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Precision inertial navigation depends not only on the quality of the inertial sensors
(accelerometers and gyros), but also on the accuracy of the gravity compensation. With a

view toward the next-generation inertial navigation systems, based on sensors whose errors
contribute as little as a few metres per hour to the navigation error budget, we have analyzed
the required quality of gravity compensation to the navigation solution. The investigation

considered a standard compensation method using ground data to predict the gravity vector
at altitude for aircraft free-inertial navigation. The navigation effects of the compensation
errors were examined using gravity data in two gravimetrically distinct areas and a

navigation simulator with parameters such as data noise and resolution, supplemental global
gravity model noise, and on-track interpolation method. For a typical flight trajectory at
5 km altitude and 300 km/hr aircraft speed, the error in gravity compensation contributes

less than 5 m to the position error after one hour of free-inertial navigation if the ground
data are gridded with 2 arcmin resolution and are accurate to better than 5 mGal.
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1. INTRODUCTION. Navigation accuracy using an inertial navigation sys-
tem (INS) depends on the quality of the gravitation compensation as well as the
performance of the inertial measurement units (IMU). Here, the performance of
the IMU refers mainly to the stability of the biases and scale factor errors of the
accelerometers and gyros and the level of white noise ; and, the quality of the grav-
ity compensation refers to the accuracy of the gravity vectors that feed into the
navigation equation. Gravity compensation is necessary because the accelerometers
of an INS do not sense gravitational attraction, whereas the vehicle trajectory is
affected significantly by the Earth’s gravitational variations, of the order of several
hundred metres in horizontal position after one hour of free-inertial (i.e., auton-
omous, unaided) navigation. Of course, gravity compensation is much less import-
ant if the accumulation of gravitational error (and IMU error) can be controlled
with sufficiently frequent external position updates, as might be obtained from GPS.
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Ultra-high precision IMU’s have recently come under consideration based on new
technological developments in cold atom interferometry (Kasevich and Chu, 1992;
Gustavson et al., 1997). It is predicted that these IMU’s have stability of 10x8 m/sec2

and 10x6 deg/hr, respectively, in acceleration and rotation rate, which is 100 –1000
times better than the current navigation-grade IMU. Precision of this kind leads to
enhanced applications of free-inertial (i.e., unaided) navigation over long periods in
any environment. Indeed, the development of ultra-precise IMU’s aims to achieve
long-term (one hour) unaided inertial navigation with positioning error of the order
of a few metres (DARPA, 2003). The largest potential error source in free-inertial
navigation with these IMU’s is the gravity compensation, which suggests that a
renewed analysis be conducted of the data quality needed to support such systems at
the few-metre level of accuracy.

Gravity data archives exist for all regions of the world with varying levels of res-
olution and accuracy, and the development of global as well as local models and their
improvement continue as new data and observations are generated. Gravity com-
pensation using data that refer to ground level requires estimation of the gravi-
tational vector along the vehicle trajectory. Moreover, the data primarily comprise
the (scalar) vertical components of the gravitational vector, yet the horizontal
(vector) components are needed to compensate the induced navigation error.
(However, one might even consider vertical inertial navigation because the ultra-
precise IMU’s would yield 3-D accuracy at the level of a few metres after one hour.)
Thus, in addition to an ‘‘upward continuation’’ of the data (in the case of aircraft
navigation) a transformation is required whereby horizontal components are
estimated from vertical components.

Both upward continuation and vector estimation from scalar data are founded on
well established models in potential theory that solve the classical boundary-value
problem. These models are only approximate, however, due to the irregular shape of
the Earth’s surface (the boundary), and the approximation is ameliorated signifi-
cantly by introducing a known reference (or normal) gravitational field. Therefore, as
usual we operate with components of the gravity disturbance vector, d~gg, defined as the
difference between the actual gravity and normal gravity vectors. We use gravity
anomalies (differing only slightly from the vertical disturbances ; Heiskanen and
Moritz, 1967) given on the Earth’s surface and also approximate this surface as a
sphere. Upward continuation and transformation yields components of the gravity
disturbance vector at altitude, usually on a grid with pre-defined spacing. Further
estimation is required to estimate the gravity disturbances on the vehicle’s actual
trajectory. Not only the quality of the gravity data in terms of observation accuracy
and spatial resolution, but also model error (upward continuation and transform-
ation) affect the final estimation accuracy, which directly affects the accuracy of the
navigation solution.

