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High-Z impurities in magnetic-confinement devices are prone to develop density
variations on the flux surface, which can significantly affect their transport. In
this paper, we generalize earlier analytic stellarator calculations of the neoclassical
radial impurity flux in the mixed-collisionality regime (collisional impurities and
low-collisionality bulk ions) to include the effect of such flux-surface variations. We
find that only in the homogeneous density case is the transport of highly collisional
impurities (in the Pfirsch–Schlüter regime) independent of the radial electric field. We
study these effects for a Wendelstein 7-X (W7-X) vacuum field, with simple analytic
models for the potential perturbation, under the assumption that the impurity density
is given by a Boltzmann response to a perturbed potential. In the W7-X case studied,
we find that larger amplitude potential perturbations cause the radial electric field to
dominate the transport of the impurities. In addition, we find that classical impurity
transport can be larger than the neoclassical transport in W7-X.
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1. Introduction
At fusion-relevant temperatures, heavy impurities in high ionization states, ‘high-Z

impurities’, emit a significant amount of radiation, and even a tiny fraction of
impurity ions radiate enough power to seriously challenge the power balance in a
reactor. High-Z impurities thus cannot be allowed to accumulate in the centre of a
magnetic-confinement fusion reactor.

In tokamaks, impurities are expelled from the core of the reactor by neoclassical
transport if their temperature gradient is sufficiently large – a phenomenon known as
temperature screening. In stellarators, the outlook has been more pessimistic, as the
radial transport is not independent of the radial electric field, and an inward pointing
electric field is predicted for a stellarator reactor, which would transport impurities
inwards (Hirsch et al. 2008).

However, recent analytical results on neoclassical stellarator impurity transport have
shown that when the plasma is in a mixed-collisionality regime – where the bulk ions
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are at low collisionality (1/ν or
√
ν regimes) and the impurity ions are collisional

– the radial impurity flux becomes independent of the electric field, which allows
temperature screening to be effective in stellarators (Helander et al. 2017a; Newton
et al. 2017). This is due to a cancellation between the flux driven by impurity parallel
flow and the ion thermodynamic forces. A similar cancellation is also found in the
regimes where both ions and impurities are collisional (Braun & Helander 2010),
although in this case, thermodiffusion is usually inward unless the effective charge is
very small, so no temperature screening occurs (Rutherford 1974).

Additionally, high-Z impurities are sensitive to flux-surface variations in the
electrostatic potential, in response to which they can develop density variations
on flux surfaces. Such variations can have large effects on the neoclassical transport,
as has been demonstrated analytically (Angioni & Helander 2014; Calvo et al. 2018)
and numerically (Angioni et al. 2014; García-Regaña et al. 2017; Mollén et al. 2018)
for tokamaks and stellarators. Turbulent transport is also known to be affected by
these variations, see for example Mollén et al. (2012, 2014), Angioni et al. (2014).

In this work, we generalize the analytical calculation in Newton et al. (2017) to
account for flux-surface variation of the impurity density in stellarators, using a fluid
description for the impurities and solving for the ion distribution function in the 1/ν
regime. Our expression for the impurity flux agrees with that in Calvo et al. (2018),
where the same problem is treated fully kinetically. Like Calvo et al. (2018), we find
that the effect of the radial electric field can be large even when the amplitude of
the potential flux-surface variation is small relative to the temperature. In addition, we
find that classical transport can dominate over the neoclassical transport for collisional
impurities in certain stellarator geometries.

The remainder of this paper is organized as follows: in § 2, we present the equations
describing the impurities, and relate the friction force acting on the impurities to their
flux-surface density variations and the resulting radial flux. In § 3, we introduce the
ion-impurity collision operator and obtain an explicit expression for the ion-impurity
friction force. In § 4, we consider simplifying limits of the equations presented in
the previous sections, and derive expressions for transport coefficients in those limits.
Section 5 treats the classical transport, and shows why it is important in Wendelstein
7-X. Finally, in § 6, we apply our results to study a test-case based on a Wendelstein
7-X vacuum field.

2. Impurity equations
In this section, we present equations to model the impurities, starting from

momentum balance and ending with expressions for calculating the flux along the
magnetic field and across the flux surface.

The impurities are assumed to be collisional enough to be in the Pfirsh–Schlüter
regime and thus have a Maxwellian velocity distribution, with the density not
necessarily constant on flux surfaces. For such a species in steady state, the
momentum equation is

∇pz = ZenzE+ ZeΓz ×B+Rz, (2.1)

where the z species subscript refers to the impurities, Z is the impurity charge number,
e the proton charge, pz the impurity pressure, nz the impurity density, Γz the impurity
particle flux, B the magnetic field, E the electric field and Rz is the friction force
acting on the impurities. By projecting (2.1) onto the magnetic field direction b=B/B,
with B= |B|, we obtain

∇‖pz = ZenzE‖ + Rz‖. (2.2)
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From (2.2), we see that pressure (and thus density) variation along the field line is
set-up by forces associated with the parallel electric field and friction – both of which
increase with the impurity charge number. The friction force can be calculated using
kinetic information of all other species, as

Rz =mz

∑
a

∫
d3vvC[ fz, fa], (2.3)

where fa is the distribution function of a species ‘a’. We will restrict ourselves to
the case where only collisions between a bulk-ion species i and the impurities matter:
this is appropriate since the electron contribution to the friction force is small in the
electron–ion mass ratio.

In order to simplify the kinetic calculations required to determine fi, we will assume
that Z� 1, so that the effects that lead to pressure variation on the flux surface can be
significant for the impurities while being small for the bulk ions. In the Z� 1 limit,
the ions and impurities will have undergone temperature equilibration if (Helander
1998)

ρ∗ν̂ii

Z
� 1, (2.4)

where ρ∗ = ρi/L, with L the profile length scale and ρi = vTimi/eB the ion thermal
gyroradius, with mi the ion mass and vTi =

√
2Ti/mi the ion thermal speed; ν̂ii =

nie4 lnΛL‖/(T2
i ε

2
012π3/2) is the ion collisionality, where ni is the bulk-ion density, the

bulk ions are assumed to have Z= 1; L‖ is the length scale of Φ-variations parallel to
B, where we assume that the inductive electric field is small, so that E=−∇Φ; ε0 is
the vacuum permittivity and lnΛ the Coulomb logarithm. Equation (2.4) is practically
always satisfied in a magnetized plasma, so we will assume that Tz = Ti is a flux
function, and (2.2) thus becomes an equation for the flux-surface variation of nz.

