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Abstract

Let R be a commutative ring with identity which is not an integral domain. An ideal I of R is called an
annihilating ideal if there exists r ∈ R − {0} such that Ir = (0). The total graph of nonzero annihilating
ideals of R is the graph Ω(R) whose vertices are the nonzero annihilating ideals of R and two distinct
vertices I, J are joined if and only if I + J is also an annihilating ideal of R. We study the strong metric
dimension of Ω(R) and evaluate it in several cases.
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1. Introduction

The metric dimension of a graph was introduced by Harary and Melter [6] and it
has been studied for a wide variety of graphs, for example trees and unicyclic graphs
[3], wheel graphs [14] and cartesian product graphs [7]. A number of results have
been presented on the strong metric dimension of cartesian product graphs and Cayley
graphs [10] and distance-hereditary graphs [9]. Later, the metric dimension and strong
metric dimension were applied to graphs associated to commutative rings (see, for
example, [4, 5, 11–13]). In [1], the authors studied the metric dimension of the
total graph of nonzero annihilating ideals. In this paper, we study the strong metric
dimension for such graphs.

Throughout, all rings are assumed to be commutative with identity. The sets of
all maximal ideals and the Jacobson radical of R are denoted by Max(R) and J(R),
respectively. An ideal I of a ring R is called an annihilating ideal if there exists r ∈
R − {0} such that Ir = (0). The set of annihilating ideals of R is denoted by A(R). For
every ideal I of R, we denote the annihilator of I by ann(I). Further definitions relating
to commutative rings can be found in [2].

We use the standard terminology of graphs following [16]. By G = (V , E), we mean
a graph where V and E are the sets of vertices and edges, respectively. If we can find at
least one path between any two vertices of G, then G is called connected. The length
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of the shortest path between two distinct vertices x and y is denoted by d(x, y) and
diam(G) = max{d(x, y) | x, y ∈ V} is called the diameter of G. (Note that d(x, y) = ∞,
if there is no path between x and y.)

The graph H = (V0, E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover, H
is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and the edge set
is E0 = {{u, v} ∈ E | u, v ∈ V0}. For x ∈ V , let N(x) = {y ∈ V | {x, y} ∈ E}. Then N[x] =
N(x) ∪ {x}. A complete graph is a graph such that there exists an edge between each
pair of vertices; the complete graph on n vertices is denoted by Kn. For a graph G,
S ⊆ V(G) is called a clique if the subgraph induced on S is complete. The number of
vertices in the largest clique of a graph G is called the clique number of G and is often
denoted by ω(G).

Let G = (V , E) be a connected graph, S = {v1, v2, . . . , vk} an ordered subset of V and
v ∈ V(G) \ S. The metric representation of v with respect to S is the k-vector D(v|S) =
(d(v, v1), d(v, v2), . . . , d(v, vk)). For S ⊆ V , if for every v, u ∈ V(G) \ S, D(u|S) = D(v|S)
implies that u = v, then S is called a resolving set for G. A metric basis for G is a
resolving set S of minimum cardinality and the number of elements in S is called the
metric dimension of G, denoted by dimM(G).

In a connected graph G, for two distinct vertices u and v, the interval I[u, v] is the
collection of all vertices that belong to some shortest u − v path. A vertex w ∈ V(G)
strongly resolves two vertices u and v if v ∈ I[u, w] or u ∈ I[v, w]. In other words, two
vertices u and v are strongly resolved by w if d(w, u) = d(w, v) + d(v, u) or d(w, v) =
d(w, u) + d(v, u). A set W of vertices is a strong resolving set of G if every two distinct
vertices of G are strongly resolved by some vertex of W. A minimal strong resolving
set is called a strong metric basis and its cardinality is the strong metric dimension of
G, denoted by sdimM(G). One can immediately see that a strong resolving set is also a
resolving set, so that dimM(G) ≤ sdimM(G).