Several previous studies exist on the gravitational effect on inertial navigation. For
example, Jekeli (1997) analyzed the propagation of unknown gravitation to position
error using a statistical model of the gravity field. He focused on the short-term effect
(on INS applied to bridging extended GPS outages in precise navigation) and con-
cluded that the position error grows up to several metres within 100 seconds.
Similarly, Jordan (1973), Jordan and Center (1986), and Schwarz (1981) discussed the
effect of unknown gravity on airborne inertial navigation through a state-space error
analysis. These investigations essentially used covariance modelling of the gravity field
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to determine the effects on the navigation solution in a purely statistical setting, that
is, with a covariance propagation analysis. These investigations did not address
practical aspects in gravity compensation, including the required spatial resolution of
ground data (the data interval), the data observation error, the accuracy of existing
global models, and the inherent model errors. An extensive study on gravity modelling
and its effect on the navigation solution was undertaken by the Air Force Wright
Aeronautical Laboratories (AFWAL, 1986). Focused on the selection of the optimal
gravity estimation techniques, the investigation showed through navigation simu-
lations that 5kr5k gravity data, with accuracy of 0.5 arcsec in the deflection of vertical
would support the then current precision navigation. Although this study progressed
beyond mere covariance analyses toward practical gravity compensation, some
important aspects were not fully examined, such as supplementing the estimation
with a global model, and ascertaining necessary levels of ground data noise and
resolution. Furthermore, the analysis should now be updated to reflect the potential
for vast improvement in IMU precision.

Rather than performing a covariance analysis, we investigate gravity compensation
for free-inertial navigation through simulations using actual gravity data and by
directly calculating the navigation solution under various scenarios of gravity esti-
mation. The main objective is to identify the principal factors that affect the accuracy
of the estimated gravity disturbances, and to assess the requirements of those factors
to achieve high accuracy in the navigation solution. For these purposes, actual free-
air gravity anomaly data from two areas having characteristically different gravity
signatures are taken as the true ground gravity values. Then, adding different levels of
noise and sampling the data at different resolutions yields alternative simulated
measured data sets. The simulated data are upward continued using the Pizzetti
integral and a remove-restore procedure that accounts for an existing global gravity
model, resulting in a two dimensional grid of gravity disturbance vectors at flight
level. Using this database, simple linear interpolation and an optimal, weighted least-
squares interpolation (least square collocation) are applied to estimate the gravity
disturbances on the vehicle’s trajectory. Comparison of these estimates to the true
gravity disturbance vectors yields an assessment of the gravity estimation accuracy.
Finally, for each case, the effect of the gravity-related errors on free-inertial navi-
gation is determined with a navigation simulator that compensates for gravity using
the estimated gravity disturbances.

This analysis simulates the most straightforward method of gravity compensation,
taking advantage of the existing data archives that in many technologically and
economically developed areas may require only marginal improvement to support
long-term free-inertial navigation. An alternative compensation method relies on the
in situ measurement of the gravitational field in the form of gravity gradients. This
technique obviates extensive databases and the problems associated with accurate
upward continuation modelling. On the other hand, it also requires the addition of a
gradiometer to the inertial navigation system. The added expense of hardware and
sensor integration would easily be justified for areas where little or no gravity data
exist, especially in rugged mountain regions where the gravity signature and the effect
on inertial navigation are strongest. Gradiometer-aided inertial navigation has been
studied by Britting et al. (1972), Heller and Jordan (1976), and Jekeli (2005) ; and, the
results of the present analysis thus also serve to calibrate the need for such system
enhancement.
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2. GRAVITY COMPENSATION. The general procedure of gravity com-
pensation is divided into three major steps, shown in Figure 1. The first preparatory
step involves acquisition of the gravity data from a gravity survey and reducing
these to the form of gravity anomalies. In ocean areas, one might acquire potential
differences (derived from satellite altimetry that recovers mean sea level heights)
and occasionally on land areas deflections of the vertical are observed using astro-
nomic determinations of the direction of the plumb line. We used only a database
of gravity anomalies ; and, although they had not been reduced to a reference sur-
face, such as mean sea level (in essence, the geoid ), we assumed this without loss in
generality in order to apply the spherical approximation with greater validity. Also,
the data contain unknown observational errors, but we treated them as true quan-
tities, adding our own generated noise to simulate the observational error. We used
the highest available spatial resolution (1kr1k arcmin grid) and simulated coarser
resolution by sampling the data at larger intervals.

