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1. Introduction

The bifurcation locus of a polynomial mapping F : R
n → R

p, n � p, is the minimal
set of points B(F ) ⊂ R

p outside which the mapping is a C∞ locally trivial fibration.
Unlike the local setting, the critical locus Sing F is not the only obstruction to
the existence of fibrations in the global setting. The simplest evidence of such a
phenomenon in the p = 1 case is in the example of f(x, y) = x + x2y, where
Sing f = ∅ but B(F ) = {0}. In the p > 1 case, Pinchuk [9] provided an example of
a polynomial mapping F : R

2 → R
2, where Sing F = ∅ but B(F ) �= ∅, which is a

negative answer to the Jacobian conjecture over the reals.
For the last 20 years, in more than two variables, one could only estimate B(F )

by supersets A ⊃ B(F ) according to certain regularity conditions at infinity [2, 5,
8, 10, 13, 14], etc. The bifurcation set B(F ) was shown to be detectable precisely
only if p = 1 and n = 2 (see [3, 7, 15]). A similar situation holds over the complex
field, with a large number of articles in recent decades (see, for example, [14] for
references of work done before 2007).

We address here the problem of detecting the bifurcation set in algebraic families
of real curves of more than one parameter, in particular the case when n = p+1 � 3.
The methods developed in [3] or [7] cannot be extended beyond two variables, since
they are based essentially on the use of the ‘polar locus’ or the ‘Milnor set’ (see
definition 2.3), which are of dimension 1 only in the n = 2 case. Our task was to
find a way to extend to higher dimensions the ideas established in [15] for n = 2.
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As a matter of fact, we have to change the viewpoint of [15] and find completely
new definitions for the non-vanishing condition and for the non-splitting condition.
We then get the following extension of the main result of [15], while retaining its
spirit and terminology.

Theorem 1.1. Let X ⊂ R
m be a real non-singular irreducible algebraic set of

dimension n � 3 and let F : X → R
n−1 be an algebraic map. Let a be an interior

point of the set Im F \ F (Sing F ) ⊂ R
n−1 and let Xt := F−1(t). Then a /∈ B(F ) if

and only if the following two conditions are satisfied:

(i) the Euler characteristic χ(Xt) is constant when t varies within some neigh-
bourhood of a, and

(ii) there is no component of Xt that vanishes at infinity as t tends to a.

The above criterion (i) + (ii) may be replaced by (i′) + (ii′), where

(i′) the Betti numbers of Xb are constant for b in some neighbourhood of a, and

(ii′) there is no splitting at infinity at a.

Note that the Euler characteristic of regular fibres is given by the following simple
formula:

χ(Xt) = 1
2

lim
R→∞

#[Xt ∩ SR],

where SR ⊂ R
m denotes the sphere of radius R centred at the origin.

In order to situate our study in the mathematical landscape, we start by dis-
cussing the real counterparts of several well known results in the complex setting.

2. Real versus complex setting

2.1. The Abhyankar–Moh–Suzuki theorem

The famous example by Pinchuk [9] yields a polynomial mapping R
2 → R

2

with no singularities but which is not a global diffeomorphism, thus providing a
counterexample to the strong Jacobian conjecture over the reals. The Jacobian
problem nevertheless remains open over C.

We may then further ask what happens when a polynomial map is a component
of a global diffeomorphism, since, over the complex field, one has the following
well-known Abhyankar–Moh–Suzuki theorem [1,12].

Theorem (Abhyankar–Moh–Suzuki). A complex polynomial function f : C
2 → C

which is a locally trivial fibration is actually equivalent to a linear function, modulo
automorphisms of C

2.

This result again does not hold over R and it is actually not difficult to find
examples, such as the following.

Example 2.1. The polynomial function g : R
2 → R, g(x, y) = y(x2 + 1), is a com-

ponent of a diffeomorphism. One can see this by using the change of variables
(x, y) �→ (x, y/(x2 + 1)). Therefore, g is a globally trivial fibration. However, g
cannot be linearized by a polynomial automorphism.
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2.2. The Euler characteristic test

The following result was found in the 1970s [12]; see also [6].

