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Numerical modelling of ice shelf dynamics 
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Abstract: By considering the basic stress equations for a unit volume of ice, a set of differential equations 
describing ice shelf flow is derived. In view of the lack of basal shear stresses at the bottom of ice shelf a 
model simulation which is restricted to the horizontal dimensions will not imply substantial errors. The 
model is applied to theFilchner-Ronne Ice Shelf, Antarctica, and model equations are solved in terms of finite 
differences on a 10 x 10 km grid. Present ice thickness data and boundary conditions, i.e. the balance 
velocities at the grounding line and strain rates at the ice front are entered as input. Using a non-linear Glen- 
type flow law (n=3) and a constant depth-averaged flow law parameter, representing an ice temperature of 
-17OC, a convincing velocity field is derived as a solution of the model equations. The model takes into 
account restrained flow across ice rumples where sufficient field data are available. A diagnostic run 
reproducing present velocity magnitudes is followed by two prognostic runs, each representing 2000 years 
of simulation. Transient ice thickness changes are obtained from solving the mass conservation equation. 
Two different assumptions concerning basal melting rates demonstrate its importance to ice shelf dynamics. 
Assumptions are: a) no basal melting, b) basal melting rates (-2m a-’ to +3m a-I) as derived from model results 
and geophysical field data. 
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Introduction 

Ice shelves form when ice masses flowing out from the 
Antarctic ice sheet begin to float in the ocean. This happens 
at thegrounding line, which is the landward margin of an ice 
shelf. As early as 1957, Weertman (1957) investigated the 
creep deformation of floating ice shelves. Budd (1966) and 
Thomas (1973) presented extended theories which all dealt 
with ice thickness profiles in relation to strain rates. Unlike 
Sanderson (1979), who stated that most ice shelves surrounding 
Antarctica are not in equilibrium, Van der Veen (1986) 
determined from time-dependent simulations that ice shelves 
are always close to steady state. 

Recently, a number of papers dealing with ice shelf 
modelling have been published. MacAyeal & Thomas 
(1982) used the finite-element method (FE) to simulate the 
dynamics of the Ross Ice Shelf, and Lange & MacAyeal 
(1986) have done the same to describe the movement of 
Filchner-RonneIce Shelf (FRIS). FE-simulations are known 
to be the most accurate method for numerical solutions, 
whereas the advantages of finite-differences methods (FD) 
are simplicity and easy handling of variable grid boundaries, 
an aspect that might be important when dealing with transient 
changes in the extent of the ice shelf. 

Following a derivation of Herterich (1987) for the transition 
zone between the ice sheet and ice shelf a model for two- 
dimensional horizontal ice shelf motion will be presented. 

The model equations are solved by means of the finite- 
differences method using balance fluxes at the grounding 
line and strain rates at the ice front as boundary conditions. 
If flow law parameters are determined, the ice thickness 
distribution is the important quantity for yielding flow 
velocities of the entire ice shelf. In order to get information 
about transient ice thickness changes, the velocity field 
enters into the mass conservation equation which comprises 
flux divergence and accumulation minus melting. Arising 
from this, the effect of laterally varying mass balances on the 
steady-state ice shelf profile are studied. 

Known as the biggest ice shelf in the world by volume 
(Swithinbank 1988), FRIS makes an important contribution 
to the drainage of Antarctica. Freezing and melting underneath 
the ice shelf contribute to the mass budget, as does the influx 
from ice streams and surface accumulation. Melting, observed 
beneath the ice front by Behrendt (1970), governs the 
formation of cold ice shelf water. Basal freezing, on the 
other hand is required to explain the existence of a strongly 
reflecting internal radio-echo horizon in the central part of 
FRIS (Thyssen 1988). In this paper the term ‘freezing’ refers 
to bottom accretion due to heat conduction as well as to the 
release of ice crystals that grow in the water column underneath 
the ice shelf. Although it has not been conclusively proved, 
the basal ice is referred to as ‘‘saline’’ ice. Basal accumulation 
rates are deduced from the continuity equation which’is 
applied to describe the present shape of the basal ice layer. 
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Model equations 