Given data on the geoid, the gravity disturbance vector can be estimated at altitude
using upward continuation that is rooted in basic potential theory (Heiskanen and
Moritz, 1967). In principle, the method requires continuous gravity data over the
whole Earth’s surface. This is an impractical idealization of the solution, and typi-
cally, the gravitational influence of remote zones is captured with an existing global
spherical harmonic model, such as EGM96 (Lemoine et al. 1998), and only the local
data are integrated within some specified spherical cap centred on the region of
interest. Also the global gravity model has some uncertainty, which affects the accu-
racy of the gravity disturbance estimates and the navigation solution. In this study,
the accuracy of EGM96 and that of a more recent, longer-wavelength model, GSM
(GRACE Satellite-only Model, July 2003, http://podaac.jpl.nasa.gov/grace/) are
used to assess the effect of global gravity model errors.

In the absence of an exact, planned trajectory, one usually prepares a grid of
gravity disturbance estimates at one or more flight altitudes. During the flight,
the gravity disturbances are interpolated from the grid onto the trajectory using some
gravity modelling and estimation techniques. Gravity modelling refers in part to the

Prepare
Gravity data
on the geoid

Calculate gravity
disturbance at
flight level

Estimation of the
gravity
disturbances on
the flight
trajectory

Data type
Data interval
Noise level

Methods
Amount of ground
data to be used

Gravity models
Estimation method

Figure 1. General procedure of traditional gravity compensation.
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characterization of the gravity field as deterministic, stochastic, or of hybrid type. For
example, the direct estimation of the gravity values from potential theory models and
the spherical harmonic representation are deterministic ; least-squares estimation
using covariance functions to characterize the stochastic nature of the gravity dis-
turbances represents a statistical approach; and the combination of the potential
theory model and least-square estimation is a hybrid method. Differences among
these techniques reflect levels of theoretical rigour, estimation accuracy, and com-
putational efficiency. In the deterministic approach, the gravity field is represented by
a set of functions or models and applied directly to the navigation equations. For
example, the gravity disturbance data are stored in 3-D lattices and the INS-indicated
position is used to extract the gravity compensation by 3-D linear interpolation.
Higher order interpolation techniques, such as bicubic splines, can be applied where
the data embody a high degree of continuity.

On the other hand, statistical estimation methods optimally account for the
noise in the gravity data. Conceptually more appropriate in that respect, these
computational tools such as Kalman filtering and least-squares collocation never-
theless require a tremendous effort in developing reasonable statistical models for the
local gravity field. Such modelling may need to be performed for every flight and thus
is computationally expensive. Moreover, care must be exercised since the quality of
the statistical models affects the performance of estimation. For these reasons, the
deterministic method is simpler and easier to implement than the statistical approach.
However, particularly in the interpolation from the grid to the trajectory, a
deterministic method may be significantly poorer in accuracy if the grid has large
mesh size and/or if the data noise levels are high.

3. SIMULATING THE GRAVITY FIELD. The investigation of the
trade-off between gravity database parameters and gravity compensation efficacy was
conducted by simulation using actual gravity anomaly data in two gravitationally
dissimilar regions. Treating the available gravity anomaly data as true quantities,
artificial data sets were constructed depending on two parameters : simulated noise
with given amplitude and sampling interval with given grid size. The constructed
data sets were upward continued using approximate models derived from potential
theory; and the gravity disturbance vector was estimated along a simulated trajec-
tory using either simple or statistically optimal interpolation. A navigation simu-
lator then used these estimated gravity disturbances to determine a compensated
trajectory that was compared to the compensated trajectory implied by the original
true gravity data. The following describes the analysis procedures in detail.

