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Abstract. The stability of the neutral current sheet is analyzed in the frame of
Hall dynamics. The problem is treated analytically and results are verified by
numerical processing. A new version of tearing instability is found and described.
It scales more favorably with the Lundquist number and has smaller wavelengths.
Combined Hall magnetohydrodynamic analysis shows that Hall effects dominate
the diffusion layer and growth rate of the instability in a relatively large range of
sheet widths. The effect of finite beta on instability is described.

1. Introduction
The tearing instability is a well-known phenomenon that has been a subject of ex-
tensive research over the last four decades. It is believed to be important in systems
with a reversed or sheared magnetic field where reconnection occurs. For the config-
uration of neutral current sheets, the tearing instability needs some small but finite
resistivity near the neutral line. It can be supplied either by binary collisions or non-
linear collisionless processes. In the 90th space plasma observations [1] and various
numerical simulations [2, 3] it was revealed that Hall effects play an important, if
not crucial, role in reconnection physics. They become of consequence at a spatial
scale of ion-inertia length. At these scales electrons rather than heavy ions drive
the magnetic field. The most detailed analytical treatment of Hall magnetohydro-
dynamics (MHDs) was performed on the other widespread phenomenon common
for space and laboratory plasmas, the lower hybrid drift instability [4]. Its relevance
to Earth magnetotail reconnection is argued as well [5]. However, the physics of
tearing and lower hybrid instabilities are quite different, especially in the geometry
of the problem. The first is considered in the plane of the magnetic field while the
second is perpendicular to it. Analytical investigations of Hall effects in geometries
typical for reconnection problems are scanty compared to the studies based on
numerical simulations. A pioneering work [6] should be mentioned, where increase
of the tearing growth rate induced by Hall currents was reported for the first
time. However, in this work the problem was treated mainly numerically and the
analytical expression derived is only an estimation. Moreover, MHD-based dimen-
sionless parameters that were used are not suitable for deriving explicit Hall and
classic MHD limits. In [7], an analytic and numerical study of resistive reconnection
revealed a strong influence of Hall currents. Incorporating Hall dynamics into
global magnetic merging solutions [8] showed that it affects resistive reconnection
even for sheets much thicker than the ion-inertia length.
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Figure 1. Geometry of the problem. Hall currents JH that drive the reconnection are shown.

The purpose of present work is to find the new effects that Hall dynamics bring
into the resistive tearing instability of relatively thin current sheets. For this, we
first solve the problem in a pure electron MHD frame. In comparison to [8], such an
approach gives more insight into the physics behind Hall dynamics. The problem
is treated by means of classic analysis [9] and the results are verified by numerical
simulation.
This paper is organized as follows. In Sec. 2 the tearing instability is described in

the frame of Hall dynamics with ion motion ignored. Section 3 deals with combined
Hall MHDs. In Sec. 4 the finite beta effect is considered, followed by conclusions
in Sec. 5.

2. Tearing instability in the frame of Hall dynamics
We start with the generalized Ohm’s law with electron mass ignored:

E+
v× B

c
= ηJ− ∇p

ne
+
J× B
nec

. (1)

Further, the geomagnetic tail coordinate system will be used. The problem is re-
stricted to two dimensions with ∂/∂y = 0 and is schematically shown in the Fig. 1.
Initial conditions for the magnetic field are

Bx = B0(z/d), By = 0, Bz = 0, (2)

where d is the characteristic width of the current sheet.We simplify the problem fur-
ther by setting the temperature to be constant at all times: T = Ti+Te = constant.
Then the term ∇p/ne in Ohm’s law becomes inoperative. Using transformations
B/B0 → b, x/d → x, t/τH → t, v/VA → v, n/n0 → n, Hall MHD equations can be
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written in the following dimensionless form:

∂n

∂t
= −χ∇(nv),

∂v
∂t

= −χ

[
(v∇)v− j× b

n
− β

2
∇n

n

]
,

∂b
∂t

= χ∇ × (v× b) − ∇
(
j× b

n

)
+

1
SH

∇2b,

j = ∇b.

(3)

Here the following parameters were introduced:

τH = 4πn0ed
2/cB0,

SH = 4πd2/(ητHc2) = ωceτcoll,

χ = d · ωpi/c.

