same acceleration. Figure 16 shows the estimates of different
position estimation techniques.

Figure 16. Estimates of vehicle position.

Table 4. Comparison of Mean Square Error of different estimation methods for CV-CT, CA-CT and
CV-CA models.

Methods

CV-CT Model CV-CA Model CA-CT Model

North (m) East (m) North (m) East (m) North (m) East (m)

UKF 0·0754 0·0671 0·1096 0·1771 0·0536 0·0431
IMM-UKF 0·0130 0·0157 0·0772 0·1316 0·0176 0·0243
RTSS 0·0102 0·0081 0·0185 0·0448 0·1180 0·1751
IMM-UKF-TFS 0·0023 0·0024 0·0291 0·0310 0·0055 0·0039

Figure 17. Constant Acceleration model probability.
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Figure 19. Vehicle position estimate error in north.

Figure 18. Coordinated Turn model probability.

Figure 20. Vehicle position estimate error in east.
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Figures 17 and 18 give an idea of the changes in model probability between the
Constant Acceleration and Coordinated Turn models with respect to the actual
vehicle dynamics. The probability weight value gives higher priority to the CA model
when the vehicle is in the non-manoeuvring region and gives higher priority to the
CT model when the vehicle is in the manoeuvring region. Figures 19 and 20 show the
positional error of the vehicle in north and east directions respectively. The vehicle’s
positional error estimate shows that IMM-UKF-TFS approach gives the most
accurate navigation estimate of the vehicle’s accelerating and turning region compared
to the other techniques. In Table 4, the MSEs of position estimates produced
by the tested methods are listed. It can be seen that the estimates produced by the
proposed IMM-UKF-TFS using CA-CT model are better than those produced by the
IMM-UKF and single model UKF.
The comparison of Mean Square Error estimates of various combinations of

motion models are given in Table 4.

5. CONCLUSION. The Interacting Multiple Model-Unscented Kalman
Filter-Two Filter Smoother (IMM-UKF-TFS) is considered in this work. The
proposed method has been tested for three different combinations of manoeuvring
models. The navigation accuracy of the proposed method has been compared with
the single model UKF and multiple model IMM-UKF filters. While comparing
RTSS, UKF and IMM-UKF, the output of IMM-UKF-TFS is better than UKF,
IMM-UKF and RTSS because of the additional smoothing measurements. Further,
the Mean Square Error of IMM-UKF-TFS is less than other estimators. In all cases, it
is found that IMM-UKF-TFS method gives lower Mean Square Error, when
compared to all other methods. Even though the computational complexity is higher
for IMM-UKF-TFS than other estimation techniques, it has been confirmed that
there is a significant improvement in both positional accuracy and tracking capability.
From the simulation results, it can be concluded that IMM-UKF-TFS is better than
IMM-UKF and gives accurate positioning.
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