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We consider the fractional Schrödinger equations with focusing Hartree-type
nonlinearities. When the energy is negative, we show that the solution blows up in a
finite time. For this purpose, based on Glassey’s argument, we obtain a virial-type
inequality.

1. Introduction

In this paper we consider the Cauchy problem of the focusing fractional nonlinear
Schrödinger equations

i∂tu = |∇|αu + F (u) in R
1+n × R,

u(x, 0) = ϕ(x) in R
n,

}
(1.1)

where |∇| = (−Δ)1/2, n � 2, α � 1 and F (u) is a non-local nonlinear term of
Hartree type given by

F (u)(x) = −
(

ψ(·)
| · |γ ∗ |u|2

)
(x)u(x) ≡ −Vγ(|u|2)(x)u(x).

∗Corresponding author.
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Here, 0 � ψ ∈ L∞(Rn) and 0 < γ < n. We say that (1.1) is focusing since −Vγ(|u|2)
serves as an attractive self-reinforcing potential. We also use the simplified notation
Vγ to denote Vγ(|u|2).

When ψ is homogeneous of degree zero (for example, ψ ≡ 1), (1.1) has scaling
invariance. In fact, if u is a solution of (1.1), then uλ, λ > 0, given by

uλ(t, x) = λ−(γ−α)/2+n/2u(λαt, λx),

is also a solution. We denote the critical Sobolev exponent by sc = (γ − α)/2.
Under the scaling u → uλ, the Ḣsc -norm of data is preserved. The solution u
of (1.1) formally satisfies the mass and energy conservation laws

m(u) = ‖u(t)‖2
L2 ,

E(u) = K(u) + V (u),

}
(1.2)

where
K(u) = 1

2 〈u, |∇|αu〉, V (u) = − 1
4 〈u, Vγ(|u|2)u〉.

Here 〈·, ·〉 is the complex inner product in L2. In view of scaling invariance and the
conservation laws, when each conserved quantity is invariant under scaling, we say
that (1.1) is mass critical if γ = α and energy critical if γ = 2α.

The aim of this paper is to show the finite time blow-up of solutions to the
fractional or higher-order equations when (1.1) is mass critical. If the energy is
negative (i.e. the magnitude of the potential energy V (u) is larger than that of
kinetic part K(u)), then self-attracting power dominates the overall dynamics and
so it may result in a collapse in a finite time. For the usual Schrödinger equations
(α = 2), Glassey [6] introduced a convexity argument to show existence of finite time
blow-up solutions. Indeed, if ψ ≡ 1, 2 � γ < min(n, 4), n � 3 and ϕ ∈ Hγ/2(Rn)
with xϕ ∈ L2, then

‖xu(t)‖2
L2 � 8t2E(ϕ) + 4t〈ϕ, Aϕ〉 + ‖xϕ‖2

L2 ,

where A is the dilation operator (1/2i)(∇·x+x ·∇). This implies that if E(ϕ) < 0,
then the maximal time of existence satisfies T ∗ < ∞. For details, see [1, § 6.5]
and § 3.

In the fractional or high-order equations, a variant of the second moment is the
quantity

M(u) := 〈u, x · |∇|2−αxu〉.

This was first used by Fröhlich and Lenzmann [5] in their study of the semi-
relativistic nonlinear Schrödinger equations (α = 1). More precisely, they obtained

M(u(t)) � 2t2E(ϕ) + 2t(〈ϕ, Aϕ〉 + C‖ϕ‖4
L2) + M(ϕ)

for ψ = e−μ|x|(μ � 0), γ = 1, ϕ ∈ H2
rad(R3) with |x|2ϕ ∈ L2. Here, the function

space Xrad denotes the subspace X of radial functions. The quartic term ‖ϕ‖4
L2

appears due to the commutator [|x|2Vγ , |∇|] and in R
3 it is controlled by Newton’s

theorem.
Unlike the usual case (α = 2), when α �= 2 the presence of |∇|2−α gives rise

to certain types of singular integrals that necessitate the use of commutators. So
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the main issue is how to estimate the commutator [|x|2Vγ , |∇|2−α] since Newton’s
theorem is generally not available except for α = 1 in R

3. In order to obtain the
desired estimate, we use the Stein–Weiss inequality (2.12) and combine this with a
convolution estimate in lemma 2.3. To close our argument, we furthermore need an
estimate for the moments ‖xu‖L2 and ‖|x|∇u‖L2 for t contained in the existence
time interval (see proposition 3.1). It is done under some regularity assumption1,
which we need to impose to get estimates for the commutators [|∇|α, |x|2] and
[Vγ ,∇ · (x · |∇|2−αx)∇].