The following derivation, which will lead to a set of differential 
equations describing two-dimensional ice shelf flow, is 
based on substantial theoretical work undertaken by Weertman 
(1957), Budd (1966), Thomas (1973), Sanderson (1979), 
Van der Veen (1986) and others. In order to describe the 
flow in avertical plane across the ice sheetlice shelf junction, 
Herterich (1987)propose.d a similar method. By considering 
force balance for a unit volume of ice, Newton’s second law 
yields the following set of basic stress equations (Jaeger 
1969): 

87x2 d r y 2  8722 

dz  dy  dz - + - + 7 = -pig (3) 

whereTij are the components of the stress tensor T, p, the ice 
density and g the acceleration due to gravity which is 
negative due to the chosen coordinate system. X and y are 
the horizontal coordinates, with x pointing downstream, and 
z, the vertical coordinate being positive upwards and 7m-o at 
sea level. Under ice shelf conditions (no vertical shear) one 
can neglect ~ 3 . s ~ ~ ’  ax and C3.syJ dy in equation (3) .  Vertical 
integration then yields: 

r z z ( z )  = - p i g ( z s  - 2). (4) 
The flow properties of ice are often held to be independent 
of the hydrostatic pressure P, which is defined as 

p = L( 3 r,, + Tyy + T222). 

Subtraction of P from T according to: 

r!. = T ” ’  - 6  p 

yields the elements of the stress deviator 7’. In particular, 
z j  23 2 3  

( 5 )  

(6) 

1 -  
Tx2 - r,, - & ( T X Z  + 7 y y  + T z z ) ,  

Tiy = r y y  - g r x z  + r y y  + 7 2 2 )  

are the longitudinal stress deviators. A combination of (5) 
and (6) gives: 

2r& + Tiy = r x x  - r z ,  

2.iY + TAX = r y y  - r z z  

(7) 

(8) 

and 

which, inserted into (1) and (2) yield: 

According to (4), the normal stress deviator gradients depend 
on the ice surface elevation gradients dzJ ax which are 
related to the ice thickness H according to the buoyancy 
condition: 

z ,  = (1 - E ) H  

where pi and p, are the densities of ice and sea water, 
respectively. Substituting the horizontal gradients of (4) 
into (9) and (lo), the following set of differential equations 
holds: 

As it is not possible to measure directly stresses in field 
experiments (Hutter 1983), equation (1 1) has to be transformed 
in a way that makes it more suitable to assimilate field data. 
This can be done by introducing a flow law for ice such as 
Glen’s law (1955), which relates strain rates and stresses 
according to: 

(12) i.. - ATn-l 7. I . 
23 - 2 1  . 

Here cil is a strain tensor element, A a temperature-dependent 
flow law parameter and z the effective stress, which is 
defined as the second invariant of the stress tensor. 

+ r:, + riz) .  (13) 
Usual glaciological practice is to set the exponent n equal to 
three (Paterson 1981). Theeffectivestrain rateiisgiven by: 

2r2 = rzz + riY + r,”, + 

i = A?, (14) 

(15) 

which can be combined with equation (12) to give 
T ! ,  a j  = i . . A - t ; i - ’ ,  23 

According to the principles of continuum mechanics one can 
express strain ratcs in terms of velocity gradients as: 
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so that i ~ replaced by f ,  is equal to: 
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a w ) 2  

+-(-+a,> 1 au av 2 +2(8+6 1 au 
2 dY z X 

Then, finally inserting (15) into (l l) ,  the following set of 
equations, which describe the flow of an ice shelf, is obtained. 