Let R be a commutative ring with identity which is not an integral domain.
Visweswaran and Patel [15] associated a graph Ω(R) with the set of all nonzero
annihilating ideals of R. It is the graph with vertex set A(R)∗, the set of all nonzero
annihilating ideals of R, and two distinct vertices I, J are joined if and only if I + J
is also an annihilating ideal of R. In [1], the authors studied the metric dimension
of this total graph of nonzero annihilating ideals. In this paper, we study the strong
metric dimension of the total graph of nonzero annihilating ideals. We completely
characterise the rings whose metric dimension and strong metric dimension are
equal.

2. Strong metric dimension of a total graph of a reduced ring

In this section, we derive a formula for the strong metric dimension of the
total graph of nonzero annihilating ideals when R is reduced. Also, we characterise
the rings R such that dimM(Ω(R)) = sdimM(Ω(R)). We begin with the necessary
background definitions and results. The first lemma is a simple consequence of the
definitions.
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LEMMA 2.1. Let G be a connected graph. Then the following statements hold.

(1) If W ⊂ V(G) is a strong resolving set of G and u, v ∈ V(G) are such that N(u) =
N(v) or N[u] = N[v], then u ∈ W or v ∈ W.

(2) If W ⊂ V(G) is a strong resolving set of G and u, v ∈ V(G) are such that d(u, v) =
diam(G), then u ∈ W or v ∈ W.

Let G be a graph. A set S of vertices of G is a vertex cover of G if every edge of
G is incident with at least one vertex of S. The vertex cover number of G, denoted by
α(G), is the smallest cardinality of a vertex cover of G.

The largest cardinality of a set of vertices of G, no two of which are adjacent,
is called the independence number of G and is denoted by β(G). The following
well-known result, due to Gallai, states the relationship between the independence
number and the vertex cover number of a graph G.

THEOREM 2.2 (Gallai’s theorem). For any graph G of order n, α(G) + β(G) = n.

A vertex u of G is maximally distant from v if d(v, w) ≤ d(u, v) for every w ∈ N(u).
If u is maximally distant from v and v is maximally distant from u, then we say that u
and v are mutually maximally distant. The boundary of G is

∂(G) = {u ∈ V(G) | there is v ∈ V(G) such that u, v are mutually maximally distant}.

We use the notion of strong resolving graph introduced by Oellermann and
Peters-Fransen in [10]. The strong resolving graph of G is a graph GSR with vertex
set V(GSR) = ∂(G) where two vertices u, v are adjacent in GSR if and only u and v are
mutually maximally distant.

It was shown in [10] that the problem of finding the strong metric dimension of a
graph G can be transformed into the problem of computing the vertex cover number
of GSR.

THEOREM 2.3 [10]. For any connected graph G, sdimM(G) = α(GSR).

EXAMPLE 2.4. (1) Since (Kn)SR = Kn, sdimM(Kn) = n − 1.
(2) Suppose that G is the graph in Figure 1. Set X = {V2, V3, V4} and Y =

{V1, V5, V6}. We can easily see that for any u ∈ X, there is no u ∈ V(G) such that
u and v are mutually maximally distant, whereas the vertices of Y are mutually
maximally distant from each other. It follows that ∂(G) = {V1, V5, V6} and GSR = K3.
Since α(GSR) = 2, by Theorem 2.3, sdimM(G) = 2. On the other hand, W = {V1, V6} is
a minimum strong resolving set, so we see again that sdimM(G) = 2.

EXAMPLE 2.5. Let R = F1 × F2 × F3. From Figure 2, we can easily see that

W = {(0) × F2 × F3, F1 × (0) × F3, F1 × F2 × (0)}

is the only minimum strong resolving set and hence sdimM(Ω(R)) = 3. On the other
hand, we have ∂(Ω(R)) = V(Ω(R)) and α(Ω(R)SR) = 6 − β(Ω(R)SR) = 6 − 3 = 3, which
also give sdimM(Ω(R)) = 3.
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FIGURE 1. The graphs G and GSR.