Theorem. Let f : C
2 → C be a polynomial function and let a ∈ C \ f(Sing f).

Then a /∈ B(f) if and only if the Euler characteristic of the fibres, χ(f−1(t)), is
constant for t varying in some neighbourhood of a.

Its real counterpart emerged much later. It appears that, for polynomial func-
tions R

2 → R, the constancy of the Euler characteristic is not sufficient, and that
other phenomena may occur at infinity, namely the ‘splitting’ or the ‘vanishing’ of
components of fibres (see definition 3.1).

Theorem 2.2 (Tibăr and Zaharia [15]). Let X be a real algebraic non-singular
surface and let τ : X → R be an algebraic map. Let a ∈ Im τ be a regular value of
τ and let Xt := F−1(t). Then a /∈ B(τ) if and only if

(i) the Euler characteristic χ(Xt) is constant when t varies within some neigh-
bourhood of a, and

(ii) there is no component of Xt that vanishes at infinity as t tends to a.

Moreover, one can show that criterion (i) + (ii) is equivalent to (i′) + (ii′), where

(i′) the Betti numbers of Xt are constant for t in some neighbourhood of a, and

(ii′) there is no component of Xt that splits at infinity as t tends to a.

All the above conditions are necessary but none of them individually implies the
local triviality of the map τ , as the examples in [15] show. Theorem 1.1 represents
the extension of the above result to algebraic families of curves of more than one
parameter.

2.3. Detecting bifurcation values by the Milnor set

It was shown in [5, 13] that, in the case of a polynomial map F : R
n → R

p, the
bifurcation non-critical locus B(F )\f(Sing f) is included in the set of ‘ρ-non-regular
values at infinity’. The ρ-regularity is a ‘Milnor type’ condition that controls the
transversality of the fibres of F to the spheres centred at c ∈ R

n, more precisely,
we have the following.

Definition 2.3. Let F : R
n → R

p, n � p, be a polynomial map. Let ρc : R
n → R�0

be the Euclidean distance function to the point c ∈ R
n. We call the critical set of

the mapping (F, ρc) : R
n → R

p+1 the Milnor set of (F, ρc) and denote it by Mc(F ).
We denote by

Sc(F ) :=
{

t0 ∈ R
p | ∃{xj}j∈N ⊂ Mc(F ), lim

j→∞
‖xj‖ = ∞ and lim

j→∞
F (xj) = t0

}

the set of ρc-non-regular values at infinity. If t0 /∈ Sc(F ), we say that t0 is ρc-regular
at infinity. We set S∞(F ) :=

⋂
c∈Rn Sc(F ).
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1236 C. Joiţa and M. Tibăr

In the case of polynomials f : C
2 → C the following characterization has been

proved (see [11, corollary 5.8]; [14, theorem 2.2.5]). Let a ∈ C \ f(Sing f). Then
a ∈ B(f) if and only if a ∈ S0(f). This is no longer true over the reals, as shown by
the following example from [15]: f : R

2 → R, f(x, y) = y(2x2y2 − 9xy + 12), where
S0(f) contains the origin of R but the bifurcation set B(f) is empty.

However, with some more information along the branches of the Milnor set Mc(f)
that take into account the ‘vanishing’ and the ‘splitting’ phenomena at infinity (see
definitions 3.1 and 4.3), one is able to produce a criterion. First, we note that there
is some open dense set Ωf ⊂ R

2 such that for c ∈ Ωf the Milnor set Mc(f) is a curve
(or it is empty). For such a point c ∈ Ωf one counts the number #[Xj

t ∩ Mc(f)]
of points of intersection of the connected components Xj

t of the fibres Xt with the
curve Mc(f). The following criterion holds. Let a ∈ R\f(Sing f). Then a ∈ B(f) if
and only if a ∈ Sc(f) and limt→a #[Xj

t ∩ Mc(f)] �≡ 0(mod 2) for some sequence of
connected components Xj

t of Xt. This can easily be proved by using the results of
our paper and is close to the main theorem of [7], which is proved for the larger class
of polynomial functions defined on a smooth non-compact affine algebraic surface
X. One significant difference between our approach and that of [7] is that we test
connected components Xj

t of fibres and not just the fibres of f . This is because
one may have vanishing and splitting at infinity in two different components of
the same fibre, with one maximum and one minimum that would cancel in the
framework of [7] but not in the above statement (see also [15, § 3, example 3.1] for
the construction of such examples).