Fig. 1. Filchner-Rome Ice shelf (FRIS), Antarctica. Nine ice 
streams and outlet glaciers drain into the ice shelf. Balance 
fluxes magnitudes are given in km3 a-' (Mclntyre 1986) . 
They determine the flow velocities at the grounding line. 
The shaded area between Henry and Korff ice rises indicates 
the location of Doake Ice Rumples (DIR) . (18a) 

( :y( 3 az, a 
ay dY 

-y-+2-  f- +-  f- 

+ f ; [ f ( $ + 3 ]  

+ ?&a, + -)] BY 
1 a av aw 

= 0, 

with 
1 y = p;gA n . 

Since there is a lack of shear stress at the ice shelf bottom, 
au/ az and av/ az are negligible (Sanderson & Doake 1979). 
Furthermore, the horizontal gradients of the vertical velocity 
component w are assumed to be small compared with those 
of u and v, which makes (18) even simpler (typical values 
are: du/ ax = aw/ ax  < 10"). The remnant equations 
(19) contain quantities which are, except for A and n, 
available from field measurements. 

where 

using continuity: 

i s ,  + i,, + i,, = 0. 

The solution of (19a and b) which represents the velocity 
field for the entire ice shelf can be accomplished when 
boundary conditions have been specified below. 

Experiments 

Three runs labelled A, B and C are performed in this section. 
A gives the velocity field to the present-day ice thickness 
distribution and, in runs B and C the time-dependent mass 
balance equation is used to demonstrate 2000 years of future 
ice shelf evolution. 

A: Velocity field - diagnostic simulation 

The first aim in developing this model is to describe and 
1 a au av reproduce the present-day flow velocities for FRIS. To +--[f(-+-)I  2ay ay ax = o ,  (19a) achieve these as solutions of the model equations (1 9) one 

must start with the determination of the ice rhickness distribution 
for the entire ice shelf. Thickness data (Fig. 2a) are the same 
as those used for FE-simulations by Lange & MacAyeal 
(1986). Equation (19) is a boundary problem of the mixed 
Dirichlet - Neuman type, with a rigid condition at the 

1 a au av grounding line and an open boundary on the seaward side. 
Boundary conditions are fixed velocities at the grounding ('") +--[f(-+-)I  2 a x  ay ax = o .  
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Fig. 2. a. Ice thickness distribution, already corrected for the basal 
layer of “saline” ice in the central part. 
b. Diagnostic run on the basis of the actual ice thickness 
distribution; the restraint which is exerted by Doake Ice Rumples 
(DIR) is not taken into account. Contour lines of simulated 
velocities are given in m a-’. One can state a general consistency 
with the results from Lange & MacAyeal(l986), also for the ice 
rumples area where simulated velocities exceed observations by 
one order of magnitude. 

lineand thelongitudinalstrain ratesat theice front. McIntyre 
(1986) specified the ice inflow at the landward ice shelf 
margins in terms of balance fluxes (Fig. 1). These fluxes 
determine locally the velocities of nine ice streams and 
outlet mountain glaciers, whereas the ice is assumed to be 
stagnant elsewhere at the grounding line. Stagnant ice is also 
assumed for the margins of ice rises which are located inside 
the ice shelf area. 

At the ice front, where the influence of sidewall restraints 
vanishes, an equation of Thomas (1973) applies, giving 
longitudinal strain rates in relation to ice thickness, density 
and the flow law parameter. 

Both ice density and the flow law parameter are entered as 
vertically averaged quantities; this might magnify the strain 
rates by as much as threefold (Weertman 1957) and thus 
must be taken into consideration. Assuming an almost 
constant firn layer thickness for the entire ice shelf, the 
depth-averaged ice density p, varies laterally depending on 
H. A relation which can be derived from Thyssen (1988) for 
FRIS: 

13800 
II pi = 911 - - 

seems to express density variations sufficiently. Sea-water 
density p, is taken to be 1027 kg m-3. 

After having expressed (19) in terms of finite differences, 
an explicit relaxation method yields the solution iteratively. 
After 5000 iterations the solution seems to be about 5-1096 
within asymptotic state (see Appendix). 