FIGURE 2. The graphs Ω(R) and Ω(R)SR.

THEOREM 2.6. Suppose that R � F1 × · · · × Fn, where Fi is a field for 1 ≤ i ≤ n. Then:

(1) ∂(Ω(R)) = V(Ω(R));
(2) Ω(R)SR is connected, diam(Ω(R)SR) ≤ 3 and β(Ω(R)SR) = 2n−1 − 1 if n ≥ 3.

PROOF. (1) Assume that I ∈ V(Ω(R)). Since I + J = R for some J ∈ V(Ω(R)), it
follows that I + J is not an annihilating ideal of R and so d(I, J)Ω(R) = 2 = diam(Ω(R)).
(Note that diam(Ω(R)) ≤ 2.) This implies that I, J are mutually maximally distant and
hence I ∈ ∂(Ω(R)).

(2) Assume that I, J ∈ V(Ω(R)SR). If I, J ∈ Max(R), then I + J = R. So, d(I, J)Ω(R) =

2 = diam(Ω(R)). This implies that I, J are mutually maximally distant and hence I is
adjacent to J in Ω(R)SR. Therefore, the induced subgraph on Max(R) is a clique in
Ω(R)SR. Now, we show that if I � Max(R), then I is adjacent to some of the maximal
ideals in Ω(R)SR. Since I � Max(R) and J(R) = (0), there exists a maximal ideal J
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such that I � J. It follows that I + J = R. This implies that I, J are mutually maximally
distant and hence I is adjacent to J in Ω(R)SR. Since the induced subgraph on Max(R)
is a clique in Ω(R)SR, this implies that Ω(R)SR is connected and diam(Ω(R)SR) ≤ 3.

Next, we show that β(Ω(R)SR) = 2n−1 − 1. For this, put

V1 = {(0, I2, . . . , In) | Ii ∈ {0, Fi} for 2 ≤ i ≤ n},
V2 = {(F1, 0, I3, . . . , In) | Ii ∈ {0, Fi} for 3 ≤ i ≤ n},

...
Vn = {(F1, F2, . . . , Fn−1, 0)}.

It is easy to see that

1 = |Vn| < |V2| < · · · < |V1| = 2n−1 − 1 = 1
2 V(Ω(R)SR).

Since every vertex of V(Ω(R)SR) \ V1 is adjacent to some of the vertices of V1, it follows
that |V1| is the largest cardinality of a set of vertices of Ω(R)SR, where no two of them
are adjacent. Therefore, β(Ω(R)SR) = 2n−1 − 1. �

If R is a reduced ring with finitely many ideals, then R is an artinian ring and so, by
[2, Theorem 8.7], R is a direct product of finitely many fields. This remark gives the
following result.

THEOREM 2.7. Suppose that R is a reduced ring. If dimM(Ω(R)) is finite and we set
n = |Max(R)|, then sdimM(Ω(R)) = 2n − 2n−1 − 1.

PROOF. Since dimM(Ω(R)) is finite, R has finitely many ideals by [1, Lemma 2.1] and
so R � F1 × · · · × Fn, where Fi is a field for 1 ≤ i ≤ n. By Theorem 2.3,

sdimM(Ω(R)) = α(Ω(R)SR) = V(Ω(R)SR) − β(Ω(R)SR).

On the other hand, ∂(Ω(R)) = V(Ω(R)) = 2n − 2 and β(Ω(R)SR) = 2n−1 − 1, by
Theorem 2.6. Therefore, sdimM(Ω(R)) = 2n − 2 − (2n−1 − 1) = 2n − 2n−1 − 1. �

The next result is an immediate consequence of Theorem 2.7 and [1, Theorem 2.1].

COROLLARY 2.8. Suppose that R is a reduced ring with |Max(R)| ≥ 3. If dimM(Ω(R))
is finite, then sdimM(Ω(R)) � dimM(Ω(R)).