3. The non-vanishing condition

3.1. Non-vanishing at infinity

Let X ⊂ R
m be a real non-singular irreducible algebraic set of dimension n, and

let F : X → R
n−1 be an algebraic map. Throughout this section the point a will

denote an interior point of ImF \ F (Sing F ).
As before, denote by Xb the fibre F−1(b). Then, let Xb =

⊔
j Xj

b be the decom-
position of the fibre Xb into connected components. Define

µ(b) := max
j

inf
x∈Xj

b

‖x‖.

Definition 3.1. We say that there is vanishing at infinity at a ∈ R
n−1 if there

exists a sequence of points ak → a such that limk→∞ µ(ak) = ∞.
If there is no such sequence, we say that there is no vanishing at a ∈ R

n−1 and
we denote this situation by NV(a).

Remark 3.2. One can easily deduce from the above definition that NV is an open
condition.

3.2. Proof of the first part of theorem 1.1

The regular fibres of F are one-dimensional manifolds. Hence, every such fibre
is a finite union of connected components. Each such component is either compact
and thus diffeomorphic to a circle, or non-compact and thus diffeomorphic to the
affine line R. Let us denote by s(b) the number of compact components of the fibre
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F−1(b) and by l(b) the number of non-compact components of this fibre. Let us note
that these definitions make sense for a semi-algebraic set X; we shall occasionally
use them in such a context in the proofs below.

Let a ∈ R
n−1 be as in the statement of theorem 1.1 and let us assume NV(a).

By remark 3.2, there exists a ball D centred at a, included in the interior of the set
Im F \ F (Sing F ) ⊂ R

n−1 such that NV(b) for any b ∈ D. For such a ball D, we
show the following.

Lemma 3.3. The numbers sX(b) and lX(b) are constant for b ∈ D.

Proof. Let us fix some point b ∈ D and let Lab ⊂ R
n−1 denote the unique line

passing through the points a and b. The fibre Xt is a one-dimensional manifold
for any t ∈ D; in particular, the inverse image F−1(Lab) is an algebraic family of
non-singular real curves. It is known (as proved by Thom, Verdier and others; see,
for example, [14, corollary 1.2.13], and the references therein) that the projection
τab : F−1(Lab) → Lab has a finite number of atypical values. In the hypotheses of
theorem 1.1 and by remark 3.2, at each supposed atypical value of Lab ∩D one may
apply theorem 2.2 for τab. This leads to the conclusion that there are no atypical
values of τab on Lab ∩ D; in particular, the restriction of F is a locally trivial
fibration over Lab ∩ D, and hence a trivial fibration. This implies sX(b) = sX(a)
and lX(b) = lX(a).

3.3. Compact components

Let us consider some compact connected component of the regular fibre Xa,
if there is one. Then this compact component may be covered by finitely many
open connected sets Bi ⊂ X such that Bi ∩ Xa is connected and that the restric-
tion F| : Bi → F (Bi) is a trivial fibration. In particular, each fibre of this fibra-
tion is connected. There exists a sufficiently small closed ball D ⊂ R

n−1 centred
at a that is contained in all images F (Bi). It then follows that the restriction
F| : F−1(D) ∩

⋃
i Bi → D is a proper submersion. Therefore, by Ehresmann’s fibra-

tion theorem, this is a locally trivial fibration, and hence a trivial fibration (since
D is contractible).

It follows that, for any t ∈ D̊, there is a unique connected component of the fibre
Xt, which intersects the open set F−1(D̊) ∩

⋃
i Bi.

It also follows that D := F−1(D̊) ∩
⋃

i Bi is an open connected component of
F−1(D̊). Therefore, F−1(D̊) \ D is an open subset of F−1(D̊).