The Hartree nonlinearity is essentially a cubic one, though it is convolved with
the potential. Thus, by a fairly standard argument, one can show the local well-
posedness of the Cauchy problem for suitably regular initial data. Indeed, we have
local well-posedness for s � γ/2 so that, within the maximal existence time inter-
val [0, T ∗), there is a unique solution u ∈ C([0, T ∗); Hs) ∩ C1([0, T ∗); Hs−α) and
limt↗T ∗ ‖u(t)‖Hγ/2 = ∞ if T ∗ < ∞. For the reader’s convenience, we give the local
well-posedness for general α > 0 in the appendix.

Let us define a Sobolev index α∗ by α∗ = (2k)2, where k is the least integer
satisfying k � α/2. We separately state our results for the low order case, 1 � α < 2,
and the high-order case, 2 < α < n/2 + 1.

Theorem 1.1. Let γ = α, 1 � α < 2 and n � 4. Assume that ψ is a non-
negative smooth decreasing and radial function with |ψ′(ρ)| � Cρ−1 for some C > 0.
Additionally, assume that the initial datum satisfies ϕ ∈ Hα∗

rad and |x|�∂jϕ ∈ L2(R)
for 1 � 	 � 2, 0 � |j| � 4 − 2	. Then, if E(ϕ) < 0, the solution to (1.1) blows up in
a finite time.

Theorem 1.2. Let γ = α, 2 < α < 1 + n/2 and n � 4. Assume that ψ is a non-
negative smooth decreasing and radial function. Additionally, assume that the initial
datum satisfies ϕ ∈ Hα∗

rad and |x|�∂jϕ ∈ L2(R) for 1 � 	 � 2k, 0 � |j| � 2k(2k − 	).
Then, if E(ϕ) < 0, the solution to (1.1) blows up in a finite time.

The restriction n � 4 is due to the use of the Stein–Weiss inequality. The tech-
nical condition α < 1 + n/2 is imposed because we make use of the convolution
estimate (2.10) (lemma 2.3) and n � 4. For the proof of the theorems we show that
the mean dilation is decreasing when E(ϕ) < 0. Clearly, this follows from

d
dt

〈u, Au〉 � 2αE(ϕ), (1.3)

which holds whenever γ � α and ψ′ � 0. If γ = α, from the estimate (2.7) we have,
for t ∈ [0, T ∗),

M(u) � 2α2t2E(ϕ) + 2αt(〈ϕ, Aϕ〉 + C‖ϕ‖4
L2) + M(ϕ). (1.4)

In order to validate (1.3) and (1.4), we need estimates for the moments ‖xu‖L2 and
‖|x|∇u‖L2 on the time-interval [0, T ∗).

We finally remark that the argument of this paper does not readily work for the
power-type nonlinearity. Since our argument relies on an Hα∗

regularity assumption
and the Stein–Weiss inequality, a different approach seems to be necessary in order
to control the commutators.

1Such an assumption is not necessary for the usual Schrödinger equation.

https://doi.org/10.1017/S030821051300142X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051300142X


470 Y. Cho, G. Hwang, S. Kwon and S. Lee

The rest of paper is organized as follows. In § 2 we show the finite time blow-up
while assuming proposition 3.1. In § 3 we provide the proof of proposition 3.1. The
last section is devoted to the local well-posedness.

Notation

We use the following notation: ∂j =
∏

1�i�n ∂ji

i for multi-index j = (j1, . . . , jn) and
|j| =

∑
i ji. |∇| =

√
−Δ, Ḣs

r = |∇|−sLr, Ḣs = Ḣs
2 and Hs

r = (1 − Δ)−s/2Lr,
Hs = Hs

2 . A � B and A � B means that A � CB and A � C−1B, respectively,
for some C > 0. As usual, C denotes a positive constant, possibly depending on n,
α and γ, which may differ at each occurrence.

2. Finite time blow-up

In this section we consider finite time blow-up of solutions to the Cauchy prob-
lem (1.1) of the mass-critical potentials. We begin with the dilation operator A.
With more general assumptions for ψ and γ we obtain an estimate for the time
evolution of the average of A.