Furthermore, if ∆ ≡ Z2ρ∗ν̂ii � 1, as in the conventional drift-kinetic ordering, the
friction force in (2.2) becomes smaller than the other terms (Helander 1998). To zeroth
order in ∆, the density in (2.2) is then given by a Boltzmann response to Φ

nz =Nze−ZeΦ/Tz, (∆� 1), (2.5)

where Nz is a flux function. If the density variation of all species is given by
(2.5), quasi-neutrality forces the density and potential to also be flux functions. For
significant density variation to arise on a flux surface, the behaviour of at least
one species must thus deviate from (2.5); several different mechanisms have been
considered in the literature:

In Helander (1998), ∆= O(1), so the impurities themselves set-up their own flux-
surface variation to balance the flux-surface variation of the friction force and electric
field. This was generalized in Fülöp & Helander (1999) to include centrifugal forces.

Additionally, heating can introduce a fast-particle population, which may not have
a density variation according to (2.5) and thus leads to an electric field tangential to
the flux surface, which the impurity density in (2.2) responds to. Such effects were
considered in Kazakov et al. (2012) and Angioni & Helander (2014), and are often
more important than the variations set-up by the impurities themselves.

https://doi.org/10.1017/S0022377818000867 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000867


4 S. Buller, H. M. Smith, P. Helander, A. Mollén, S. L. Newton and I. Pusztai

Furthermore, in stellarators, helically trapped particles drifting due to the radial
electric field can cause flux-surface density asymmetries that, in turn, cause an electric
field (García-Regaña et al. 2017). This electric field then affects the impurities. This
mechanism has been investigated numerically in García-Regaña et al. (2017), and
was found to significantly affect the transport in the large helical device (LHD)
and TJ-II stellarators, but does not appear to have a major effect in Wendelstein
7-X (W7-X) due to the neoclassical optimization reducing the radial extent of such
helically trapped orbits.

Out of these mechanisms, the latter two are expected to be more important. For
the sake of generality, we will however allow Φ and ∆ to be arbitrary, as long as the
tangential variation in Φ (which we denote by Φ̃), is of magnitude eΦ̃/Ti ∼ Z−1 so
that its effect can be neglected for the bulk ions. In § 4 and later sections, we will
consider the case when ∆� 1, with Φ̃ centred around extrema of B.

2.1. Radial impurity flux
Regardless of the mechanisms that determine the spatial variation of nz, we can
calculate the perpendicular flux of the Maxwellian impurities by applying B× to
(2.1), resulting in

B×∇pz =B× ZenzE+ ZeB2Γz,⊥ +B×Rz. (2.6)

This expression contains the flux in both the diamagnetic and radial directions. The
flux-surface averaged radial flux becomes

Ze〈Γz · ∇ψ〉 =

〈
B×∇ψ

B2
·Rz

〉
+Ze

〈
nz

B×∇ψ
B2

·E
〉
−

〈
B×∇ψ

B2
· ∇pz

〉
, (2.7)

where ψ is an arbitrary flux-surface label and 〈·〉 denotes the flux-surface average.
Here, the first term on the right is the classical flux, and the second one is the radial
flux due to the E× B-drift. As there is no radial current in steady state (i.e. ∇×B ·
∇ψ = 0), we have

〈B×∇ψ · ∇X〉 = 0 (2.8)
for any single-valued function X. The last term of (2.7) can thus be rewritten as
〈pzB×∇ψ ·∇B−2

〉, which is the radial flux due to the magnetic drift of a Maxwellian
species. The two latter terms in (2.7) thus correspond to the neoclassical flux, and will
be denoted by 〈Γz · ∇ψ〉

NC.
Following Calvo et al. (2018), we obtain a flux–friction relation by introducing the

function w,1 defined through the magnetic differential equation

B · ∇(nzw)=−B×∇ψ · ∇(nzB−2), (2.9)

so that

Ze〈Γz · ∇ψ〉
NC
= 〈B · [Zenzw∇Φ +wTinz∇ ln nz]〉

= 〈BwRz‖〉, (2.10)

where we have used parallel force balance to relate the gradients to the friction force
Rz‖. An expression for Rz‖ is presented in § 3. To calculate the friction force, we must
however know the parallel impurity flux, which is the subject of the next section.

1Note that Calvo et al. (2018) defines U1 instead of w; they are related through U1 =wnz/Nz.
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2.2. Parallel impurity flux
From (2.6), we get the impurity flux in the B × ∇ψ-direction (denoted with a ∧
subscript) as

Γz∧ =
B×∇ψ

ZeB2

(
Zenz

∂Φ

∂ψ
+
∂pz

∂ψ
−

Rz · ∇ψ

|∇ψ |2

)
. (2.11)

In a confined plasma, the radial fluxes and thus the radial friction will be small, so
we can neglect Rz ·∇ψ in (2.11) and neglect the radial flux in the impurity continuity
equation ∇ · Γz = 0. The parallel impurity flux Γz,‖ thus satisfies

B · ∇(Γz‖B−1)=−∇ · Γz∧. (2.12)

In the Z� 1 limit, (2.12) thus becomes (recalling eΦ̃/T ∼ Z−1)

B · ∇(Γz‖B−1)=−
d〈Φ〉
dψ

B×∇ψ · ∇
( nz

B2

)
−

Ti

Ze
B×∇ψ · ∇

(
1
B2

∂nz

∂ψ

)
, (2.13)

where we have retained ∂nz/∂ψ to account for the fact that steady-state impurity
density profiles tend to be Z times larger than those of the bulk ion, i.e. ∂ψnz/nz ∼

Zdψni/ni ∼ ZdψTi/Ti (Helander & Sigmar 2005; Calvo et al. 2018).
In the ∆ � 1 limit, we can use (2.5) to obtain an explicit expression for ∂ψnz,

resulting in

Γz‖ ≡ nzVz‖ =wnz

(
d〈Φ〉
dψ
+

Ti

ZeNz

dNz

dψ

)
B+ BKz, (∆� 1), (2.14)

where Kz(ψ) is an integration constant, and we have dropped O(Z−1) terms.