By lemma 3.3 and by taking an eventually smaller ball D, we have that, for any
t ∈ D̊, Xt ∩ F−1(D̊) \ D has precisely lX(a) connected non-compact components
and sX(a) − 1 connected compact components.

In this way, we have produced a trivialisation on a connected component of
F−1(D̊) and we have reduced the problem to constructing a trivialisation within
the set F−1(D̊) \ D, where the numbers are

sF −1(D̊)\D(a) = sX(a) − 1 and lF −1(D̊)\D(a) = lX(a).

We apply the above procedure until we eliminate one by one all the compact
components. We may then assume from now on that the fibre Xt has no compact
component, for any t in some neighbourhood of a.
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3.4. Line components

Consider a line component X1
a of Xa and fix some point p ∈ X1

a . Since F is a
submersion at p, there exists a small ball Bp at p such that Bp∩Xa is connected and
that the restriction of F to Bp∩F−1(D) is a trivial fibration over a sufficiently small
disc D ⊂ F (Bp) centred at p. It follows that, for any t ∈ D, the intersection Xt ∩Bp

is connected and thus included into a unique connected component of the fibre Xt.
Let L1 denote the union over all t ∈ D of the connected components of the fibres

Xt that intersect Bp. Note that each such connected component is a line component,
since we have assumed that sX(a) = 0. Thus, sX(t) = 0 for all t ∈ D (by reducing
the radius of D, if needed), by lemma 3.3.

We have thus associated the connected set L1 to the chosen component X1
a . Con-

sider the similar construction for each other connected component of Xa. Namely,
we start as above by choosing one point pi on each component of Xa and some ball
Bpi at pi. In this way we obtain the sets L1,L2, . . . ,LlX(a), where we recall that
lX(a) denotes the number of connected components of Xa and that this number is
a local invariant over the target set, by lemma 3.3. Without loss of generality, we
may assume that the ball D in the target is common to all these constructions.

It then follows that the sets Li are all connected (by definition) and pairwise
disjoint. Indeed, if this is not true, then there is some t ∈ D such that the fibre
Xt has a connected component that belongs to more than one set Li. But, by the
above construction, each Li contains precisely one connected component of Xt, and
the number of connected components of Xt is precisely lX(a) by lemma 3.3. We
thus obtain a numerical contradiction.

Let us show that the sets Li are also open and therefore they are manifolds. Let
us fix i and fix some q ∈ Xb ∩ Li for some b ∈ D as above. There exists a ball Bq,
which has the same properties as the ball Bpi considered above. This implies that a
unique component of each fibre Xt intersects Bq for t in some sufficiently small ball
D′ ⊂ D centred at b. We claim that the component of Xt intersecting Bq is precisely
the component belonging to Li, as follows. Let qi ∈ Xb ∩ Bpi

. We consider a non-
self-intersecting analytic path in Xb starting at qi and ending at q. Being compact,
this can be covered by finitely many small balls Bj with the same properties as
Bq or Bpi . We then apply the reasoning in § 3.3 to obtain that the restriction
F| : F−1(D) ∩

⋃
j Bj → D′ for some sufficiently small D′ is a proper submersion.

Therefore, by Ehresmann’s fibration theorem, this is a locally trivial, and hence
trivial, fibration since D′ is contractible. Since the fibres of this map are connected
by our construction and since each of them intersects Bpi , it follows that each fibre
of F| is included in the corresponding fibre of Li. Since F−1(D′) ∩

⋃
j Bj is, in

particular, a neighbourhood of the point q ∈ Li, this finishes the proof of our claim.
We conclude that the open sets Li together provide a partition of F−1(D) into

open manifolds. We may then apply [15, proposition 2.7], which we state below, in
order to conclude that every restriction F| : Li → D is a trivial fibration. This ends
the proof of the first part of our theorem.