(4)

The Hall time τH is a typical time scale of Hall induced processes, while SH is the
analog of the Lundquist number. Note that it does not depend on characteristic
size, which is also an intrinsic property of Hall dynamics. The parameter χ defines a
domain where Hall effects are important—at scales smaller than ion inertia length
(d < c/ωpi). At the ion inertia scale length, the Hall time is equal to the inverse ion
cyclotron frequency: τH(d = c/ωpi) = 1/ωci. From the equations it follows that at
χ � 1 ion velocity and density evolution can be ignored. This validates the idea of
analyzing pure Hall dynamics and finding the new effects it may contain, which
is the main purpose of this work. Thus, in this section we only consider the vector
equation of the magnetic field evolution. For small perturbations, using a property
∇b = 0, it can be written as equations for two components:

∂bz

∂t
= −b0

n

∂2by

∂x2
+

1
SH

∇2bz,

∂by

∂t
=

b0

n
∇2bz − bz

∂

∂z

(
1
n

∂b0

∂z

)
+

1
SH

∇2by.

(5)

The component bz causes the initially parallel magnetic field lines to curve.
This curvature in turn generates the out-of-plane by component, which is a direct
manifestation of Hall dynamics. Currents associated with the by component curve
the in-plane magnetic field further and the cycle repeats. Let us consider wave-like
perturbations with wave vector along the main magnetic field: ∼ exp(−ikx · x).
Then the equations reduce to a pair of one-dimensional second-order differential
equations

∂bz

∂t
= k2 b0

n
by +

1
SH

(b′′
z − k2bz),

∂by

∂t
=

b0

n
(b′′

z − k2bz) − (b′
0/n)′bz +

1
SH

(b′′
y − k2by).

(6)

In the analytical analysis, terms of order k2/SH will be ignored as they are small
and inessential. If we ignore dissipation altogether, the equations can be combined

https://doi.org/10.1017/S0022377804002880 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377804002880


602 I. F. Shaikhislamov

as

∂2bz

∂t2
= −k4

(
b0

n

)2

bz + k2

(
b0

n

)2

b′′
z − k2 b0

n
(b′

0/n)′bz. (7)

The first two terms on the right-hand side of (7) constitute a well-known whistler
wave. The third term, usually being negative for the current sheet, makes the
equation potentially unstable. Instability may only be realized at sufficiently small
wave numbers, because at k ∼ 1 the whistler mode stabilizes it. One can also see
that without dissipation, instability is not possible as at the origin all terms vanish.
This makes it similar to the well-known resistive tearing instability, the ion velocity
being replaced in this case by Hall currents. Therefore, the problem will be treated
with a similar approach.
A solution will be sought in the form of a standing growing wave ∼ exp(γt). For

the analytical treatment we shall use the current sheet of a simple step-like form:
b0 = 1 for z > 1; b0 = z for 0 � z � 1. Because of symmetry it is sufficient to solve
(6) for z � 0 with even bz and odd by. In this section we consider the problem in the
approximation of constant density n = n0. For an equilibrium current sheet it
corresponds to the limit of very large thermal beta β → ∞. Although this approxim-
ation is not usually strictly applicable, it does not affect the difference between Hall
and MHD dynamics because the driving term (b′

0/n)′ is the same in both cases.
Thus, the term (b′

0/n)′ becomes a delta-function that is zero everywhere except z =
1. Because diffusion is small, it can be neglected except near the origin. Solutions are
derived in three different regions: outer region z > 1, inner region δ � z � 1 and dis-
sipation layer 0 � z � δ with some δ � 1. At z = 1 they are matched by a jump con-
dition induced by the delta function: (b′

z/bz)1− = 1 + (b′
z/bz)1+. At z = δ it should

simply be continuous (b′
z/bz)δ− = (b′

z/bz)δ+. Equation (7) outside the diffusion
layer can be written as

b′′
z −

[(
γ

k
· n

b0

)2

+ k2

]
· bz = 0. (8)

Introducing the parameter α = γ/k we may now find solutions for each region. We
start with the outer region:

b′′
z − (α2 + k2) · bz = 0,

bz ∼ exp(−z ·
√

α2 + k2).
(9)