Lemma 2.1. Let ψ be a radially symmetric smooth function such that ψ′ = ∂rψ � 0.
Suppose that u ∈ Hα and xu(t), |x|∇u(t) ∈ L2 for t ∈ [0, T ∗), where T ∗ is the
maximal existence time. Then, for γ � α,

d
dt

〈u, Au〉 � 2αE(ϕ). (2.1)

Proof. Since u ∈ Hα and |x|u, x · ∇u ∈ L2, 〈u, Au〉 is well defined and so is

d
dt

〈u, Au〉 = i〈u, [H, A]u〉, (2.2)

where H = |∇|α − Vγ . Here [H, A] denotes the commutator HA − AH. Using the
identity [|∇|α, x] = −α|∇|α−2∇, we have

[|∇|α, A] = −iα|∇|α. (2.3)

Similarly,

[−Vγ , A] = −i(x · ∇)Vγ . (2.4)

Substituting (2.3) and (2.4) into (2.2), we obtain

d
dt

〈u, Au〉 = α〈u, |∇|αu〉 + 〈u, (x · ∇)Vγu〉. (2.5)

For Hartree type Vγ , we have

(x · ∇)Vγ = −γ

∫
ψ(|x − y|)
|x − y|γ |u(y)|2 dy +

∫
ψ′(|x − y|)
|x − y|γ |x − y| |u(y)|2 dy

−
∫ (

γ
ψ(|x − y|)
|x − y|γ+1 − ψ′(|x − y|)

|x − y|γ

)
y · (x − y)

|x − y| |u(y)|2 dy,
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〈u, (x · ∇)Vγu〉 = 4γV (u) +
∫∫ |x − y|ψ′(|x − y|)

|x − y|γ |u(x)|2|u(y)|2 dxdy

− 〈u, (x · ∇)Vγu〉,

which implies that

〈u, (x · ∇)Vγu〉 = 2γV (u) + 1
2

∫∫ |x − y|ψ′(|x − y|)
|x − y|γ |u(x)|2|u(y)|2 dxdy.

Substituting this into (2.5) gives

d
dt

〈u, Au〉 � 2αE(ϕ) + 2(γ − α)V (u)

+ 1
2

∫∫
(|x − y|ψ′(|x − y|)) |u(x)|2|u(y)|2

|x − y|α dxdy.

Since γ � α and ψ′(|x|) � 0, we obtain (2.1). This completes the proof of lemma 2.1.

Next we consider the non-negative quantity M(u) = 〈u, Mu〉 with the virial
operator

M := x · |∇|2−αx =
n∑

k=1

xk|∇|2−αxk.

Suppose that u(t) ∈ Hα∗
and |x|2ku(t) ∈ L2 for t ∈ [0, T ∗). Then, since M(u) �

‖|x|∇u‖L2‖(1 + |x|)2ku‖L2 , from (3.5) the quantity M(u) is well defined and finite
for all t ∈ [0, T ∗), and so is

d
dt

M(u) = i〈u, [H, M ]u〉 = i〈u, [|∇|α, M ]u〉 − i〈u, [Vγ , M ]u〉. (2.6)

Lemma 2.2. Suppose that u(t) ∈ Hα∗
and |x|2ku(t) ∈ L2 for t ∈ [0, T ∗). Then we

have
d
dt

M(u) � 2α〈u, Au〉 + C‖ϕ‖4
L2 (2.7)

for t ∈ [0, T ∗), where C is a positive constant depending on n and α, but not on u
and ϕ.

Now, theorem 1.1 and theorem 1.2 immediately follow from lemmas 2.1 and 2.2
once we have proposition 3.1.

Proof. By the identity |∇|αx = x|∇|α − α|∇|α−2∇, we have

[|∇|α, M ] = |∇|αx · |∇|2−αx − x · |∇|2−αx|∇|α = −α(x · ∇ + ∇ · x).