3. Parallel friction force
With the parallel impurity flux from the previous section, we now have everything

needed to calculate the ion-impurity parallel friction.
As the collisions with electrons can be neglected, the friction force on the impurities

can be expressed as

Rz ≈Rzi =−Riz =−

∫
d3vmivCiz, (3.1)

where Rab denotes the friction force on species a by species b, and Ciz is the ion-
impurity collision operator. Since mz�mi for high-Z impurities, we can use a mass-
ratio expanded ion-impurity collision operator

Ciz = ν
D
iz (v)

(
L( fi1)+

miv ·Vz

Ti
fi0

)
, (3.2)

where Vz=Γz/nz is the flow of the impurities, L is the Lorentz operator (Helander &
Sigmar 2005), fi1 the order ρ∗ part of the ion distribution function and the collision
frequency νD

iz is

νD
iz =

nzZ2e4 lnΛ
4πm2

i ε
2
0v

3
. (3.3)
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The lowest-order ion distribution function fi0 is taken to be a stationary Maxwell–
Boltzmann distribution, and to calculate the parallel friction force we only need the
gyrophase-independent part of fi1 (which we denote by Fi1). This function is given by
the ion drift-kinetic equation

v‖∇‖Fi1 + vd · ∇fi0 =Ci, (3.4)

where gradients are taken with E =mv2/2+ eΦ and µ=miv
2
⊥
/(2B) fixed – although

we will later make use of the fact that the potential energy is approximately constant
over an ion orbit and use the approximate invariants v and λ= v2

⊥
/(v2B) as velocity

coordinates.
The collision operator is approximately given by collisions with bulk ions and

impurities, Ci ≈Ciz +Cii, and we use a model operator for ion–ion collisions

Cii = ν
D
ii (v)

(
L(Fi1)+

miv ·U
Ti

fi0

)
, (3.5)

where U is determined by momentum conservation and the collision frequency is

νD
ii =

nie4 lnΛ
4πm2

i ε
2
0v

3
(erf (v/vTi)−G(v/vTi)), (3.6)

where erf is the error function and G the Chandrasekhar function (Helander & Sigmar
2005).

We will assume that Ci is smaller than the other terms in (3.4) and expand Fi1 =

Fi1(−1) + Fi1(0) + Fi1(1) + · · · in collisionality, so that

v‖∇‖Fi1(−1) = 0 (3.7)
v‖∇‖Fi1(0) + vd · ∇fi0 =Ci[Fi1(−1)] (3.8)

v‖∇‖Fi1(1) =Ci[Fi1(0)]. (3.9)

We solve (3.7)–(3.9) as in Newton et al. (2017), except that we allow nz to vary on the
flux surface, which makes the expressions less compact; the details are thus relegated
to appendices A–D.

The parallel friction force becomes

Riz‖ =
nimi

τiz

(
Vz‖ −

Ti

e

[
Ai1 −

3
2

Ai2

]
Bu− BP(ψ)

)
, (3.10)

where Ai1 = (d ln pi/dψ) + (e/Ti)(d〈Φ〉/dψ) and A2i = (d ln Ti/dψ) are the ion
thermodynamic forces; τ−1

iz = Z2nze4 ln Λ/(3π3/2m2
i ε

2
0v

3
Ti); P(ψ) is a flux-surface

constant defined in (B 2); Vz‖ is obtained from (2.12) combined with the solvability
condition to (2.2), as described in appendix D; u satisfies the magnetic equation

B · ∇u=−B×∇ψ · ∇B−2, (3.11)

with u= 0 at the maximum of B.
Equation (3.10) can be used to solve for nz from the parallel momentum equation

(2.2), given a mechanism to set Φ̃. We will not attempt such a daunting task at this
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time, and instead consider the ∆� 1 limit in the following section. In this limit, the
form of Vz‖ is known from (2.14), so the parallel friction becomes

Riz,‖
nzτiz

nimi
=

[
nzwB− nzB

〈wB2
〉

〈B2〉

]
Ti

e

(
e
Ti

d〈Φ〉
dψ
+

1
ZNz

dNz

dψ

)
+

B− nzB

〈
B2

nz

〉
〈B2〉

Kz

−

[
nzuB− nzB

〈uB2
〉

〈B2〉

]
Ti

e

[
Ai1 −

3
2

Ai2

]
, (3.12)

where Kz is determined by the solvability condition, and is given by

Kz(ψ) = −

〈
B2

nz
(1− c4α)

〉−1

〈(1− c4α)wB2
〉
Ti

e

(
e
Ti

d〈Φ〉
dψ
+

1
ZNz

dNz

dψ

)
+

〈
B2

nz
(1− c4α)

〉−1

(c2 + 〈uB2
〉[c1 + 1])

Ti

e
A1i

+

〈
B2

nz
(1− c4α)

〉−1 (
c3 −

5
2

c2 − 〈uB2
〉

[
c1η+

3
2

])
Ti

e
A2i, (3.13)

where α = Z2nz/ni; η ≈ 1.17; the ci are flux-surface constants which depend on the
magnetic geometry and the impurity density variations on the flux surface, and are
defined in equations (D 3)–(D 6).

4. Impurities in the ∆� 1 limit

In the ∆� 1 limit, with nz = nz0 + nz1 + · · · and Φ̃ = Φ̃0 + Φ̃1 + · · · , the zeroth-
order parallel momentum equation becomes

Tz∇‖nz0 =−Zenz0∇‖Φ̃0, (4.1)

so the zeroth-order impurity density is given by a Boltzmann response to Φ̃0

nz0 =Nz(ψ)e−ZeΦ̃0/Tz, (4.2)

where Nz, sometimes referred to as the pseudo-density, is a flux function. Here, we
assume that Φ̃0 is known and set by a mechanism unrelated to flux-surface variation
in nz. This is appropriate, since we know that nz0 cannot give rise to a non-zero Φ̃,
so that nz gives no contribution to Φ̃ to this order; recall the discussion below (2.5).

If (4.2) is used to write Φ̃0 in terms of nz0, the first-order parallel momentum
equation becomes

Tznz0∇‖

(
nz1

nz0
+

Ze
Tz
Φ̃1

)
= Rz‖[nz0], (4.3)

which has the solvability condition 〈n−1
z0 BRz‖[nz0]〉 = 0. This is the same solvability

condition as that of the exact equation (2.2), except with nz→ nz0, which implies that
the flux to order ∆1 can be consistently calculated from (2.10) with nz0.