Proposition 3.4 (Tibăr and Zaharia [15, proposition 2.7]). Let M ⊆ R
n be a

smooth submanifold of dimension m + 1 and let g : M → R
m be a smooth func-

tion without singularities and such that all its fibres g−1(t) are closed in R
n and

diffeomorphic to R. Then g is a C∞ trivial fibration; in particular, M
diffeo� R

m+1.

https://doi.org/10.1017/S0308210516000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000469


Families of real curves with more than one parameters 1239

Remark 3.5. Note that the sets Li may be defined without the non-vanishing
condition at a, but then the sets Li may not exhaust F−1(D) or they may not be
mutually disjoint. The first phenomenon is due to the vanishing of components and
the second is due to the so-called ‘splitting’ phenomenon, which we present in the
next section.

4. The non-splitting condition

We study here the phenomenon of splitting at infinity in families of curves of several
parameters. The following definition of limit sets was used in a particular setting
in [15] and corresponds to the ‘lim sup’ notation used in [4]. We have learned from [4]
that such limits were considered classically by Painlevé and Kuratowski.

Definition 4.1. Let {Mk}k be a sequence of subsets of R
m. A point x ∈ R

m

is called a limit point of {Mk}k if there exists a sequence of points {xi}i∈N with
limi→∞ xi = x and such that xi ∈ Mki

for some integer sequence {ki}i ⊂ N with
limi→∞ ki = ∞.

The set of all limit points of {Mk}k will be denoted by limMk.

In the remainder of this paper the point a will be an interior point of ImF \
F (Sing F ) ⊂ R

n−1, as in the statement of theorem 1.1.

Remark 4.2. Let {bk}k∈N be a sequence of points in Im F \ F (Sing F ) such that
bk → a and such that, for each k, Xj

bk
is a fixed connected component of Xbk

. Then
lim Xj

bk
is either empty or a union of connected components of Xa. This is a more

precise version of [15, lemma 2.3(i)] and follows from the definition of the limit and
from the fact that a is a regular value of F .

Definition 4.3. We say that there is no splitting at infinity at a ∈ R
n−1 (which we

abbreviate as NS(a)) if the following holds: let {bk}k∈N be a sequence in R
n−1 such

that bk → a and let {pk}k∈N be a convergent sequence in X such that F (pk) = bk.
If Xj

bk
denotes the connected component of Xbk

that contains pk, then the limit set
lim Xj

bk
is connected.

We say that there is strong non-splitting at infinity at a ∈ R
n−1 (which we

abbreviate by SNS(a)) if, in addition to the definition of NS(a), we require the
following: if all the components Xj

bk
are compact, then the limit limXj

bk
is compact

too.

This notion of ‘non-splitting’ (NS) extends that introduced in [15] for n = 2.

Remark 4.4.

(a) For two sequences {bk}k∈N and {pk}k∈N as above, denoting by Xj
a the con-

nected component of Xa that contains p := lim pk and by Xj
bk

the connected
component of Xbk

that contains pk, by remark 4.2 we have the inclusion
Xj

a ⊂ lim Xj
bk

. Therefore, NS(a) means that lim Xj
bk

= Xj
a.

(b) We do not know whether NS(a) implies NS(b) for b in a sufficiently small
neighbourhood of a. However, this implication holds whenever the Betti num-
bers of Xb are constant for b in a neighbourhood of a. This follows from the
second part of the proof of theorem 1.1.
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4.1. Proof of the second part of theorem 1.1

Conditions (i′) and (ii′) are obviously necessary for a /∈ B(F ). Let us prove that
they imply the conditions (i) and (ii) of theorem 1.1. Since condition (i) is obviously
implied by condition (i′), the rest of the proof will be devoted to show condition (ii).

Let us denote by X1
a , . . . , X l

a the connected components of Xa. For each j =
1, . . . , l, we choose a point zj ∈ Xj

a and, as in § 3.3, we fix a sufficiently small ball Bj

at zj such that Bj ∩ Xa is connected and that the restriction of F to Bj ∩ F−1(Dj)
is a trivial fibration over a sufficiently small disc Dj ⊂ F (Bj) centred at a. We
may assume that the small balls B1, . . . , Bl are pairwise disjoint. In particular, for
each b ∈

⋂
j Dj we have that Bj intersects exactly one connected component of

Xb. We therefore may define a function Φb on the set {1, . . . , l} with values in the
set of connected components X1

b , . . . , Xsb

b of Xb by setting Φb(j) to be the unique
component of Xb that intersects Bj .