Hence, for a smooth function v we obtain

[v, M ] = vx · |∇|2−αx − x · |∇|2−αxv

= v|x|2|∇|2−α − (2 − α)vx · ∇|∇|−α − |∇|2−α|x|2v − (2 − α)|∇|−α∇ · xv

= [|x|2v, |∇|2−α] + (α − 2)
(

vx · ∇
|∇| |∇| |∇|−α + |∇| |∇|−α ∇

|∇| · xv

)
.
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By a density argument, we may assume that v = Vα in the above identity. Thus, it
suffices to show that

‖ϕ‖4
L2 � |〈u, [|x|2Vα, |∇|2−α]u〉|

+
∣∣∣∣
〈

u,

(
Vαx · ∇

|∇| |∇| |∇|−α + |∇| |∇|−α ∇
|∇| · xVα

)
u

〉∣∣∣∣. (2.8)

Case 1 (α > 2). We first consider the higher-order case α > 2. The first term of
the left-hand side of (2.8) is rewritten as

2|Im〈u, |x|2Vα|∇|2−αu〉|. (2.9)

To handle this we recall the following weighted convolution estimate (see [2, 3]).

Lemma 2.3. Let 0 < γ < n − 1 and n � 2. Then, for any f ∈ L1
rad and x �= 0,∫

|x − y|−γ |f(y)| dy � |x|−γ‖f‖L1 . (2.10)

From lemma 2.3 and mass conservation, (2.9) is bounded by

C‖ψ‖L∞‖ϕ‖2
L2

∫
|u(x)| |x|−(α−2)

∫
|x − y|−(n−α+2)|u(y)| dy dx. (2.11)

To estimate this, we make use of the following inequality due to Stein–Weiss [9].
For f ∈ Lp with 1 < p < ∞, 0 < λ < n, β < n/p and n = λ + β,

‖|x|−β(| · |−λ ∗ f)‖Lp � ‖f‖Lp . (2.12)

Applying (2.12) with p = 2, β = α − 2 and λ = n − (α − 2), (2.11) is bounded by
C‖ϕ‖4

L2 .
We write the second term of the right-hand side of (2.8) as

2
∣∣∣∣Im

〈
u, Vαx · ∇

|∇| |∇| |∇|−αu

〉∣∣∣∣.
By using lemma 2.3 we see that this is bounded by

C‖ψ‖L∞‖ϕ‖2
L2

∫
|u(x)| |x|−(α−1)

∫
|x − y|−(n−(α−1))

∣∣∣∣
(

∇
|∇|u

)
(y)

∣∣∣∣ dy dx.

Applying (2.12) with p = 2, β = α − 1 and λ = n − (α − 1), and Plancherel’s
theorem, we get the desired bound (2.8).

Case 2 (1 � α < 2). Now we consider the fractional case 1 � α < 2. The second
term of the right-hand side of (2.8) can be treated in the same way as the high-order
case and it is bounded by C‖ϕ‖4

L2 . Hence, it suffices to consider the first term. Let
us set g = |x|2Vα. Then we need only to obtain

‖[|∇|2−α, g]u‖L2 � C‖ϕ‖3
L2 , (2.13)

which gives |〈u, [|x|2Vα, |∇|2−α]u〉| � ‖ϕ‖4
L2 , and thus (2.8). The kernel K(x, y) of

the commutator [|∇|2−α, g] can be written as k(x − y)(g(y) − g(x)), where k is the
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kernel of the pseudo-differential operator |∇|2−α. Let K∗ be the kernel of the dual
operator of [|∇|2−α, g]. Then, obviously, K∗(x, y) = −K(x, y).

Suppose that

‖g‖Λ̇2−α = sup
x�=y∈Rn

|g(x) − g(y)|
|x − y|2−α

< ∞.

Since |k(x − y)| � |x − y|−n−(2−α), |∇k(x − y)| � |x − y|−n−1−(2−α) and 0 < 2 −
α � 1, it is easy to see that

|K(x, y)| � |x − y|−n,

|K(x, y) − K(x′, y)| � |x − x′|2−α

|x − y|n+2−α
if |x − x′| � |x − y|

2
,

|K(x, y) − K(x, y′)| � |y − y′|2−α

|x − y|n+2−α
if |y − y′| � |x − y|

2

and we obtain similar expressions for K∗ (because K∗(x, y) = −K(x, y)). Let ζ
be a normalized bump function supported in the unit ball and set ζx0,N (x) =
ζ((x − x0)/N). By [8, theorem 3, p. 294], in order to prove (2.13), it is sufficient to
show that

‖[|∇|2−α, g](ζx0,N )‖L2 � C‖ϕ‖2
L2Nn/2 (2.14)

with C independent of x0, N and ζ.
We now show (2.14). The commutator [|∇|2−α, g] can be written as

n∑
j=1

[Tj , g]∂j +
n∑

j=1

Tj(∂jg), (2.15)

where Tj = −|∇|2−α(−Δ)−1∂j . For the first sum of (2.15) we obtain

‖[Tj , g]∂j(ζx0,N )‖L2 � C‖ϕ‖2
L2Nn/2. (2.16)