We thus have
〈Γz · ∇ψ〉

NC
=

1
Ze
〈w0BRz‖[nz0]〉, (4.4)

where w0 is given by (2.9) but with nz → nz0, and −Rz‖ is given by (3.12). The
resulting flux can be written

https://doi.org/10.1017/S0022377818000867 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000867


8 S. Buller, H. M. Smith, P. Helander, A. Mollén, S. L. Newton and I. Pusztai

〈Γz · ∇ψ〉
NC

〈nz0〉
=DNC

Φ

e
Ti

d〈Φ〉
dψ
−

1
Z

DNC
Nz

d ln Nz

dψ
−DNC

ni

d ln ni

dψ
−DNC

Ti

d ln Ti

dψ
, (4.5)

where

DNC
Φ =

miniTi

Ze2〈nz0〉nz0τiz0

〈nz0w0(u−w0)B2
〉 −
〈nz0w0B2

〉

〈B2〉
〈(u−w0)B2

〉

+

〈nz0w0B2
〉

〈B2〉

〈
B2

nz0

〉
− 〈w0B2

〉〈
B2

nz0
(1− c4α)

〉 (c2 + 〈(u−w0)B2
〉 + c1〈uB2

〉 + c4〈αw0B2
〉)


(4.6)

DNC
Nz
=

miniTi

Ze2〈nz0〉nz0τiz0

〈nz0w2
0B2
〉 − 〈nz0w0B2

〉
〈w0B2

〉

〈B2〉

+

〈nz0w0B2
〉

〈B2〉

〈
B2

nz0

〉
− 〈w0B2

〉〈
B2

nz0
(1− c4α)

〉 〈(1− c4α)w0B2
〉

 (4.7)

DNC
ni
= −

miniTi

Ze2〈nz0〉nz0τiz0Ze

〈nz0w0uB2
〉 − 〈nz0w0B2

〉
〈uB2
〉

〈B2〉

+

〈nz0w0B2
〉

〈B2〉

〈
B2

nz0

〉
− 〈w0B2

〉〈
B2

nz0
(1− c4α)

〉 (c2 + 〈uB2
〉[c1 + 1])

 (4.8)

DNC
Ti
=

miniTi

Ze2〈nz0〉nz0τiz0

1
2

(
〈nz0w0uB2

〉 − 〈nz0w0B2
〉
〈uB2
〉

〈B2〉

)

−

〈nz0w0B2
〉

〈B2〉

〈
B2

nz0

〉
− 〈w0B2

〉〈
B2

nz0
(1− c4α)

〉 (
c3 −

3
2

c2 − 〈uB2
〉

[
c1(η− 1)+

1
2

]) ,
(4.9)

with τiz0 given by the expression for τiz, but with nz→ nz0. From (4.6), we see that
the flux due to the radial electric field is generally non-zero, but that it vanishes
when nz0 is constant on the surface. The non-zero DNC

Φ can in fact dominate the other
neoclassical transport coefficients, as will be seen in § 6.
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4.1. Trace limit
The transport coefficients in (4.6)–(4.9) simplify somewhat in the trace limit, where
all the ci reduce the expressions in terms of standard functions of geometry. Using
(E 9)–(E 12), we get that

DNC
Φ =

miniTi

Ze2〈nz0〉nz0τiz0

〈nz0w0(u−w0)B2
〉 +
〈w0B2

〉
2〈

B2

nz0

〉 − 〈uB2
〉

〈B2〉
〈nz0w0B2

〉

+

 〈nz0w0B2
〉

〈B2〉
−
〈w0B2

〉〈
B2

nz0

〉
 ( fs + 〈uB2

〉)

1− fc

 (4.10)

DNC
Nz
=

miniTi

Ze2〈nz0〉nz0τiz0

〈nz0w2
0B2
〉 −
〈w0B2

〉
2〈

B2

nz0

〉
 (4.11)

DNC
ni
= −

miniTi

Ze2〈nz0〉nz0τiz0

〈nz0w0uB2
〉 −
〈uB2
〉

〈B2〉
〈nz0w0B2

〉

+

 〈nz0w0B2
〉

〈B2〉
−
〈w0B2

〉〈
B2

nz0

〉
 ( fs + 〈uB2

〉)

1− fc

 (4.12)

DNC
Ti
=

1
2

miniTi

Ze2〈nz0〉nz0τiz0

〈nz0w0uB2
〉 −
〈uB2
〉

〈B2〉
〈nz0w0B2

〉

+

 〈nz0w0B2
〉

〈B2〉
−
〈w0B2

〉〈
B2

nz0

〉
 ( fs + 〈uB2

〉)

1− fc
(1+ (2η− 3)fc)

 , (4.13)

which are the expressions we will use in § 6.

5. Classical transport
Finally, we calculate the classical flux, given by the first term in (2.7). Using our

mass-ratio expanded collision operator and momentum conservation, the perpendicular
friction becomes

Rzi⊥ =−

∫
d3vmiν

D
iz (v)

(
v⊥L( fi1)+

miv⊥v ·Vz

Ti
fi0

)
, (5.1)
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where v⊥ = v − v‖b with v‖ = v · b.
In (5.1), only the gyrophase-dependent part of fi1 contributes to the first term, and

only the perpendicular impurity flow contributes to the last. The gyrophase-dependent
part of fi1 (which we denote f̃i1) is given by (Hazeltine 1973)

f̃i1 =−ρi · ∇fi0, (5.2)

where the gyroradius vector is

ρi = ρi(e2 sin γ + e3 cos γ )= b× v⊥/Ωi, (5.3)

with {b, e2, e3} an orthonormal set of vectors, and Ωi = eB/mi. Thus, we have
everything required to calculate the perpendicular friction, which becomes

Rzi⊥ =
mini

τiz

Ti

eB
b×∇ψ

[
A1i −

3
2

A2i

]
−

nimi

τiz
Vz⊥. (5.4)

Using the same approximations and assumptions as in the neoclassical expressions, we
have Vz⊥ = (Ti/eB)((e/Ti)(d〈Φ〉/dψ)+ (1/ZNz)(dNz/dψ)), and thus obtain