The flow law parameter A is left as a free parameter which 
means that its magnitude solely governs the solution and 
determines the velocity field. Taking A to be 
2.5 x 10-l6 kPa3 s-l, which corresponds to a temperature of 
about -17 O C ,  a solution which agrees with the results 
derived by Lange & MacAyeal(l986) is obtained (Fig. 2b). 

There is one location at FRIS where the model obviously 
fails. For the region between Henry and Korff ice rises the 
model yields velocities which exceed observations by one 
order of magnitude (Smith 1986). When looking closer at 
the problem, one recognizes that this feature is linked to 
local ice shelf grounding at Doake Ice Rumples (DIR). At 

c. Diagnostic run (A), including the restraint by DIR. The 
velocity magnitudes are improved for the ice rumples area. 
Downstream of Henry and Korff ice rises they are slightly lower 
compared with the previous run. Contour lines are given in 
comparison with measurements by Kock & Wiegand (1986). 
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Fig. 3. FRIS basal-layer ice thickness: H, given in m, as 
derived from isostatic anomalies (after Thyssen 1988) 

this location, a large downstream ice thickness gradient 
(Smith 1986) implies increasing flow velocities if floating 
conditions are assumed as in the model. However, because 
of grounding the flow becomes a combination of longitudinal 
stretching, shearing and basal sliding. 

Unlike ice rises which have their own flow regime, ice 
flow across ice rumples is dependent on that of the ice shelf. 
Although in the past several attempts were undertaken to 
describe the behaviour of sliding ice streams and mountain 
glaciers (e.g. Budd et al. 1979, Bindschadler 1983, MacAyeal 
1989), the physics of sliding is still poorly understood. 
MacAyeal(l989) investigated the role of basal drag exerted 
by a viscous layer of sediments on the flow of Ice Stream B, 
Antarctica. Thereafter, basal drag acts as a horizontal body 
force opposing the driving forces, but without causing 
substantial vertical shear. Assuming that basal drag acts in 
a similar way on DIR a practical attempt, rather than a 
physical one to improve the model, will be performed. 
Instead of evaluating restraining forces, driving forces caused 
by ice thickness gradients ( dH/ ax, dH/ ay) are reduced in 
relation to the ice rumples height. 

According to Swithinbank (1986) no known ice rumples 
rise more than z0=30 m above ice shelf surface level. Taking 
this value as a threshold to discriminate between an ice 
rumple and an ice rise, one can apply a linear approach in 
order to adjust the flow across ice rumples. Surveying on a 
profile over Doake Ice Rumples by Smith (1986) yielded 
data concerning height above buoyancy z* (or height above 
ice shelf surface level) which are used to multiply (&I/ ax,  
dH/ ay) by a weighting factor r which is defined as: 

%* 5 to. 

Ice thickness gradients which govern ice shelf flow, are 
reduced to zero if z* equals zo. In fact, this is an ice rise 

FRIS basal layer 
100 - 
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melting rates 
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Fig. 4. FRIS ice thickness profile across the basal layer. 
Bottom melting rates according to equation (23) -negative 
values denote bottom freezing. Decreasing melting rates near 
the ice front (stippled line) arise from failure of (23) due to 
H, = 0. 

Fig 5. FRIS bottom melting rates, which are adopted in run C. 
Bottom accumulation rates in excess of 2 m a-’ occur in an 
area approx. 50 x 120 km downstream of Henry and Korff 
ice rises. 

condition, whereas z*=O implies pure ice shelf flow. In- 
between, ice rumples with 0 < z* < zo act as a brake by 
reducing the effectivity of ice thickness gradients. Running 
the model again now yields improved velocity magnitudes 
over DIR (Fig. 2c). With the exception of the area downstream 
of DIR where velocities decrease slightly, the flow remains 
mainly unchanged compared with the initial run. The 
solution is in good agreement with velocities observed by 
Kock & Wiegand (1986). 