Claim 4.5. NS(a) implies that there exists a ball D ⊂
⋂

j Dj centred at a such that,
for any b ∈ D, Φb is a bijection.

Proof of claim 4.5. Since b0(Xt) is constant at a, there is a sufficiently small disc
D′ centred at a (which we may assume is included in

⋂
j Dj) such that sb = l for

all b ∈ D′. It is therefore enough to prove that Φb is injective on some sufficiently
small disc D ⊂ D′ centred at a. By reductio ad absurdum, suppose that there exists
a sequence of points {bk}k∈N in R

n−1 such that bk → a, and ik, jk ∈ {1, . . . , l},
ik �= jk, such that Φbk

(ik) = Φbk
(jk). Since the set of all subsets with exactly two

elements of {1, . . . , l} is finite, by passing to a subsequence we may assume that
there exist i, j ∈ {1, 2 . . . , l}, i �= j, such that Φbk

(i) = Φbk
(j) for every k. We get

that the limits limΦbk
(i) and limΦbk

(j) coincide and, by remark 4.4(a), that they
are equal to some connected component of Xa.

On the other hand, since F|Bi∩F −1(Di) and F|Bj∩F −1(Dj) are trivial fibrations it
follows that the sets Bi ∩ F−1(Di) ∩ limk Φbk

(i) and Bj ∩ F−1(Dj) ∩ limk Φbk
(j)

are non-empty and they are contained in different components of Xa. This yields a
contradiction. Our claim is proved.

Finally, let us show that we have NV(a). If this were not the case, then there
would exist a sequence {bk}k∈N converging to a such that limk→∞ µ(bk) = ∞ (see
the definition of µ in § 3.1). This implies that there is a connected component Xj

bk

of Xbk
such that Xj

bk
∩ (

⋃l
j=1 Bj) = ∅, and this contradicts the surjectivity of Φbk

.
This ends the proof of the reduction of the second part of theorem 1.1 to its first

part.

Remark 4.6. In the above proof we need to assume the constancy of the Betti
number b1(Xt), since this condition is not implied by the constancy of the Betti
number b0(Xt), by NS(a) and by NV(a) together. The cause of this behaviour,
which can be seen in [15, example 3.2], is the ‘breaking’ of oval components at
infinity. Nevertheless, such a loss of points at infinity can be avoided if instead of
NS(a) we require the SNS(a) condition of definition 4.3, as shown by the following
result.

Corollary 4.7. In the conditions of theorem 1.1, the following equivalence holds:

a /∈ B(F ) ⇐⇒ SNS(a) and NV(a).
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Proof. Conditions SNS(a) and NV(a) are obviously necessary for a /∈ B(F ). Let
us show the sufficiency. By remark 4.4(a), NS(a) implies b0(Xt) � b0(Xa) for t in
some sufficiently small disc centred at a. Next, NS(a) together with NV(a) imply
that b0(Xt) = b0(Xa). What we only need in order to conclude is the constancy
of b1(Xt) for t in some neighbourhood of a, but this is exactly what the condition
SNS(a) ensures.

The conditions NV(a), NS(a) (and hence also SNS(a)) are conditions ‘at infinity’.
More precisely, one can prove the following statement in a similar way to that above.

Theorem 4.8. Let X ⊂ R
m be a real non-singular irreducible algebraic set of

dimension n and let F : X → R
n−1 be an algebraic map. Let a ∈ Im F be a regular

value of F and let R � 1 be large enough that Xa is transversal to the sphere
X ∩ Sm−1

R . Let us denote by G the restriction of F to X \ Bm
R and by Xt its fibres.

If a is an interior point of the set Im G \ G(Sing G) ⊂ R
n−1, then a /∈ B(G) if

and only if either conditions (i) and (ii) or conditions (i′) and (ii′) of theorem 1.1
hold.
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