Rzi⊥ =
mini

nzτiz
nz

B×∇ψ
B2

Ti

e

[
d ln ni

dψ
−

1
2

d ln Ti

dψ
−

1
ZNz

dNz

dψ

]
, (5.5)

resulting in the classical impurity flux

〈Γz · ∇ψ〉
C
≡

1
Ze

〈
B×∇ψ

B2
·Rz

〉
=

mini

Zenzτiz

〈
nz
|∇ψ |2

B2

〉
Ti

e

[
d ln ni

dψ
−

1
2

d ln Ti

dψ
−

1
ZNz

dNz

dψ

]
, (5.6)

or

〈Γz · ∇ψ〉
C
=−〈nz0〉

(
1
Z

DC
Nz

d ln Nz

dψ
+DC

ni

d ln ni

dψ
+DC

Ti

d ln Ti

dψ

)
. (5.7)

The classical flux is often neglected as smaller than the neoclassical flux. To get
a simple estimate of its importance, we take the homogeneous nz limit of (4.5) and
(5.6), so that the ratio of classical to neoclassical flux depends purely on geometry

〈Γz · ∇ψ〉
C

〈Γz · ∇ψ〉NC
=

〈
|∇ψ |2

B2

〉
〈B2
〉

(〈u2B2〉〈B2〉 − 〈uB2〉2)
. (5.8)

This ratio is indeed small in conventional tokamaks and stellarators (it is ∼0.1–0.6
in ASDEX Upgrade, and ∼0.1–1 in LHD), but it is ∼3–3.5 in a standard W7-X
configuration.

W7-X differs from LHD in that it has been optimized to have a low ratio of parallel
to perpendicular current. To see how this affects the ratio (5.8), we can express the
parallel current in the following way: charge conservation imposes ∇ · j= 0, where j
is the current density. Assuming that the equilibrium magnetic field can be written as
j× B=∇p, where p is the total pressure p=

∑
a pa, which is assumed to be a flux
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(a) (b) (c)

FIGURE 1. (a) A W7-X standard configuration vacuum field, with (b) Φ̃ and (c) nz0, for
Φ̃(B)= Φ̃(B0)e−(B−B0)

2/(2σ 2)
− X with B0 = Bmax, Φ̃(B0)=−10 V and σ = 0.1|Bmax − Bmin|,

Z = 24, 〈nz〉 = 3.472× 1016 m−3 and Ti = Tz = 1 keV. X is an integration constant set to
make 〈Φ̃〉 = 0.

function to the required order, the parallel current density becomes j‖ = uB(dp/dψ).
The ratio of parallel and perpendicular current then becomes

j‖
| j⊥|
=

uB
|B×∇ψ/B2|

, (5.9)

which can be made small by making u/|∇ψ | small, which simultaneously makes (5.8)
large. The classical flux remains large even when nz varies on the flux surface, as we
will see in the next section.

6. Wendelstein 7-X test case
To explore the implications of the flux-surface variation of nz0 in (4.6)–(4.9), we

consider a scenario where Φ̃ is given by

Φ̃(B)= Φ̃(B0)e−(B−B0)
2/(2σ 2)

− X, (6.1)

where Φ̃(B0) is the amplitude of the potential, B0 is an extremum of B, σ gives the
width of Φ̃ and X is an integration constant chosen to make 〈Φ̃〉 = 0. The above
Φ̃ is intended to roughly emulate a potential perturbation due fully circulating fast
(collisionless) particles, although we are primarily interested in (6.1) as a simple test
case, and will not be so concerned with whether it is a realistic fast-particle response.

We take B from a Wendelstein 7-X vacuum field,2 and solve the magnetic
differential equations for u and w numerically for this field. The magnetic field
in Boozer coordinates (with ζ , θ being toroidal and poloidal angle, respectively) is
visualized in figure 1, together with an example Φ̃ and the resulting nz0 for Z = 24
and 〈nz〉 = 3.472× 1016 m−3.

To investigate the effects of a localized nz distribution, we performed a scan
where the amplitude of the potential perturbation is increased. Specifically, the
potential perturbation is centred at Bmax or Bmin, and the amplitude Φ̃(B0) is scanned
from eΦ̃/Tz = −0.1 to eΦ̃/Tz = 0.1 – where a negative/positive sign corresponds
to impurities accumulating/decumulating at Bmax or Bmin. The ion temperature and

2We use a W7-X standard configuration at normalized radius rN = 0.6, where rN =
√
ψt/ψt,LCFS, with

ψt the toroidal flux and ψt,LCFS its value at the last-closed flux surface. The data are available at (Verified
2018-05-31) https://github.com/landreman/sfincs/blob/master/equilibria/w7x-sc1.bc.
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(a) (b)

FIGURE 2. Transport coefficients, for different potential perturbation amplitudes Φ̃(B0),
for Φ̃ localized around (a) Bmax and (b) Bmin. Ti = 1 keV and ni = 2 × 1020 m−3, σ =
0.1|Bmax − Bmin|, Z = 24, 〈nz〉 = 3.472× 1016 m−3; DNC refers to the neoclassical transport
coefficients, while D is the sum of classical and neoclassical. At amplitudes roughly within
eΦ̃/Ti ∈ [−0.007, 0], the flux due to an inward radial electric field is outward but very
weak.

density are Ti = 1 keV and ni = 2× 1020 m−3; mi is taken as the proton mass. These
values give Z2

〈nz〉/ni = 0.1, so the impurities are trace. For these parameters, the
collisionalities are ν̂ii = 0.096 and ν̂zz = 5.55, where we have used L‖ = (G+ ιI)/B00

as a proxy for the length scale for parallel variations; here ι is the rotational transform,
G and I are related to the magnetic field and defined in § 2.5 of Helander (2014),
B00 is the n=m= 0 Fourier component of B in Boozer coordinates.

The resulting transport coefficients are shown in figure 2. In the figures, D (without
superscript index) refers to the sum of neoclassical and classical D values. For
comparison, we also show DNC; DNz is not shown, since DNz = −DΦ − Dni , and
the Schwarz inequality causes it to always be non-negative, so that the question of
whether impurities accumulate can be answered without its exact value. As indicated
in § 5, classical transport is dominant for this field configuration at Φ̃ = 0, but
we also see that the transport due to the radial electric field starts to dominate
already at eΦ̃(B0)/Ti ∼ 0.02. When the radial electric field does not dominate, the
impurities will be driven outwards when the temperature gradient is strong enough,
i.e. we have temperature screening. Specifically, temperature screening occurs when
dψ ln Ti >−Dnidψ ln ni/DTi ≈2dψ ln ni, and thus depends on the ratio Dni/DTi . This ratio
is equal to −2 to within 1 % in the Φ̃-amplitude window when radial electric field
does not dominate, so the temperature screening condition is essentially unaffected,
despite the transport coefficients Dni and DTi varying by approximately 25 % in this
window. We also see that both when B0 = Bmax and B0 = Bmin, there is a very narrow
amplitude range, approximately eΦ̃(B0)/Ti ∈ [−0.007, 0], in which the impurity flux
due to an inward radial electric field is weakly positive.