Surface and bottom mass balances 

Surface accumulation and bottom freezing or melting contribute 
to the ice sheIf dynamics as well as does the ice stream 
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discharge. Surface mass balances have been observed from 
field measurements, whereas mass balances at the bottom 
have to be derived indirectly. 

The central part of FRIS bears a thick layer of “saline ice” 
underneath an internal radio-echo reflecting horizon 
(Engelhardt & Determann 1987, Thyssen 1988). Isostatic 
anomalies published by Thyssen (1988) express the thickness 
H, of this basal ice, which is assumed to be released from the 
Ocean underneath (Fig. 3 ) .  By assuming mass conservation 
and a steady state ice shelf, the application of the continuity 
equation for mass on the formation of the basal layer, is 
suggested. Freezing or bottom accretion leads to an increase 
of %downstream when thinning due to spreading is small. 
Going further, melting plus spreading reduce on apprmchmg 
the ice front. In this sense, entering flow velocities from the 
diagnostic run and basal layer thicknesses into the continuity 
equation, yields bottom accumulation rates m according to: 

b . U )  - - ( H * . V ) .  m=--(H d 
dz dY 

This equation only holds if the basal ice has not completely 
melted away, as is the case about 30 km inland from the ice 
front. Because aHJi3x = 0, equation (23) fails and reduces 
the calculated melting rates drastically or even indicates 
bottom freezing. However, clear radio-echo signals from 
the ice bottom preclude freezing at this place. Fig. 4 shows 
the results derived from (23) when going along a profile 
crossing the basal layer. Apparently, high rates of basal 
accumulation which exceed a rate of 2 m a-l in places, are 
necessary to preserve the basal ice layer in its present extent. 
But unlike former assumptions of widespread freezing 
conditions underneath FRIS (Lange & MacAyeal 1988>, 
freezing is restricted to arelatively small area (50 x 120 km) 
downstream theonset of the basal layer. Obviously, freezing 
rates of such a high magnitude can not be caused by heat 
conduction through the ice shelf/ocean boundary (Robin 
1979). This strongly favours evidence for a mechanism like 
the ‘ice pump’ (Lewis & Perkin 1986), which redistributes 
ice masses from deeper to shallower water depths (Robin 
1979). 

Kohnen (1982) stated melting rates to be of the order of 
3 m/a for the Ronne Ice Shelf. According to Behrendt 
(1970), melting rates for the Filchner Ice Shelf are greater 
than 3 m a-*. Considering this, a melting rate of 3 m a-l for 
the ice front region (< 50 km inland) seems to be reliable. 
Fig. 5 gives an overview of melting rates which can be 
adopted to time-dependent simulations. These are different 
from the ‘steady state’ melting rates (MacAyeal & Thomas 
1986) which, at the grounding Iine may be influenced by 
inappropriately set boundary conditions. As the name 
implies, they maintain ice thicknesses in the present 
configuration. But this is in contrast to the objective of 
investigating transient ice shelf dynamics. 

B and C:Transient changes of velocity and thickness dismbution 
- time-dependent simulations. 

A major purpose of ice shelf modelling is to investigate 
questions concerning stability based on present-day 
observations. For example, how do ice thickness H and the 
velocity field (u,v) react to changes in accumulation and 
melting rate? In order todemonstrate the long-term response 
to transient changes in accumulation, a time-dependent 
simulation, representing 2000 years of future evolution 
starting at present state, was conducted for FRIS. This was 
done by solving the mass balance equation (24) numerically 
by means of the finite-differences method. The mass balance 
equation (e.g. Muszinski & Birchfield 1987): 

a d d H  
at ax dY 

= --(II.u) - - (H.v)  + a  - 7n (24) 

can be solvedas soon as adiagnostic run has been completed. 
Here t stands for time, a for surface accumulation and m for 
bottom accumulation (m < 0) or melting. The mass balance 
equation requires ice incompressibility, and a€€/& = 0 would 
imply a steady state ice shelf, where the flux divergence and 
the accumulation rates cancel out. 