The true gravity field was defined by a set of 1kr1k free-air gravity anomalies in two
areas (Figure 2). The first area, Area 1, covers latitude 37x–44x North and longitude
103x–110x West, representing rough terrain and gravity signature in the Rocky
Mountains over Wyoming and Colorado. Area 2, covers latitude 38x–42x North and
longitude 80x–88x West, representing relatively plain terrain and moderate gravity
signature in Ohio. In each area, an E-W trajectory about 280 km in length was
generated with endpoints on the 40th parallel (see Figure 2). The trajectories were
generated by a navigation simulator, assuming constant vehicle altitude (5 km) and
velocity (300 km/hr) along a great circle path. Both an error-free trajectory and one
corrupted by IMU and gravity errors were generated. IMU sensor errors included
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constant biases and scale factor errors, as well as simulated white noise processes and
the gravity disturbances. The sensor error parameters refer to future ultra-precise
IMU’s that contribute no more than 5 m position error to the navigation solution
after one hour (Table 1).

The true and estimated gravity disturbances at altitude were constructed as shown
in Figure 3. The gradients of the Pizzetti integrals represent the upward-continuation
and transformation models according to potential theory, which yield gravity dis-
turbance components at altitude from gravity anomaly data on the geoid (approxi-
mated as a sphere) (Heiskanen and Moritz, 1967, p. 234) :
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Figure 2. Gravity fields defined by given 1kr1k gravity anomalies assumed to reside on the geoid

(top) and gravity disturbances at altitude along the simulated trajectories (bottom), for rough and

moderate areas (left and right, respectively). (Note: Longitude is expressed as degrees East of

Greenwich.)
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where dgr, dgw, dgl are gravity disturbances in radial, latitudinal, and longitudinal
directions, R is the mean radius of the Earth, Dg is the free-air gravity anomaly on the
geoid, S is Stokes’s function, r is the radial coordinate of the computation point, and
y is the spherical angle between the computation point and the integration point.
The global gravity model, EGM96, was first removed from the gravity anomalies
and subsequently restored in the form of the gravity disturbances at altitude. This
procedure of separating out the longer-wavelength components improves the
numerical accuracy of the integrals that were truncated to spherical caps of s0=1:50

radius. This approximation was found to contribute less than 1 mGal error
(1 mGal=10x5 m/s2).

The true gravity disturbances were computed directly from the given 1kr1k ground
data and EGM96 (both assumed error free) on the trajectory using the procedure
outlined in Figure 3 and equations (1)–(3). A straightforward numerical integration
based on the 1kr1k data grid approximated the analytic integrals. We generated the
simulated measured field similarly through Pizzetti’s integral, but added noise inten-
tionally to both the gravity anomalies on the geoid and the spherical harmonic
coefficients of EGM96. The noise process of the observed ground data was generated

Table 1. The IMU error parameters used in the simulation.

Error Parameter Value

accel. bias 1r10x8 m/s2

accel. scale factor error 1r10x6 ppm

accel. white noise 1r10x8 m/s2/dHz

gyro bias 1r10x5 deg/hr

gyro scale factor error 5r10x4 ppm

gyro white noise 1.2r10x4 deg/hr/dHz

∆g* on 1′×1′grid
(assume on geoid)

Gradient of
Pizzetti Integral

δg on trajectory

1′×1′ ∆g res on geoid

360-Field*on geoid

+ –
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∆ g on d×d grid
(assume on geoid)

Gradient of
Pizzetti Integral

estimated 1′×1′ δg
at altitude

measured d×d ∆gres
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Figure 3. Construction of the true (left) and estimated (right) gravity disturbances at altitude.
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from a random variable uniformly distributed in the interval [x
ffiffiffi
3

p
,

ffiffiffi
3

p
] (so that its

variance is unity) and then scaled by a specified standard deviation. The errors in the
spherical harmonic coefficients were similarly simulated by scaling a random variable
to the standard deviation of each coefficients, as given for a particular global model.
The estimated gravity disturbances were first computed on a 1kr1k grid at altitude
regardless of the resolution of the data and then interpolated onto the trajectory, as
might be done with an actual compensation procedure. Note that increasing the
resolution to a 1kr1k grid at altitude from a lower-resolution ground grid is already a
preliminary form of interpolation.