From figure 2, we also see that most of the variation in Dni and DTi comes from the
neoclassical flux. This can partly be understood from the simpler form of the classical
flux (5.6), where the dependence on nz is linear, so that the localized nz perturbation
due to Φ̃ merely acts as a weight in the geometric factor 〈nz|∇ψ |

2/B2
〉, which here

gives a small effect when integrated over the flux surface. In contrast, the neoclassical
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(a) (b)

FIGURE 3. Transport coefficient for varying σ , for Φ̃ given by (6.1), with eX/Ti=−0.025
and Φ̃(B0) set to make 〈Φ̃〉 = 0. The potential is centred around (a) Bmax, and (b) Bmin.
Unless otherwise stated, quantities have the same value as in figure 2.

FIGURE 4. Figure corresponding to figure 2, but with nz0 concentrated around (or repelled
from) the B= (Bmin/2+ Bmax/2) contour.

flux (4.5) is nonlinear in nz, and the total flux through the flux surface is set by a
balance between inward and outward fluxes at different points on the flux surface.

To investigate the effects of more localized nz0, we scanned the width of Φ̃, while
keeping X and 〈nz0〉 constant. For small σ , this results in nz0 that are very localized
around the extremum of B. The result is shown in figure 3. From the figure, we
see that DNC

Φ diverges for localized nz0. This is due to the w2
0 terms in DNC

Φ : nz0w0

obtained from (2.9) is not localized to regions where nz0 is localized, which results in
a large w0 where nz0 is small. In contrast, the DNC

ni
and DNC

Ti
remains finite, as w0 only

appears together with an nz0 in those terms. In comparison to the neoclassical transport
coefficients, the classical coefficients are only moderately affected by a more localized
nz0, for the same reasons as discussed in relation to the amplitude scan above.

To see whether this conclusion holds for more general nz0, we let B0 in (6.1) be
a non-extremum point (within the flux surface), i.e. B0 ∈ (Bmin, Bmax). The resulting
density distributions nz0 will be concentrated or repelled from a contours of B, rather
than points, and do not necessarily represent realistic density variations: rather, they
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(a) (b)

(c) (d)

FIGURE 5. Transport coefficient when B0 is changed from Bmin to Bmax. Apart from
B0, quantities have the same values as in figure 2. The black lines indicate potential
amplitudes at which the radial electric field starts to dominate: the solid line is where
DΦ =Dni +DTi , the dashed is where 10DΦ =Dni +DTi . (b) Dni/DTi , which is within 1 %
of 2 for amplitudes where Dni + DTi > DΦ (deviations larger than 1 % are white in the
figure).

provide simple test cases very different from those considered above, and thus give
an indication of how general the above conclusions are.

For B0=Bmin/2+Bmax/2, the resulting D values are displayed in figure 4. Here, the
DΦ increases rapidly with the amplitude, and dominates the flux except for a small
interval about 0. Meanwhile, DTi and Dni are barely affected, with a slight reduction
in magnitude when the impurities are repelled from B0.

To connect this result to when B0 is an extremum, we scanned B0 from Bmin to
Bmax. The resulting D values are shown in figure 5. Looking at DΦ , we see that as
we go from B0=Bmin/2+Bmax/2 (x= 0 in the figure) towards the extrema (x= 1 and
x=−1), DΦ tends to become less sensitive to the amplitude.

From figure 5(b), we see that for all B0, Dni/DTi changes by less than 1 % within
the amplitude interval where DΦ is small enough to not notably affect temperature
screening (this interval is within or slightly outside the dashed lines, which show
where 10DΦ =Dni +DTi).

To conclude, it thus appears that strong Φ̃ perturbations are likely to lead to strong
impurity accumulation if the radial electric field is pointing inwards, and that the
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condition for temperature screening is essentially unchanged from the Φ̃ = 0 case
when the Φ̃ perturbations are weak enough so that the radial electric field is not
dominant.

7. Summary and conclusions
We have derived expressions for the radial flux of high-Z collisional impurities

when the bulk ions are in the 1/ν regime. In this limit, the impurity temperature
is equilibrated with the bulk ions, while the impurity density can vary within the
flux surface. We have derived an expression for the parallel friction force acting on
the impurities, which can be used to solve for the impurity density variations on the
flux surface, given a mechanism for relating the impurity density to the electrostatic
potential.

We considered in detail the trace impurity limit, with the impurity density set by a
Boltzmann response to an externally imposed the electrostatic potential. Using simple
models for Φ̃ and a W7-X vacuum field, we have seen that large Φ̃ amplitudes can
cause the radial electric field to substantially contribute to the impurity transport,
and lead to impurity accumulation when the radial electric field points inward. For
smaller Φ̃ amplitudes, temperature screening can be effective, and the condition
for temperature screening is essentially the same as in the Φ̃ = 0 case, meaning
that the temperature profile should be at least twice as steep as the density profile
for screening to happen. In all cases, the contribution from classical transport is
substantial, and even moderate Φ̃ can cause the electric field to dominate if classical
transport is not accounted for.

It is however not straightforward to extrapolate from these results to general Φ̃,
as the neoclassical impurity flux does not depend linearly on nz, so the flux from
a general nz flux-surface distribution is not a superposition of fluxes from simpler
nz distributions. Realistic Φ̃ or nz distributions may be needed to evaluate the fluxes
accurately, especially when neoclassical transport is comparable to or stronger than
the classical. We refer the interested reader to Calvo et al. (2018), where an LHD
equilibrium with a Φ̃ set-up by particle trapping effects of the bulk ions is considered.
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Appendix A. Solving the ion drift-kinetic equation
In this section, we solve the ion kinetic equation (3.7)–(3.9) for Fi1(−1) and Fi1(0).

The solution follows Newton et al. (2017), but here nz is allowed to vary on the
flux surface. Since we assume eΦ̃/Ti ∼ Z−1, the potential energy of the bulk ions is
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approximately constant on the flux surface, and we change variables from E , µ to the
approximate invariants v and λ.