3. Strong metric dimension of a total graph of a nonreduced ring

In this section, we study the strong metric dimension ofΩ(R) when R is nonreduced.
We begin with the following useful lemma.

LEMMA 3.1 [1]. Let R � R1 × · · · × Rn, where Ri is an artinian local ring for 1 ≤ i ≤ n,
and let I = (I1, . . . , In), J = (J1, . . . , Jn).

(1) I − J is an edge of Ω(R) if and only if Ii, Ji ⊆ Nil(Ri) for some 1 ≤ i ≤ n.
(2) If 0 � I ⊆ J(R), then I is adjacent to all other vertices in Ω(R).
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THEOREM 3.2. Suppose that R � R1 × · · · × Rn, where Ri is an artinian local ring such
that |A(Ri)∗| ≥ 1 for 1 ≤ i ≤ n. Then sdimM(Ω(R)) = |A(R)∗| − 2n−1.

PROOF. Let X = {I ∈ A(R) | 0 � I ⊆ J(R)}. Since every element of X is adjacent to all
other vertices in Ω(R) by Lemma 3.1, all elements except one of X must belong to a
strong resolving set W of Ω(R). We can assume that X \ {J(R)} ⊆ W. Now, suppose
that I = (I1, . . . , In) and J = (J1, . . . , Jn) are vertices of Ω(R) \ X. Define the relation ∼
on Ω(R) \ X by I ∼ J whenever Ii ⊆ Nil(Ri) if and only if Ji ⊆ Nil(Ri) for 1 ≤ i ≤ n,

Clearly, ∼ is an equivalence relation on Ω(R) \ X. The equivalence class of I is
denoted by [I]. Suppose that X and Y are two elements of the equivalence class of
I. Since X ∼ Y , by Lemma 3.1(1), N[X] = N[Y]. So, by Lemma 2.1(1), [I] \ {I} ⊆ W.
If A = {(I1, . . . , In) ∈ V(Ω(R)) | Ii ∈ {0, R1, . . . , Rn}for1 ≤ i ≤ n}, then |A ∩ [I]| = 1 for
every equivalence class [I]. Therefore, we can assume that A(R)∗ \ A ∪ {J(R)} ⊆ W. To
complete the proof, we investigate the elements of A. For this, let I, J ∈ A and I � J be
such that I is not adjacent to J. Then d(I, J) = diam(Ω(R)) = 2 and, by Lemma 2.1(1),
I ∈ W or J ∈ W. This clearly shows that sdimM(Ω(R)) ≥ |A(R)∗| − ω(Ω(R)[A]) − 1.

To calculate ω(Ω(R)[A]), we put

V1 = {(0, I2, . . . , In) | Ii ∈ {0, Fi} for 2 ≤ i ≤ n},
V2 = {(F1, 0, I3, . . . , In) | Ii ∈ {0, Fi} for 3 ≤ i ≤ n},

...
Vn = {(F1, F2, . . . , Fn−1, 0)}.

It is easy to see that

1 = |Vn| < |V2| < · · · |V1| = 2n−1 − 1 = 1
2 |A|.

Since every vertex of V(Ω(R)[A]) \ V1 is not adjacent to some vertex of V1, this implies
that V1 is a largest clique of vertices of Ω(R)[A]. Therefore,

sdimM(Ω(R)) ≥ |A(R)∗| − ω(Ω(R)[A]) − 1 = |A(R)∗| − 2n−1 + 1 − 1 = |A(R)∗| − 2n−1.