Indeed, let kj be the kernel of Tj . If α = 1, kj is the kernel of the Riesz trans-
form. If 1 < α < 2, it is easy to see that |kj(x, y)| � |x − y|−n+α−1 (note that
|k̂j(ξ)| � |ξ|−(α−1)). Thus, it follows that

|Kj(x, y)| = |kj(x − y)| |g(y) − g(x)| � ‖g‖Λ̇2−α |x − y|−(n−1).

Hence, for |x − x0| < 2N , |[Ti, g]∂i(ζx0,N )(x)| � ‖g‖Λ̇2−α . This gives

‖[Ti, g]∂i(ζx0,N )‖L2({|x−x0|<2N}) � ‖g‖Λ̇2−αNn/2.

If |x−x0| � 2N , we have |[Ti, g]∂i(ζx0,N )(x)| � ‖g‖Λ̇2−αNn−1|x−x0|−(n−1). Hence,

‖[Ti, g]∂i(ζx0,N )‖L2({|x−x0|�2N}) � ‖g‖Λ̇2−αNn−1
( ∫

|x|>2N

|x|−2(n−1) dx

)1/2

� ‖g‖Λ̇2−αNn/2.

We now show that ‖g‖Λ̇2−α � C‖ϕ‖2
L2 , which gives (2.16). If x �= y, then

|g(x) − g(y)| � |x − y|
∫ 1

0
|∇g(zs)| ds, zs = x + s(y − x).
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Since |ψ′(ρ)| � Cρ−1 for ρ > 0, from lemma 2.3 and mass conservation it follows
that

|∇g(zs)| � |zs|1−α‖u‖2
L2 = ||x| − s|x − y||1−α‖ϕ‖2

L2 ,

provided that α < n − 2. Since

sup
a>0

∫ 1

0
|a − s|−θ ds � Cθ for 0 < θ < 1,

we have
|g(x) − g(y)| � |x − y|2−α‖ϕ‖2

L2 .

Thus, we obtain (2.16).
Finally, we need to handle the second sum of (2.15). If α = 1, Tj is a Riesz

transform. Thus,

‖Tj((∂jg)ζx0,N )‖L2 � C‖∂jg‖L∞Nn/2.

By lemma 2.3 for α = 1, we obtain |∂jg(x)| � |x|V1 + |x|2|∂jV1| � ‖ϕ‖2
L2 . Hence,

‖Tj((∂jg)ζx0,N )‖L2 � C‖ϕ‖2
L2Nn/2. (2.17)

For 1 < α < 2, the kernel kj(x) of Tj is bounded by C|x|−(n−α+1). So, from the
duality and lemma 2.3 with α < n − 2, we have, for any ψ ∈ L2,

|〈ψ, Tj((∂jg)ζx0,N )〉| = |〈T ∗
j ψ, (∂jg)ζx0,N 〉|

� CNn/2
∥∥∥∥|∂jg(·)|

∫
| · −y|−(n−α+1)|ψ(y)| dy

∥∥∥∥
L2

� CNn/2‖ϕ‖2
L2

∥∥∥∥| · |1−α

∫
| · −y|−(n−α+1)|ψ(y)| dy

∥∥∥∥
L2

,

where T ∗
j is the dual operator of Tj . Using (2.12) with β = α − 1, λ = n − α + 1

and p = 2, we obtain

|〈ψ, Tj(∂jgζx0,N )〉| � C‖ψ‖L2‖ϕ‖2
L2Nn/2.

Thus, it follows that

‖Tj(∂jgζx0,N )‖L2 � C‖ϕ‖2
L2Nn/2. (2.18)

Therefore, combining the estimates (2.16)–(2.18) yields (2.14). This completes the
proof of lemma 2.2.