We note that since we only use Fi1 to calculate the ion-impurity friction force, we
only need the part of Fi1 that is odd in v‖. We thus split (3.7)–(3.9) into odd and even
equations.

Denoting the odd (even) part of the distribution function with a minus (plus)
superscript, the order ν̂−1 equations become

v‖∇‖F+i1(−1) = 0 (A 1)

v‖∇‖F−i1(−1) = 0, (A 2)

which simply states that Fi1(−1) is constant along field lines,

Fi1(−1) = Fi1(−1)(l0), (A 3)

where l0 is an arbitrary point on the field line. In the trapped region, this implies that
F−i1(−1) = 0, since it must vanish at bounce points. In the passing region, Fi1(−1)(l0) is
set by solvability conditions to the next-order equations.

To order ν̂0, we have that

v‖∇‖F+i1(0) =C−i [Fi1(−1)]. (A 4)

v‖∇‖F−i1(0) + vd · ∇fi0 =C+i [Fi1(−1)]. (A 5)

In the passing region, the odd and even part of Fi1(−1)(l0) can be determined by acting
with 〈B/v‖ · · · 〉 on equations (A 4)–(A 5), resulting in〈

B
v‖

C−i [Fi1(−1)]

〉
= 0 (A 6)〈

B
v‖

C+i [Fi1(−1)]

〉
=

〈
B
v‖

vd · ∇ψ

〉
∂ψ fi0 = 0, (A 7)

where the latter equality follows from writing vd · ∇ψ = v‖(b×∇ψ) · ∇(v‖/Ωi). The
odd and even parts of the collision operator are

C+i [X] = (ν
D
ii + ν

D
iz )LX+ (A 8)

C−i [X] = (ν
D
ii + ν

D
iz )LX− +

mi fi0

Ti
v‖(ν

D
ii U‖ + νD

iz Vz‖), (A 9)

with L= (2v‖/v2B)(∂/∂λ)λv‖(∂/∂λ). Equation (A 6) implies that F+i1(−1) is constant in
λ, so that C+i [Fi1(−1)] = 0 in the passing region. The same argument applies to F−i1(−1),
unless there is a parallel impurity flow in (A 9) to order ν̂−1 to act as a source in (A 6).
Such order ν̂−1 flows cannot arise in the mixed-collisionality regime, so F−i1(−1) = 0
(Newton et al. 2017). However, to make the Fi1 formulas in this section apply for any
impurity collisionality, we will nevertheless allow for F−i1(−1) 6= 0 below, as it turns out
to not be inconvenient to calculate F−i1(−1) together with F−i1(0).

To solve for F−i1(0), we note that (A 5) can be formally solved by integrating along
a field line; using l to denote the distance along the field line, we have

F−i1(0)(l)= F−i1(0)(l0)+

∫ l

l0

dl′

v‖
[C+[F1(−1)] − vd · ∇fi0(l′)], (A 10)
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where the integration constant F−i1(0)(l0) again is set by the solvability condition of
the next-order equation. Taking l0 to be a bounce point, B(l0) = 1/λ, we have that
F−i1(0)(l0)= 0 in the trapped region. To determine F−i1(0)(l0) the passing region, we again
act with 〈B/v‖ · · · 〉 on the next-order odd equation, which gives〈

B
v‖

C−i [Fi1(0)]

〉
= 0. (A 11)

Note that this is essentially the same equation as (A 6). Thus, the total distribution
Fi1 ≈ Fi1(0) + Fi1(−1) can be written in the same form as Fi1(0), but with an order ν̂−1

contribution to the integration constant F−i1(l0) ≈ F−i1(−1)(l0) + F−i1(0)(l0). As such, it is
in some sense irrelevant whether parts of Vz‖ are order ν̂−1 or ν̂0, as Fi1(0)+Fi1(−1) is
not affected by the way this decomposition of Vz‖ is done.

Inserting (A 9) into (A 11) gives the following equation for the integration constant
F−i1(l0)= F−i1(−1)(l0)+ F−i1(0)(l0)

∂

∂λ
F−i1(l0) = −

mv2

2
〈[

1+
νD

iz (l)
νD

ii

]
v‖

〉
×

(
1
e

〈[
1+

νD
iz (l)
νD

ii

]
g4(l, λ)

〉
∂fi0

∂ψ
+

1
Ti

fi0

〈
B
[

U‖ +
νD

iz (l)
νD

ii
Vz‖

]〉)
,

(A 12)

in the passing region. To account for the vd · ∇fi0 term, we have introduced the
geometric function (Nakajima et al. 1989)

g4(λ, l)= v‖

∫ l

l0

dl′(b×∇ψ) · ∇
(

1
v‖

)
. (A 13)

Note that C+i [Fi1(−1)] = 0 in this region. In the trapped region, on the other hand,
F−i1(l0) = 0 but C+i [Fi1(−1)] 6= 0. However, the C+i [Fi1(−1)]-term nevertheless gives no
contribution to the parallel flow or friction force in this region (Helander, Parra &
Newton 2017b).

Appendix B. Parallel friction force
Once U‖ and Vz‖ are known, we can use (A 10) and (A 12) to directly evaluate

the parallel friction force acting on the impurities. From our mass-ratio expanded
ion-impurity collision operator (3.2) and the self-adjointness of the Lorentz operator,
we have

Riz‖ =

∫
d3vmiv‖ν

D
iz (v)

(
miv‖Vz‖

Ti
fi0 − F−i1

)
=

nimi

τiz

(
Vz‖ −

Ti

e

[
Ai1 −

3
2

Ai2

]
Bu− BP(ψ)

)
, (B 1)

where u satisfies the magnetic equation (3.11) and P is a flux function which contains
the contribution from the integration constant F−i1(l0)

P(ψ)≡
τiz

Bni

∫
d3vv‖ν

D
iz (v)F

−

i1(l0). (B 2)
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P(ψ) can be evaluated using (A 12) and partial integration in λ