Among various interpolation techniques, we tested the direct linear interpolation
(DLI), based on the nearest four grid-corner values, and a least-squares collocation
(LSC) method. LSC requires covariance functions for the gravity disturbances
(Moritz, 1980), and we used a reciprocal distance model (RDM) as described by
Jekeli (2003). The RDM is frequently used because it is possible to incorporate
harmonic extension into exterior free space (Moritz, 1980; however, we did not need
this feature for the assumed level trajectory). We chose the following form:

C(s)=
s2bffiffiffiffiffiffiffiffiffiffiffiffiffi
b2+s2

p (4)

where the covariance, C, depends only on the horizontal distance, s, between two
points (it is stationary and isotropic) ; b is the correlation distance; and s2 is the
variance. These parameters can be determined from a fit to an empirical covariance
function with values calculated from the ground data. A separate RDM was devel-
oped for each gravity disturbance component, which thus neglects cross correlations
among the components. With these models the interpolation was conducted accord-
ing to standard collocation theory:

x=Cs(Cl+D)x1l (5)

where x is the vector of estimated gravity disturbances on the trajectory, Cs is the
matrix of cross-covariances between gravity disturbances at trajectory points and
at grid points, Cl is the matrix of auto-covariances of gravity disturbances at the
grid points, and l is the vector of gridded disturbances at altitude whose errors
are characterized by the diagonal dispersion matrix, D. The error variance (on the
diagonal of D) was assumed to be that of the ground data.

Estimation performance in LSC is affected by the validity of the covariance func-
tion model and the spatial extent of the data used. The covariance model depends
on the chosen variance and correlation distance. Values for these parameters were
determined from the 1kr1k grid of true gravity disturbances at altitude. We found
that a fifty per cent mismodelling of the correlation distance caused gravity disturb-
ance errors of about t3 mGal, while mismodelling the variance by 50% caused less
than t0.8 mGal errors. Concerning the data extent, we used a 10kr10k area centred
on each estimation point, which was deemed sufficient since an increase to 20kr20k
changed the estimates by less than 1 mGal.

The simulation of the actual trajectory consisted of three parts (see also Figure 4).
First, error-free IMU (accelerometer, gyro) data were generated based on motion of a
local-level platform along a predefined great-circle route. Second, simulated IMU
errors (biases, scale factor errors, and white noise) were added to these data to
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simulate raw IMU output. Third, the navigation simulator used this IMU output and
the gravity disturbance components along the trajectory to generate the indicated
trajectory. Using the true gravity disturbances, the computed trajectory reflects only
the effect of IMU errors ; while with the estimated gravity disturbances it includes also
the effect of gravity estimation error. Comparing the two navigation solutions yields
an assessment of the quality of gravity compensation based on the given ground data
and estimation procedure. It is important to include the IMU errors in the simulation
since they couple non-linearly with the gravity estimation errors.

4. TESTS AND RESULTS. Three noise levels were considered for the
ground anomaly data and two noise levels for the harmonic coefficients. The
EGM96 coefficient standard deviations up to degree 360 served as amplitude for
one, and for the other we used the GSM coefficient standard deviation up to degree
120 and the EGM96 standard deviations from degrees 121 to 360. The ground data
had one of four levels of resolution as defined by an equiangular grid on the sphere,
and interpolation from the grid of computed values at altitude to the trajectory
was performed using either DLI or LSC. Therefore, the five parameters of the
analysis were resolution and noise of the observed ground data, noise in the global
gravity field model, type of interpolation onto the trajectory, and type of gravity
signature as exemplified by Areas 1 and 2. The parameter values are summarized in
Table 2.