3. Propagation of the moment

We now discuss estimates for the propagation of moments ‖|x|2ku‖L2 when |x|2kϕ ∈
L2 and the solution u ∈ C([0, T ∗); Hα∗

). For α < 2k, we use the kernel estimate of
Bessel potentials. Let us denote, respectively, the kernels of Bessel potentials D−β

and |∇|αD−2k (β = α − 2k) by Gβ(x) and K(x), where D =
√

1 − Δ. Then

K(x) =
∞∑

j=0

AjG2j+β(x),
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where the coefficients Aj are given by the expansion (1 − t)α/2 =
∑∞

j=0 Ajt
j for

|t| < 1 with
∑

j�0 |Aj | < ∞. One can show that (1 + |x|)�K ∈ L1 for 	 � 1 and
that it has decreasing radial and integrable majorant. In fact, from the integral
representation

G2j+β(x) =
1

(4π)n/2Γ (j + β/2)

∫ ∞

0
λ(2j+β−n)/2−1e−|x|2/4λe−λ dλ,

it follows that, for j with 2j + β < n,

G2j+β(x) � C(|x|−n+2j+βχ{|x|�1}(x) + e−c|x|χ{|x|>1}(x)) (3.1)

and, for j with 2j + β � n,

G2j+β(x) � C(χ{|x|�1}(x) + e−c|x|χ{|x|>1}(x)). (3.2)

Here, the constants c and C of (3.1) and (3.2) are independent of j. So, the function
(1 + |x|)�G2j+β has a decreasing radial and integrable majorant, which is chosen
uniformly on j, and so does K. For details see [7, pp. 132–135].

Proposition 3.1. Let T ∗ be the maximal time of solution u ∈ C([0, T ∗); Hα∗
)

to (1.1). If |x|�∂jϕ ∈ L2(R) for 1 � 	 � 2k, 0 � |j| � 2k(2k − 	), then |x|�∂ju(t) ∈
L2(R) for all t ∈ [0, T ∗).

Let us set ψε(x) = e−ε|x|2 . For the proof of proposition 3.1 we use the following
bootstrapping lemma.

Lemma 3.2. Let 	 and m be integers such that 2 � 	 � 2k and 0 � m � α∗ − 2k.
Suppose that sup0�t′�t(‖u(t′)‖H2k+m + ‖|x|j∂ju(t′)‖L2) < ∞ for all t ∈ [0, T ∗) and
0 � j � 	 − 1, |j| � 2k + m. Then sup0�t′�t ‖|x|�∂mu(t′)‖L2 < ∞ for all t ∈ [0, T ∗)
and |m| = m.

Proof. Let v = ∂mu and let

mε(t) = 〈v(t), |x|2�ψ2
εv(t)〉.

From the regularity of the solution u, it follows that

m′
ε(t) = 2 Im〈v, [|∇|α, |x|2�ψ2

ε ]v〉 + 2 Im〈|x|�ψεv, |x|�ψε∂
m(Vαu)〉 =: 2(I + II).

We first prove the case α < 2k. We rewrite I as

I = Im〈|x|�ψεv, [|∇|αD−2k, |x|�ψε]D2ku〉+Im〈|∇|αD−2k(|x|�ψεv), [D2k, |x|�ψε]v〉
=: I1 + I2.

By the kernel representation of |∇|αD−2k, we have

|[|∇D−2k, |x|�ψε|]D2ku(x)|

�
∫

K(x − y)||x|�ψε(x) − |y|�ψε(y)| |D2ku(y)| dy

�
∫

K(x − y)|x − y|(|x|�−1 + |y|�−1)|D2ku(y)| dy

�
∫

K(x − y)|x − y|�|D2ku(y)| dy +
∫

K(x − y)|x − y| |y|�−1|D2ku(y)| dy.
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Since |x|�K is integrable, the Cauchy–Schwarz inequality gives

I1 � √
mε(‖u‖H2k + ‖|x|�−1D2ku‖L2).

As for I2, we have

I2 =
∑

1�j�k

cj Im〈|∇|αD−2k(|x|�ψεv), [Δj , |x|�ψε]v〉

=
∑

1�j�k

cj Im
〈

|∇|αD−2k(|x|�ψεv),
∑

|j1|+|j2|+|j3|=2j

0�|j3|�2j−1

cj1,j2,j3∂
j1(|x|�)∂j2ψε∂

j3v

〉
.