Next, we show that sdimM(Ω(R)) ≤ |A(R)∗| − 2n−1. For this, let W = A(R)∗ \ B,
where B = V1 ∪ {J(R)}. We prove that W is a strong resolving set of Ω(R). Let
I, J ∈ V1 with I = (0, I2, . . . , In) and J = (0, J2, . . . , Jn). Since I � J, without loss of
generality, we can assume that I2 = F2 and J2 = 0. Set K = (F1, J(R2), F3, . . . , Fn).
Then d(I, K) = 2 and d(J, K) = 1. This means that I and J are strongly resolved by
K ∈ W (note that I is adjacent to J). Similarly, if I = J(R) and J ∈ V1, then I and J are
strongly resolved by some vertex of W. Therefore, W is a strong resolving set for Ω(R)
and hence sdimM(Ω(R)) ≤ |A(R)∗| − |B| = |A(R)∗| − 2n−1. �

EXAMPLE 3.3. Let R = Z4 × Z4 × Z8. We have

X = J(R) = {((2), (2), (2)), ((2), (2), (4)), ((0), (2), (2)), ((0), (2), (4)), ((2), (0), (2)),
((2), (0), (4)), ((2), (2), (0)), ((0), (0), (2)), ((0), (0), (4)), ((2), (0), (0)),
((0), (2), (0))},

https://doi.org/10.1017/S0004972721000848 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000848


[7] Strong metric dimension 437

[(Z4,Z4, (0))] = {(Z4,Z4, (0)), (Z4,Z4, (2)), (Z4,Z4, (4))},
[(Z4, (0),Z8)] = {(Z4, (0),Z8), (Z4, (2),Z8)},
[((0),Z4,Z8)] = {((0),Z4,Z8), ((2),Z4,Z8)},
[((0), (0),Z8)] = {((0), (0),Z8), ((2), (0),Z8), ((0), (2),Z8), ((2), (2),Z8)},
[(Z4, (0), (0))] = {(Z4, (0), (0)), (Z4, (0), (2)), (Z4, (0), (4)), (Z4, (2), (0)), (Z4, (2), (2)),

(Z4, (2), (4))},
[((0),Z4, (0))] = {((0),Z4, (0)), ((0),Z4, (2)), ((0),Z4, (4)), ((2),Z4, (0)), ((2),Z4, (2)),

((2),Z4, (4))}

and

A = {(Z4,Z4, (0)), (Z4, (0),Z8), ((0),Z4,Z8), ((0), (0),Z8), (Z4, (0), (0)), ((0),Z4, (0))}.

By the proof of Theorem 3.2, A(R)∗ \ A ⊆ W, where W is a strong resolving set of
Ω(R). Now, we investigate the elements of A. Put

V1 = {((0),Z4, (0)), ((0),Z4,Z8), ((0), (0),Z8)},
V2 = {(Z4, (0),Z8), (Z4, (0), (0))},
V3 = {(Z4,Z4, (0))}.

For every I ∈ {V2 ∪ V3}, there exists J ∈ V1 such that I and J are not adjacent. So, we
can assume that A(R)∗ \ (V1 ∪ J(R)) ⊆ W and hence |W | ≥ |A(R)∗ \ (V1 ∪ J(R))| =
34 − 4 = 30. On the other hand, for every v ∈ V1, there exists u ∈ A(R)∗ \ (V1 ∪ J(R))
with v + u = R. Since J(R) is adjacent to all the other vertices in Ω(R), this implies
that J(R) and every vertex of V1 are strongly resolved by some of the vertices
of A(R)∗ \ (V1 ∪ J(R)). Similarly, the vertices ((0),Z4, (0)) and ((0),Z4,Z8) are
strongly resolved by the vertex (Z4, (2), (0)), the vertices ((0),Z4, (0)) and
((0), (0),Z8) are strongly resolved by the vertex (Z4,Z, (2)) and the vertices
((0),Z4,Z8) and ((0), (0),Z8) are strongly resolved by the vertex (Z4, (2), (2)). Thus
|W | ≤ |A(R)∗ \ (V1 ∪ J(R))| = 30. Therefore, sdimM(Ω(R)) = |W | = 30.

In view of Theorem 3.2, we have the following results.