In fact, the ice shelf imbalance (dH/dt) is not zero in the 
beginning of a simulation. H will decrease or increase 
locally and thus new ice thickness gradients arise, implying 
a new velocity field. A time step of 0.5 years is appropriate 
for accomplishing fast progress for the new steady state. 
Due to a lack of accurate data of bottom topography near the 
grounding line, a temporal change of the ice shelf extent is 
not considered in the present study. Nevertheless, one can 
learn where the ice shelf boundaries will tend to move. Two 
model runs with different assumptions on basal melting rates 
rn were conducted . In run B, m was taken to be zero all over 
the ice shelf, whereas in run C, the melting rates from Fig. 5 
were adopted. In both cases, the surface accumulation rates 
of about 0.2-0.4 m a-l of ice equivalent from a compilation 
of Giovinetto & Bull (1987 p. 49) are entered. The flow law 
parameter A is kept constant for the time-dependent runs. 
Compared with the diagnostic run A, the dynamics of FRIS 
underwent remarkable changes in B and C. Figs. 6a & b 
show the new steady state for absence of basal melting. The 
central part of the ice shelf thinned slightly, probably as a 
result of restrained flow across DIR. The result would be 
even more drastic if the ice rumples completely blocked the 
ice flow. This was already mentioned in connection with the 
creation of the region of thin ice, detected by radio-echo 
soundings. Water masses ascending downstream could then 
release saline ice to form the basal layer (Lange & MacAyeal 
1988). Simultaneously, ice thicknesses at the grounding line 
and at the ice front would increase by more than 200 rn in 
places. In general, ice thickness gradients will tend to 
become smaller. The new shape corresponds to the new 
velocities in a way that mass conservation holds. Because of 
larger thicknesses at the grounding line, ice streams now 
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Fig. 6. a) Run B: ice thickness distribution after 2000 years of 
future evolution; surface accumulation only. The shape of the 
ice shelf has changed markedly. Downstream of Henry and 
Korff the ice shelf has thinned while at the ice front 
thicknesses have increased by up to 200 m. Two thin regions 
in the western part have disappeared. 
b) Run B - correspondent velocity field after 2000 a. 
Velocities at the ice front have decreased by up to 300 m a-l. 
Due to increased thicknesses at the grounding line ice streams 
now propagate more strongly into the ice shelf. 

propagate more strongly into the ice shelf, whereas the ice 
front velocities decrease, especially for Filchner, where a 
reduction of up to 300 m a-l is recorded. 

Figs. 7a & b express the results of run C ,  which takes into 
account bottom melting and accumulation. Thicknesses at 
the grounding line are similar to those in run B, whereas 
areas of basal melting reach a new steady state. In the central 
area, a dome-like shape has evolved, while at the ice front 
thicknesses approach almost present-day conditions. Velocity 
magnitudes at the ice front slightly exceed present values; on 
approaching the grounding line they equal those of run B. 

Although a downstream-increasing ice thickness is not 
very likely, it is consistent with the model constraints. 

Fig. 7.a) Run C: ice thickness distribution after 2000 years of 
future evolution . Regions where melting and freezing have 
occurred, showing altered ice thicknesses. Downstream of 
Henry and Korff ice rises the thin region has disappeared, 
while melting has caused a remarkable thinning at the ice 
front. 
b) Run C: correspondent velocity field after 2000 years of 
future evolution. Compared with run B, velocities at the ice 
front are different. At the Ronne side they are about 
200 m a-' higher. 

Because of high bottom accretion rates, a new shape evolves 
which implies a new velocity field. Thereby, a balance of 
accumulation and thinning as a result of spreading holds at 
the end of a simulation. 