In the inner region, the solution can be expressed through a series of k2z2:

b′′
z − α2 + k2z2

z2
· bz = 0,

bz ≈ C · zp1

(
1 +

k2z2

(p1 + 2)(p1 + 1)
+ · · ·

)
+ zp2

(
1 +

k2z2

(p2 + 2)(p2 + 1)
+ · · ·

)
,

p1,2 =
1 ±

√
1 + 4α2

2
. (10)

Because k2 � 1, it can be simplified to bz ≈ C · zp1 + zp2 . It is not continuous at the
origin as p2 < 0. Namely for this reason, we patch solutions at z = δ rather than
calculate a jump across a singular layer, as in the classic MHD case. The constant
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C is derived from the jump condition at z = 1:

C = (p1 −
√

α2 + k2)/(p1 − 1 +
√

α2 + k2). (11)

In the dissipation layer, all terms on the right-hand side of (6) except diffusion
may be ignored in the first approximation:

b′′
z − bz/γSH = 0,

bz ∼ ch(z ·
√

γSH).
(12)

At z = δ, from (10) and (12) one obtains

(b′
z/bz)δ− =

√
γSH tanh(δ

√
γSH) ≈ γSHδ,

(b′
z/bz)δ+ =

1
δ

· p1Cδp1 + p2δ
p2

Cδp1 + δp2
,

δ
√

1+4α2
=

(p1 − 1 + γSHδ2) · (p1 − 1 +
√

α2 + k2)
(p1 − γSHδ2) · (p1 −

√
α2 + k2)

.

(13)

To find the width of the dissipation layer, we make transformations z̄ = z
√

SHk,
b̄y = by

√
k/SH. Then (6) renormalized becomes

αbz = z̄ · b̄y + ∂2bz/∂z̄2,

αb̄y = z̄ · ∂2bz/∂z̄2 + ∂2b̄y/∂z̄2.
(14)

In the second equation, the term proportional to k/SH was ignored. From (14) it
is seen that the dissipation layer is δ ≈ 1/

√
SHk. It appears that α is always small

so the solution of (14) can be expanded in a series of z̄. It should be sought in a
constant b′′

z, rather than constant bz approximation (or constant ψ approximation
as it is called in the literature). After substituting b′′

z = αbz (z̄ = 0), a solution for
b̄y can be found as b̄y ≈ (b0

z + a) · z̄ + a · αz̄3/6. For the bz component, it is simply
bz ≈ b0

z ·(1 + αz̄2/2) and corresponds to (12). The constant of integration should be
found from the continuity condition (b′

y/by)δ− = (b′
y/by)δ+ and is approximately

equal to a ≈ −b0
z(1 − α/3); b̄y ≈ αb0

z z̄/3·(1 − z̄2/2). After substituting δ = 1/
√

SHk
in (13) one obtains the dispersion equation:

α · 1 + α

1 − α
· α2 +

√
α2 + k2

1 + α2 −
√

α2 + k2
=

1√
SHk

. (15)

In (15) α2 was neglected compared to unity whenever it does not affect the
accuracy. In the limit of small wave numbers, the solution is γ = (k3/SH)1/4. For
arbitrary k the algebraic equation (15) should be solved numerically. In Fig. 2, the
dependence on k is shown for the given SH = 300. As expected, there is a cut off
of instability at k ≈ 1 and a clear maximum. On the same figure, the results of the
numerical time-integration of one-dimensional second-order differential equations
(6) are shown. For numerical processing, a more realistic Harris current sheet with
b0 = tanh(z/d) was chosen. The problem was treated in the box −30d � z � 30d
with variable grid spacing and resolution near origin at least d/1000 or better.
Further, on all figures the results of the numerical processing will be present (marked
by circles) for comparison with the analytical solution. As seen from Fig. 2, the
analytical solution, considering all the approximations made, is in satisfactory
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Figure 2.Dependence of the increment on wave number at Lundquist number SH = 300. The
solid curve is for analytical solution, the circles represent results of numerical processing.
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Figure 3. Maximum increment and corresponding wave number dependence on Lundquist
number. Results of the numerical solution are shown by circles.

agreement with the exact numerical solution. In Fig. 3, the dependences of the
maximum increment and corresponding wave number on the Lundquist number
SH are shown. Once again there is a good agreement in increment at sufficiently
large SH. At moderate SH the analytical solution breaks because the diffusion layer
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Figure 4. Maximum increment and corresponding wave number dependence on Lundquist
number for the case of anisotropic resistivity.

becomes comparable with the sheet width. An approximate solution of (15) can be
presented as γmax ≈ 1/(3 · 3

√
SH) at kmax ≈ 3/(4S

1/6
H ).