Figures 5 and 6 represent the errors in the gravity disturbance estimates for the
various combinations of parameters. Each indicated value is the root-sum-of squares
of the individual component errors, which are roughly commensurate. Comparing
Figures 5 with 6 shows that the long-wavelength errors in the global model affect
primarily the estimation with the coarsest data resolution (10kr10k). Interestingly,
the supposedly more accurate long-wavelength model, GSM, yields poorer gravity
estimates. This is because GSM, though far superior at the very long wavelengths,

IMU errors

trajectory with IMU
and gravity errors

trajectory with
IMU errors

gravity-induced position error

Navigation
Simulator

trajectory
parameters

true δg on
trajectory

estimated δδδδg
on trajectory

+–

Navigation
Simulator

raw IMU data

Figure 4. Scheme of free inertial navigation simulator.
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Figure 5. Three-dimensional gravity disturbance error in Areas 1 (left) and 2 (right) using

EGM96 and interpolation by DLI (circle) or LSC (square).

Table 2. Parameters of the analysis.

Parameter Values

resolution of ground data 1kr1k, 2kr2k, 5kr5k, 10kr10k
noise of observed ground data 1 mGal, 5 mGal, 10 mGal

global harmonic model errors & EGM96 coefficient standard deviations, degrees 0–360

& GSM coefficient standard deviations, degrees 0–120 &

EGM96 coefficient standard deviations, degrees 121–360

Interpolation & DLI – simple linear interpolation

& LSC – optimally weighted interpolation

gravity signature & Area 1 (rough)

& Area 2 (moderate)
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Figure 6. Three-dimensional gravity disturbance error in Areas 1 (left) and 2 (right) using GSM

and interpolation by DLI (circle) or LSC (square).
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is estimated to be less accurate at the higher harmonic degrees, 116–120, than
EGM96. The gravity estimation is thus much more sensitive to these wavelengths
(of the order of 180 arcmin) when the data resolution is low. Indeed, for the other
data resolutions, the difference implied by the EGM96 and GSM errors is less
than 1 mGal. As expected, the estimates in Area 1 are much poorer than those in
Area 2 because of the rougher gravity signature (e.g., compare the left side of Figures
5 and 6). Examining the results in terms of noise level and data resolution, the errors
tend to increase more rapidly with a degradation in resolution than in noise. In all
cases, LSC performs better than DLI, and differences between these two methods of
interpolation are significant especially when the noise levels and data intervals are
large. This conforms to the fact that LSC is an optimal estimator that also uses
more data around the estimation points than DLI does. In summary, these simu-
lations show that 2kr2k ground data with noise level less than 5 mGal are required to
achieve on-track estimation accuracy better than 2 mGal for Area 1 (rough gravity
signature), while 5kr5k data resolution with the same noise level are sufficient to
achieve this accuracy in Area 2.

The estimated gravity disturbances were subsequently used by the free-inertial
navigation simulator to generate the navigation solutions. The differences between
solutions with the true and estimated gravity disturbances indicate the effect of the
gravity estimation error. Only the GSM global errors were applied since the effect of
degrading these to the long-wavelength EGM96 errors was mostly insignificant. The
left and right sides of Figure 7 represent the horizontal position errors in Areas 1 and
2, respectively, using the gravity estimates obtained by DLI and LSC. The depicted
values are the maximum root-sum-of-squares of horizontal component errors, being
commensurate, during approximately one hour (53 minutes) of free-inertial navi-
gation, where it is noted that the position errors due to erroneous gravity compen-
sation do not increase monotonically during this period. As a reference, horizontal
position errors reached a maximum of 3.1 m with error-free gravity compensation,
thus due only to IMU errrors.