COROLLARY 3.4. Suppose that R � R1 × · · · × Rn, where Ri is an artinian local ring
such that |A(Ri)∗| = 1 for 1 ≤ i ≤ n. Then sdimM(Ω(R)) = 3n − 2n−1 − 2.

COROLLARY 3.5. Suppose that R � R1 × · · · × Rn, where Ri is an artinian local ring
such that |A(Ri)∗| ≥ 1 for 1 ≤ i ≤ n. If dimM(Ω(R)) is finite, then sdimM(Ω(R)) =
dimM(Ω(R)) if and only if n = 1.

PROOF. The assertions follow from Theorem 3.4 and [1, Theorem 3.1]. �

THEOREM 3.6. Let R � R1 × · · · × Rn × F1 × · · · × Fm be a ring, n ≥ 1 and m ≥ 1,
where each (Ri,mi) is an artinian local ring with mi � (0) and each Fi is a field. Then
sdimM(Ω(R)) = |A(R)∗| − 2n+m−1.
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FIGURE 3. Ω(Z4 × Z2).

PROOF. The argument is a refinement of the proof of Theorem 3.2. Arguing as in the
proof of Theorem 3.2, sdimM(Ω(R)) = |A(R)∗| − ω(Ω(R)[A]) − 1, where

A = {(I1, . . . , In+m) ∈ V(Ω(R)) | Ii ∈ {0, R1, . . . , Rn, F1, . . . , Fm}}.

Since ω(Ω(R)[A]) = 2n+m−1 − 1, it follows that sdimM(Ω(R)) = |A(R)∗| − 2n+m−1. �

COROLLARY 3.7. Let R � R1 × · · · × Rn × F1 × · · · × Fm be a ring, n ≥ 1 and m ≥ 1,
where each (Ri,mi) is an artinian local ring with mi � (0) and each Fi is a field. If
dimM(Ω(R)) is finite, then sdimM(Ω(R)) = dimM(Ω(R)) if and only if n = m = 1.

PROOF. The assertion follows from Theorem 3.4 and [1, Theorem 3.1]. �

We close this section with two examples which are related to Theorem 3.6 and
Corollary 3.7.

EXAMPLE 3.8. (1) Let R = Z4 × Z2. By Theorem 3.6 and Corollary 3.7, sdimM(Ω(R)) =
dimM(Ω(R)) = 2. This is confirmed by Figure 3.

(2) Let R = Z4 × Z4 × Z2 × Z2. From the proof of Theorem 3.6, sdimM(Ω(R)) =
|A(R)∗| − ω(Ω(R)[A]) − 1, where

A = {((0),Z4,Z2,Z2), (Z4, (0),Z2,Z2), (Z4,Z4, (0),Z2), (Z4,Z4,Z2, (0)),
((0), (0),Z2,Z2), ((0),Z4, (0),Z2), ((0),Z4,Z2, (0)), (Z4, (0),Z2, (0)),
(Z4, (0), (0),Z2), (Z4,Z4, (0), (0)), (Z4, (0), (0), (0)), ((0),Z4, (0), (0)),
((0), (0),Z2, (0)), ((0), (0), (0),Z2)}.

Now, let

V1 = {((0),Z4,Z2,Z2), ((0), (0),Z2,Z2), ((0),Z4, (0),Z2), ((0),Z4,Z2, (0)),
((0), (0), (0),Z2), ((0),Z4, (0), (0)), ((0), (0),Z2, (0))},

V2 = A \ V1.

For every element I ∈ V2, there exists J ∈ V1 such that I + J = R. So, for every element
of V2, there exist elements of V1 which are not adjacent to it. SinceΩ(R)[V1] is a clique,
this implies that ω(Ω(R)[A]) = |V1| = 7. Therefore,

sdimM(Ω(R)) = |A(R)∗| − ω(Ω(R)[A]) − 1 = 34 − 7 − 1 = 26.

Again, Theorem 3.6 confirms that sdimM(Ω(R)) = |A(R)∗| − 2n+m−1 = 34 − 23 = 26.
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