Let us now consider the special case of anisotropic resistivity. It is physically
possible that due to micro-turbulence or nonlinear processes excited by the existing
current, the resistivity in the y-direction is much stronger than in others. For the
tearing instability, only dissipation in the y-direction is necessary, while resistivity
to the in-plane Hall currents reduces it. Without the term b′′

y/SH, (6) combines to

b′′
z − α2 + k2z2

z2 + γ/SHk2
· bz = 0. (16)

It follows that in this case the width of the diffusion layer is δ =
√

γ/SHk2.
Repeating the procedure, one obtains the following dispersion relation:

2α3/2 · α2 +
√

α2 + k2

1 + α2 −
√

α2 + k2
=

√
1

SHk
. (17)

At small k it simplifies to γ = (k4/4SH)1/5. At large k α3/2 ≈ (1 − k)/(k
√

4SHk)
and the maximum increment approximately equals

γmax ≈ (1 − kmax)2/3

3
√

4SH

with a quite slow scaling of kmax ≈ (4SH)−1/8. In Fig. 4, the dependence of the
maximum increment on Lundquist number is shown. The discrepancy between the
analytical and numerical solutions is about 20% and the scaling of γmax at large SH
is identical. It may be concluded that anisotropic resistivity increases the increment
by a factor ∼2.
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3. Combined Hall MHD analysis
Let us compare the Hall induced resistive tearing instability described above with
the classic MHD one, which we call the ion-tearing instability. Its maximum in-
crement taken from [9] can be represented in the dimensionless terms used in this
work as γion ≈ 0.6 ·

√
χ/SH. In general, Hall increment scales more favorably with

Lundquist number as well as with the sheet width when it is smaller than c/ωpi.
The main features of the combined Hall MHD tearing instability can be understood
even without solving equations, especially if conclusions are supported by numerical
simulation. As was pointed out in [6], Hall dynamics couple shear Alfvén waves to
the ion tearing mode because the current component Jz makes the force in the
y-direction non-zero. Introducing variables υy = vyχ/(i · k) and υz = vzχ/(i · k),
linearized equations (3) follow as

∂bz

∂t
= −k2b0υz + k2b0by +

b′′
z

SH
,

∂by

∂t
= b0(b′′

z − k2bz) − b′′
0bz + b0k

2υy +
b′′
y

SH
,

∂

∂t
(υ′′

z − k2υz) = χ2(b0(b′′
z − k2bzt) − b′′

0bz),

∂

∂t
υy = −χ2b0by,

(18)

and differ from that used in [6] only in the definition of the terms.
First of all, let us consider outer and inner regions. The classic MHD solution

follows from the approximation of the third equation as b′′
z −k2bz − (b′′

0/b0) · bz ≈ 0,
which corresponds to the limit of large sheet width χ → ∞. It is bz ∼ exp(−k · z)
in the outer region and bz ∼ 1 + z/k in the inner region (in the limit of small k).
For Hall dynamics, because at the maximum increment it always holds that γmax/
kmax � kmax, the solution is approximately the same in the outer region. In the
inner region, the solution (10) is also similar since p2 � 1, p1 ≈ 1, C ≈ 1/k. Moreover,
which is more important, the jump across the singular layer ∆′ = 2/k is approx-
imately equal to the corresponding value of the Hall solution 2 · (b′

z/bz)z=δ as well.
Now let us consider how shear Alfvén wave might effect the solution. Introducing
f = b′′

z −k2bz −(b′′
0/b0) ·bz and the operatorD = ∂2/∂z2 − k2, (18) can be combined

to obtain

α2D[bz/b0] = D

[
b0

1 + b2
0χ

2/α2
f

]
− χ2b0f. (19)

From (19) it is clear that with increasing χ, ion dynamics (second term on the
right-hand side) become as important as Hall dynamics at relatively small χ ∼√