Note that |∂j1(|x|�)| � |x|�−|j1| and |∂j2ψε(x)| � ε|j2|/2(1 + ε|x|2)|j2|/2ψε(x). Hence,
it follows that

I2 � ‖|∇|αD−2k(|x|�ψεv)‖L2

×
∑

1�j�k

( ∑
|j1|+|j2|+|j3|=2j

0�|j3|�j−�

+
∑

|j1|+|j2|+|j3|=j
j−��|j3|�2j−1

)
‖|x|�−|j1|−|j2|∂j3v‖L2

� √
mε

∑
1�j�k

( ∑
|j1|+|j2|+|j3|=2j

0�|j3|�j−�

+
∑

|j1|+|j2|+|j3|=2j
j−��|j3|�2j−1

)
‖|x||j3|−(j−�)∂j3v‖L2 .

Here we used the fact that the kernel of |∇|αD−2k is integrable. Conventionally,
the summand is zero if j − 	 < 0. By the Hardy–Sobolev inequality, we obtain, for
0 � |j3| � j − 	,

‖|x||j3|−(j−�)∂j3v‖L2 � ‖∂j3v‖Hj−�−|j3| � ‖v‖Hj−� � ‖u‖Hj−�+m .

If j − 	 � |j3| � 2j − 1, then

‖|x||j3|−(j−�)∂j3v‖L2 = ‖|x||j3|−(j−�)∂j3+mu‖L2 .

Thus, we finally obtain

I �
√

mε(t)
(

‖u(t)‖H2k+m +
∑

0�|j|�2k+m

‖(1 + |x|)�−1∂ju(t)‖L2

)
. (3.3)

For the case in which α = 2k, we do not need the estimate for I1. For the estimate
of I2 = Im〈|x|�ψεv, [Δk, |x|�ψε]v〉, we estimate similarly to obtain (3.3).

Now we proceed to estimate II. For this let us observe that

II =
∑

m1+m2=m
0�|m2|�m−1

cm1,m2 Im〈|x|�ψεv, |x|�ψε∂
m1Vα∂m2u〉

� √
mε

∑
m1+m2=m

0�|m2|�m−1

‖|x|∂m1Vα‖L∞‖|x|�−1|∂m2u‖L2 .
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By Young’s inequality, we estimate

|x| |∂m1Vα| �
∑

m1
1+m2

1=m1

∫
|x − y|−α(|x − y| + |y|)|∂m

1
1u(y)| |∂m

2
1u(y)| dy

�
∑

m1
1+m2

1=m1

( ∫
|x − y|−(α−1)(|∂m

1
1u(y)|2 + |∂m

2
1u(y)|2) dy

+
∫

|x − y|−α(|y|2|∂m
1
1u(y)|2 + |∂m

2
1u(y)|2) dy

)
.

Using the Hardy–Sobolev inequality, we get

II � √
mε

∑
0�|j|�k+m

‖(1 + |x|)�−1∂ju‖3
L2 . (3.4)

From (3.3) and (3.4) it follows that

m′
ε(t) �

√
mε(t)

(
‖u(t)‖H2k+m +

∑
0�|j|�2k+m

(1 + ‖(1 + |x|)�−1∂ju(t)‖L2)3
)

,

which implies√
mε(t) �

√
mε(0)

+
∫ t

0

(
‖u(t′)‖H2k+m +

∑
0�|j|�2k+m

(1 + ‖(1 + |x|)�−1∂ju(t′)‖L2)3
)

dt′.

Letting ε → 0, by Fatou’s lemma we obtain sup0�t′�t ‖|x|�∂mu‖L2 < ∞ for all
t ∈ [0, T ∗).

Proof of proposition 3.1. In view of lemma 3.2 it suffices to show that

sup
0�t′�t

‖|x|∂ju(t′)‖L2 < ∞ for all |j| � α∗ − 2k and t ∈ [0, T ∗), (3.5)

provided that u ∈ C([0, T ∗); Hα∗
). In fact, we can use the same estimates of mε as

in (3.3) and (3.4) for the case 	 = 1, to obtain

√
mε(t) �

√
mε(0) +

∫ t

0
(‖u(t)‖Hα∗ + ‖u(t)‖3

Hα∗ ) dt′.

A limiting argument implies (3.5). This completes the proof of proposition 3.1.
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Appendix A.

In this section we provide a proof of the local well-posedness of the Hartree equa-
tion (1.1). Here we only assume that α > 0 and ψ ∈ L∞.

Proposition A.1. Let ψ ∈ L∞. Let α > 0, 0 < γ < n and n � 1. Suppose that
ϕ ∈ Hs(Rn) with s � γ/2. There then exists a positive time T such that the Hartree
equation (1.1) has a unique solution u ∈ C([0, T ];Hs)∩C1([0, T ];Hs−α). Moreover,
if T ∗ is the maximal existence time and is finite, then limt↗T ∗ ‖u(t)‖Hγ/2 = ∞.