P(ψ)=
〈BU‖〉
〈B2〉

b1 +
〈αBVz‖〉

〈B2〉
b4 +

Ti

e
A1i −

5
2 A2i

〈B2〉
b2 +

Ti

e
A2i

〈B2〉
b3, (B 3)

where we have introduced

b1 =
mπ〈B2

〉

niTi{ν
iz
D}

∫
∞

0
dvv4ν iz

D fi0

∫ 1/Bmax

0
dλλ

1

〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 (B 4)

b2 =
mπ〈B2

〉

niTi{ν
iz
D}

∫
∞

0
dvv4ν iz

D fi0

∫ 1/Bmax

0
dλλ

[
〈g4〉 +

〈
νD

iz

νD
ii

g4

〉]
〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 (B 5)

b3 =
mπ〈B2

〉

niTi{ν
iz
D}

∫
∞

0
dvv4 miv

2

2Ti
ν iz

D fi0

∫ 1/Bmax

0
dλλ

[
〈g4〉 +

〈
νD

iz

νD
ii

g4

〉]
〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 (B 6)

b4 =
mπ〈B2

〉

Z2nzTi{ν
iz
D}

∫
∞

0
dvv4ν iz

D
ν iz

D

νD
ii

fi0

∫ 1/Bmax

0
dλλ

1

〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 , (B 7)

with ξ = v · b/v. The velocity average {·} is defined as

{F(v)} ≡
8

3
√

π

∫
∞

0
dxF(x)x4e−x2

, (B 8)

where x= v/vTi.
To have the boundary terms from the partial integration disappear in (B 3), we have

defined l0 through B(l0)= Bmax. This makes our choice of l0 continuous when going
from the trapped to the passing region, and thus ensures that F−i1(l0) is zero at the
trapped–passing boundary λ= 1/Bmax.

Appendix C. Momentum restoring term U‖
The momentum restoring term in the ion–ion model collision operator (3.5) is

calculated so that ion–ion collisions conserve momentum. Specifically, we have

U‖ =
1

ni{ν
ii
D}

∫
d3vv‖ν

ii
DF−i1. (C 1)

Inserting F−i1 from (A 10) and using (A 12), we get

〈BU‖〉(1− a1)

=
Ti

e

(
[a2 + 〈uB2

〉]A1i +

[
a3 −

5
2

a2 − 〈uB2
〉η

]
A2i

)
+ a4〈αBVz‖〉, (C 2)
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where we have defined the geometry–impurity-dependent flux-surface constants

a1 =
mπ〈B2

〉

niTi{ν
ii
D}

∫
∞

0
dvv4ν ii

D fi0

∫ 1/Bmax

0
dλλ

1

〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 (C 3)

a2 =
mπ〈B2

〉

niTi{ν
ii
D}

∫
∞

0
dvv4ν ii

D fi0

∫ 1/Bmax

0
dλλ

[
〈g4〉 +

〈
νD

iz

νD
ii

g4

〉]
〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 (C 4)

a3 =
mπ〈B2

〉

niTi{ν
ii
D}

∫
∞

0
dvv4 miv

2

2Ti
ν ii

D fi0

∫ 1/Bmax

0
dλλ

[
〈g4〉 +

〈
νD

iz

νD
ii

g4

〉]
〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 (C 5)

a4 =
mπ〈B2

〉

Z2nzTi{ν
ii
D}

∫
∞

0
dvv4νD

iz fi0

∫ 1/Bmax

0
dλλ

1

〈ξ〉 +

〈
νD

iz

νD
ii
ξ

〉 . (C 6)

Appendix D. Solvability condition and Kz

Equation (2.12) specifies Vz‖ up to a flux function Kz (cf. (2.14)). This Kz can be
determined from solvability condition of (2.2), which states that〈

BRz‖

nz

〉
= 0. (D 1)

Inserting (3.10), the solvability condition becomes

nimi

nzτiz

(
〈BVz‖〉 −

Ti

e

[
Ai1 −

3
2

Ai2

]
〈uB2
〉 − 〈B2

〉P(ψ)
)
= 0. (D 2)

In the ∆� 1 limit, we can insert our expression for Vz‖, (2.14), to solve for Kz.
This results in (3.13), where we have defined

c1 = b1 + a1c1 H⇒ c1 = b1/(1− a1), (D 3)
c2 = b2 + a2c1, (D 4)
c3 = b3 + a3c1, (D 5)
c4 = b4 + a4c1, (D 6)

for the sake of compactness.

Appendix E. Trace impurity limit of some expressions

In the trace impurity limit, α ≡ Z2nz/ni � 1, the ai, bj and ck terms simplify
considerably, yielding an expression for Kz in terms of standard geometry functions.
Specifically,

a1 = b1 = fc, (E 1)
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a2 = b2 = fs, (E 2)
a3 = fs(

5
2 − η), (E 3)

b3 = fs, (E 4)

a4 =
fc

α

{ν iz
D}

{ν ii
D}
, (E 5)

b4 =
fc

α

{ν iz
D

2
/ν ii

D}

{ν iz
D}

. (E 6)

Note that a4 and b4 only appear in terms containing α, which are negligible in the
trace limit. Here,

fc =
3〈B2
〉

4

∫ 1/Bmax

0
dλ
λ

〈ξ〉
(E 7)

fs =
3〈B2
〉

4

∫ 1/Bmax

0
dλ
λ〈g4〉

〈ξ〉
, (E 8)

are standard functions of geometry.
With this, we have that

c1 =
fc

1− fc
, (E 9)

c2 =
fs

1− fc
, (E 10)

c3 =
fs

1− fc

[
1+ fc

(
3
2
− η

)]
, (E 11)

c4 =
fc

α

(
{ν iz

D
2
/ν ii

D}

{ν iz
D}
+

fc

1− fc

{ν iz
D}

{ν ii
D}

)
, (E 12)

and Kz becomes

Kz(ψ)

〈
B2

nz

〉
=

Ti

e
[ fs + 〈uB2

〉]

([
fc

1− fc
+ 1
]

A1i −

[
ηfc

1− fc
+

3
2

]
A2i

)
−

d〈Φ〉
dψ
〈wB2
〉,

(E 13)

which results in the friction force

Riz,‖
τiz

nimi
=

w−
〈wB2
〉

nz

〈
B2

nz

〉
 B

d〈Φ〉
dψ

+

 〈uB2
〉

〈B2〉
− u+

 1

nz

〈
B2

nz

〉 − 1
〈B2〉

 [ fs + 〈uB2
〉]

[
fc

1− fc
+ 1
] B

Ti

e
Ai1
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−

3
2
〈uB2
〉

〈B2〉
−

3
2

u+

 1

nz

〈
B2

nz

〉 − 1
〈B2〉

 [ fs + 〈uB2
〉]

[
ηfc

1− fc
+

3
2

] B
Ti

e
Ai2.

(E 14)
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