1
5

10

1
2

5
0

5

10

15

20

Noise level (mGal)

Data Interval (arcmin)

H
or

iz
on

ta
l P

os
it

io
n 

E
rr

or
 (

m
)

1
5

10

1
2

5
0

1

2

3

4

5

6

Noise level (mGal)

Data Interval (arcmin)

H
or

iz
on

ta
l P

os
it

io
n 

E
rr

or
 (

m
)

Figure 7. Horizontal position error in Areas 1 (left) and 2 (right) induced by gravity estimation

error using GSM and interpolation by DLI (circle) and LSC (square).
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Recalling the behaviour of gravity estimation errors under various parameter
options, the horizontal position errors would be expected to follow the same pattern.
However, the results, generated by simulations, do not always correspond with those
expectations. For example, the horizontal position errors for 2kr2k data with 1 and
5 mGal noise levels are slightly lower than for 1kr1k data in both areas. This is due to
the nonlinear relationship between the gravity errors, the IMU sensor errors, and the
dynamics of the vehicle. Therefore, smaller gravity errors do not always guarantee
smaller position errors, especially in the presence of IMU biases. Otherwise however,
the general pattern of reduced gravity estimation error with increased data resolution
and accuracy was reproduced for the horizontal position error. Again, LSC-
estimated gravity generated a better navigation solution in all cases. In addition, the
position errors in Area 1 are much larger than in Area 2 because of the rougher
gravity signature (due primarily to the rough terrain). It was found that 5kr5k data
with better than 10 mGal noise level are sufficient for position accuracy better than
5 m in Area 2 (within approximately one hour of free-inertial navigation), while
2kr2k data with better than 5 mGal noise are required to yield the same position
accuracy in Area 1 using LSC.

5. CONCLUSIONS. A traditional gravity compensation method for free-
inertial navigation was analyzed in view of next-generation inertial measurement
units that promise free-inertial navigation accuracy of the order of a few metres of
horizontal position error over one hour of operation. The method of investigation
utilized ground gravity data supplemented by a global gravity model in an analyti-
cal upward continuation based on potential theory. Simulating a practical approach
to in-flight gravity compensation, the gravity components were then interpolated
from a grid at altitude onto a given trajectory. A number of parameters in this
process were considered, including data resolution, data noise, interpolation
method, global model accuracy, and magnitude of the gravity signature, to
determine the data requirements that would serve an autonomous navigation
system based on the ultra-high accuracy IMU’s. The following conclusions were
drawn from the results of the simulations:

(1) The long-wavelength accuracy of the global gravity model was not a signifi-
cant factor in the estimation of the gravity disturbances. Although the current
EGM96 model was adequate in these simulations, the newer GSM model
would be preferred, especially in regions where EGM96 is known to be of
poorer quality, such as in polar regions and in alpine regions with poor
gravity data coverage.

(2) LSC generated better gravity disturbance estimates and consequently better
navigation solutions than did DLI in both rough and moderate areas.
However, it should be noted that this interpolation method depends on
reasonable covariance models for the gravity disturbances (which can require
a substantial analysis effort) and involves considerably more real-time com-
putations. With improved ground data resolution and accuracy, the benefits
of LSC diminish.

(3) As expected, larger data intervals and larger noise levels generate larger
errors in the gravity disturbance estimates, though not necessarily larger
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position errors. To achieve gravity disturbance estimates at 5 km altitude
accurate to better than 2 mGal in mountainous regions requires 2kr2k
ground data with better than 5 mGal noise.

(4) Ground data resolution better than 2kr2k and noise level lower than 5 mGal
are required to yield position accuracy better than 5 m using next-generation,
ultra-precise IMU’s (Table 1).

The analysis included several simplifying assumptions. The upward continuation,
performed by numerical integration of an approximate integral, was assumed to be
error free. A more advanced analysis would assess the accuracy of this upward con-
tinuation model, especially in rugged terrain, where gravity data are not readily
gridded and do not reside on a level surface. Furthermore, the present analysis was
restricted to horizontal trajectories. An extension to varying altitude would require
multiple grids of estimated gravity disturbances at different altitudes and three-
dimensional interpolation. Neither of these extensions in the analysis, obviously,
would predict a relaxation of data quality ; however, nor would they necessarily point
to a significant increase in the requirements found here. Rather they would suggest
improvements in methodology and modelling. Therefore, the present analysis on data
quality may be considered relatively robust and complete.
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