α < 1. This is because Alfvén wave loading reduces the amplitude of Hall currents.
However, at any χ the term on the left-hand side is always significantly smaller than
one of the terms on the right-hand side and, in the first approximation, the solution
f ≈ 0 holds. Therefore, the only new significant addition of Hall dynamics concerns
the diffusion layer, which is of crucial importance to the tearing instability anyway.
In terms of new variables z̄ = z

√
SHk2/γ, ῡz = υz/

√
SHk which correspond to the

diffusion layer δHall =
√

γ/SHk2 obtained previously in anisotropic resistivity case,
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(18) can be rewritten as

α2bz = −z̄ · ῡz + (z̄2/(1 + z̄2χ2/γSH) + 1) · ∂2bz/∂z̄2,

∂2ῡz/∂z̄2 = (χδHall)2 · z̄ · ∂2bz/∂z̄2.
(20)

One can see that ion motion (namely the shear Alfvén wave) can only affect the size
of diffusion layer at quite large current sheet widths χ >

√
γSH ∼ 0.8 · S1/3

H � 1. In
the intermediate range

√
γSH < χ <

√
k2SH/γ the diffusion layer is δ ≈ γ/kχ. At

larger χ one retains, of course, the ion dominated diffusion layer δ4 ∼= γ/(k2SHχ2) =
(δHall/χ)2. Therefore, Hall dynamics manifests itself first of all by altering the dif-
fusion layer and dominates tearing instability in the range χ < S

1/3
H . This is demon-

strated in Figs 5(a) and 5(b) where the maximum increment and wave number are
shown as functions of sheet width χ = d · ωpi/c for two Lundquist numbers. Data
were obtained by solving (18) numerically for the Harris sheet profile. Note that the
absolute value of the growth rate is equal to ωci(γ/χ2). One can see a smooth trans-
ition from the Hall to the ion-dominated region that occurs at larger χ for larger SH.
The reason for the small decrease of increment in between is the additional loading
by the shear Alfvén wave. Another notable feature is that in the Hall-dominated
range, the maximumwave number is substantially larger and scales differently than
in classic MHD case. At isotropic resistivity, the condition of the Hall-dominated
diffusion layer is χ <

√
γ2SH/k ∼ 0.4·S1/3

H ; that is, twice lower. This case is demon-
strated in Fig. 5(c). It is clear that the inclusion of Hall dynamics greatly enhances
the resistive tearing instability at χ � 1. For example, the classic increment at
SH = 104 and χ = 1 is approximately five times smaller than the Hall increment at
anisotropic resistivity.
The reason why, even at χ > 1, Hall dynamics greatly influence the diffusion

layer of the tearing instability while outside it the magnetic field is driven mainly
by ions, can be understood in more general physical terms. For slow incompressible
motion, ion velocity is related to electron (or current) velocity as ∇ × ∇ × vi =
ve(ωpi/c)2. Thus, close to the neutral line where viz, vez → 0 it may be estimated
viz ∼ vez(δ · ωpi/c)2 � vez as long as sheet width is not too large compared with ion
inertia length. In Fig. 6 the structure of the instability is shown. Hall current
velocity vez and components of ion velocity viz, viy are presented in the same
dimensionless units. The interpretation offered in [6] that Hall dynamics increases
increment due to the appearance of an intermediate layer is clearly seen. Indeed,
Hall currents, as well as shear Alfvén waves, are restricted by a more compact
region near the origin than the ion velocity. However, this interpretation should
be completed by a statement that because of this intermediate layer, the diffusion
region becomes smaller and, thus, the increment is larger.

4. Finite beta case
The case of finite beta is of practical importance to space plasma sheets. Because
of the general purpose of this work, it will be considered here only in the frame of
Hall dynamics. Equilibrium density is expressed in terms of beta as

n = 1 − b2
0/β, β = 8πn0T/B2

0 . (21)

At β → 1, one retrieves the original Harris sheet with zero density outside n∞ = 0.
Some general conclusions can be drawn from (6). It is evident that instability
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Figure 5. Dependences of the maximum increment and corresponding wave number on the
current sheet width at Lundquist numbers (a) SH = 300 and (b) SH = 1000 for the case of
anisotropic resistivity and (c) at SH = 300 for isotropic resistivity. The dashed lines show
solutions at small χ (Hall limit) and large χ (ion limit).
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Figure 6. Typical structure of the tearing mode at χ = 1.