Proof. We use the standard contraction-mapping argument, so we shall be brief.
Let (X(T, ρ), d) be a complete metric space with metric d defined by

X(T, ρ) = {u ∈ L∞
T (Hs(Rn)) : ‖u‖L∞

T Hs � ρ}, dX(u, v) = ‖u − v‖L∞
T L2 .

We define a mapping N : u �→ N (u) on X(T, ρ) by

N (u)(t) = U(t)ϕ − i
∫ t

0
U(t − t′)F (u)(t′) dt′, (A 1)

where U(t) = e−it|∇|α . For u ∈ X(T, ρ) and s � γ/2 we estimate

‖N (u)‖L∞
T Hs � ‖ϕ‖Hs + T‖F (u)‖L∞

T Hs

� ‖ϕ‖Hs + T (‖Vγ(|u|2)‖L∞
T L∞‖u‖L∞

T Hs

+ ‖Vγ(|u|2)‖s
L∞

T H2n/γ
‖u‖L∞

T L2n/(n−γ))

� ‖ϕ‖Hs + T (‖Vγ(|u|2)‖L∞
T L∞‖u‖L∞

T Hs

+ ‖Vγ(〈∇〉s(|u|2))‖L∞
T L2n/γ ‖u‖L∞

T L2n/(n−γ))

� ‖ϕ‖Hs + T (‖Vγ(|u|2)‖L∞
T L∞‖u‖L∞

T Hs

+ ‖〈∇〉s(|u|2)‖L∞
T L(2n−γ)/2n‖u‖L∞

T L2n/(n−γ))

� ‖ϕ‖Hs + T (‖u‖2
L∞

T Hγ/2‖u‖L∞
T Hs + ‖u‖2

L∞
T L2n/(n−γ)‖u‖L∞

T Hs)

� ‖ϕ‖Hs + T‖u‖2
L∞

T Hγ/2‖u‖L∞
T Hs

� ‖ϕ‖Hs + Tρ3. (A 2)

Here we used: the generalized Leibniz rule (see [4, lemmas A1–A4, appendix]) for
the second and fifth inequalities; the fractional integration for the fourth inequality;
and the trivial inequality

Vγ =
∫

Rn

ψ(x − y)
|x − y|γ |u(y)|2 dy � ‖ψ‖L∞

∫
Rn

|x − y|−γ |u(y)|2 dy,

the Hardy–Sobolev inequality

sup
x∈Rn

∣∣∣∣
∫

Rn

|u(x − y)|2
|y|γ dy

∣∣∣∣ � ‖u‖2
Ḣγ/2

and the Sobolev embedding Hγ/2 ↪→ L2n/(n−γ) for the last one. If we choose ρ and
T such that ‖ϕ‖Hs � ρ/2 and CTρ3 � ρ/2, then N maps X(T, ρ) to itself.
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Now we show that N is a Lipschitz map with a sufficiently small T . Let u, v ∈
X(T, ρ). Then we have

dX(N (u),N (v)) � T‖Vγ(|u|2)u − Vγ(|v|2)v‖L∞
T L2

� T (‖Vγ(|u|2)(u − v)‖L∞
T L2 + ‖Vγ(|u|2 − |v|2)v‖L∞

T L2)

� T (‖u‖2
L∞

T Hγ/2dX(u, v)

+ ‖Vγ(|u|2 − |v|2)‖L∞
T L2n/γ ‖v‖L∞

T L2n/(n−γ))

� T (ρ2dX(u, v) + ρ‖|u|2 − |v|2‖L∞
T L2n/(2n−γ))

� T (ρ2 + ρ(‖u‖L∞
T L2n/(n−γ) + ‖v‖L∞

T L2n/(n−γ)))dX(u, v)

� Tρ2dX(u, v).

The above estimate implies that the mapping N is a contraction if T is sufficiently
small. The uniqueness and time regularity follow easily from (1.1) and a similar
contraction argument.

Finally, let T ∗ be the maximal existence time. If T ∗ < ∞, then it is obvi-
ous from the estimate (A 2) and the standard local well-posedness theory that
limt↗T ∗ ‖u(t)‖Hγ/2 = ∞. This completes the proof of proposition A.1.
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