increment should decrease simply because the driving force b′
0/n, being proportional

to the relative electron–ion velocity, becomes smaller. For example, for the Harris
sheet profile it can be written that (b′

0/n)′ = (b′′
0/n) · ν, ν = (β − 1)/(β − b2

0) → 0
at β → 1. Also, as density variation near the origin is very small, it does not
affect the width of the dissipation layer. Moreover, the actual dependence n(z) is of
minor significance to solutions in either the outer or inner regions because it enters
(8) in combination (nγ/k)2 which is small, as was argued in the previous section.
Thus, density variation may only be important at the transition between outer and
inner regions. This is seen from the behavior of ν which, at β ≈ 1, becomes small
everywhere except at b0 = 1.
At arbitrary β, (6) becomes much more complicated. To derive simple analytical

expressions we employ the following trick. Use of an exact equilibrium profile of
density is not necessary for the tearing instability. Instead, we adopt the step-like
functions n = n1+ at z > 1 and n = n1− at z < 1, and express it through the step-
like function b′

0 : n = n1+ − (n1+ − n1−) · b′
0. Then we calculate discontinuity ν at

z = 1:

ν = ∆(b′
z)=

∫ 1+

1−
dz · n · (b′

0/n)′ = ∆(b′
0) −

∫ 1+

1−

db′
0

n
=

n1+

n1− − n1+
ln

(
n1−
n1+

)
. (22)

As n1+ is the density, far from the origin n1+ = 1−1/β should be taken, while in the
inner region it appears best to take the averaged one: n1− =

∫ 1

0 dz · (1 − z2/β) =
1 − 1/3β. Then the discontinuity can be expressed as

ν =
3
2
(β − 1) · ln

(
β − 1/3
β − 1

)
. (23)

Thus, in this approximate approach, everything remains the same as in the large β
case except the patching at z = 1 : (b′

z/bz)1− = ν+(b′
z/bz)1+. Note that right limits

have been kept: ν(∞) = 1 and ν(1) = 0. Repeating this procedure, one obtains, for
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Figure 7. Dependence of the maximum increment and corresponding wave number on
Lundquist number for the case of finite β = 2.
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Figure 8. Dependence of the maximum increment and corresponding wave number on beta
for Lundquist number SH = 500. The function ν given by (23) is also shown.

the case of isotropic resistivity, the following dispersion relation:

α · 1 + α

1 − α
· 1 − ν + α2 +

√
α + k2

ν + α2 −
√

α + k2
=

1√
SHk

. (24)

Its approximate solution is

γmax ≈
√

1 − ν/3√
2SH

· (2ν/3)2/3

1 − 2ν/3
at kmax ≈ ν/3

1 − ν/3
. (25)
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In Fig. 7, the dependence of the maximum increment and corresponding wave
number on the Lundquist number is shown at β = 2. The numerical solution
presented for comparison was obtained for a Harris sheet with equilibrium density
profile. As one can see, despite quite freehand treatment, the analytical solution
shows very good agreement with numerical one. In Fig. 8, the dependence of the
increment on β is presented for Lundquist number SH = 500. It might be concluded
that the finite β effect substantially reduces growth rate of the tearing instability.
For example, it is approximately twice as small at β = 2 than at β → ∞.

5. Conclusion
In the present work, the stability of the neutral current sheet was studied in the
frame of Hall dynamics in the plane perpendicular to the main current vector. A
new version of resistive tearing instability was found and described. Analytical and
numerical solutions of the problem are in satisfactorily agreement and support the
validity of each other. It was shown that at sheet width of the order of ion inertia
length and even noticeably larger d · ωpi/c < 3

√
SH, Hall rather than ion dynamics

determines the diffusion layer and increment. The following properties of instability
in the Hall dominated range were found: maximum increment scaling γ ∼ S

−1/3
H is

more favorable and the corresponding wave numbers are significantly larger than
in the ion-dominated case; in the case of anisotropic resistivity prevailing in the
direction of current vector the growth rate is larger; it is strongly reduced by a
density ramp at the sheet, the larger the relation n0/n∞, the smaller increment.
As a whole, inclusion of the Hall term strongly enhances the tearing instability at
the ion-inertia range of current sheet widths, especially at very large Lundquist
numbers.
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