Conclusions 

The model used is clearly a good tool to investigate ice shelf 
dynamics. Although neglecting lateral temperature variations 
might imply velocity deviations locally, the overall results 
are convincing. Of course, a more accurate definition of 
mode1 boundaries and temperatures would improve the 
results further but this would require extensive future field 
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programmes in addition. 
The small gnd resolution of 10 x 10 km allows a detailed 

investigation of local effects, such as basal melting and 
freezing or small-scale flow across ice rumples. Addressing 
the mass budget of ice shelves, it is essential to discuss the 
processes that occur at the ice shelf bottom. Although the 
time-dependent simulations suggest that the present state of 
FRIS is unstable, I favour Van der Veen's (1986) statement 
that ice shelves are always close to steady state. This 
discrepancy could be dismissed if substantial basal melting 
near the grounding line, as was postulated by Robin (1979), 
could be applied to model simulations and prevent the build- 
up in ice thicknesses in that area. The importance of basal 
melting may become clear from some quantities related to 
FRIS. Following McIntyre (1986), the total influx from ice 
streams equals 235 km3 a-l. Together with an annual 
precipitation of 91 km3 a-l, there is more than 320 km3 a-' of 
influx, as opposed to the present-day discharge of about 
180 km3 a-' as indicated by horizontal advection across the 
ice front. This fact strongly implies substantial basal melting 
underneath FRIS. Bottom accretion in the central part, 
downstream of Henry and Korff ice rises, increases the 
volume of melting which is necessary to obey mass 
conservation. Although basal melting is locally restricted, 
its high magnitude affects ice dynamics much more than 
does surface accumulation. According to MacAyeal & 
Thomas (1986), basalmelting influences thedepth-averaged 
flow law parameter A which was kept constant in the time- 
dependent runs. However, this should be investigated in 
further studies. Extensive basal melting not only affects the 
steady state profile of €XIS, but also creates an important 
heat sink in the submerging ocean. 
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Appendix 

Numerical procedure 

The set of equations (19) together with the boundary con&tions 
of mixed type can be solved numerically by means of a 
successive relaxation scheme (Holton 1979). This is done 
iteratively on a 10 x 10 km grid, starting with u=v=O 
everywhere except at the grounding line, where ice streams 
determine velocity magnitudes locally. All first and second 
order derivatives can be centred in space and then be 
expressed in a finite difference form as: 

Z ( l l ( i +  5 1,j)k-1 + u( i  - I ,&) 

+ &(u( i , j  - 1 ) k - 1  + u ( i , j  + 1 ) k - 1 )  

+ $ ( v ( i  + 1 , j  + 1 ) k - 1  + v( i  - 1 , j  - 1)k 

) - v( i  - 1 , j  + 1 ) k  - v(i + 1 , j  - 1)k-1 

- U ( i , j ) k - l  = 0 (Al) 

- J-Ax(.zs(i+ 20 1 , j )  - z s ( i -  1, j ) ) f ( i , j )k7(iI j )  

and respectively: 

& , j  2 + 1)k-1 + v ( i , j  - Ilk) 

+ &(v( i  - 1 , j ) k - 1  + v( i  + 1 , j ) k - 1 )  

+ &(u( i  + 1 , j  + l ) k - l +  u(i  - 1 , j  - 1)k 

- u(i  - 1 , j  + 1)k - u ( i  + 1 , j  - 1 ) k - I )  

- & A y ( z d i , j  + 1) - G ( 4 j  - l ) ) f (  i, j ) k Y ( i ,  j) 

- W ( i , j ) k - I  = 0 (4 
where 

1 u( i+ 1,j)k-1 - u ( i -  1,j)k-1 
+ (  2Ax 

1 U ( i l j  + 1 ) k - 1 -  u ( i , j  - 1 ) k - 1  

+ 4( 2Ax 

+ v( i  + 1 , j ) k - 1 -  v( i  - 1,j)k-1 
2Ax 

and 

Equations (A.l) and (A.2) are solved for u(ij) and v(iJ) 
which are the velocity components at the central grid point. 
f(iJ), is defined using velocities from the previous guess 
(k- 1). In order to save computation time, the terms af/dx and 
aqdy have been neglected in the development of the numerical 
solution. They were found to be of minor importance to the 
solution. After about 5000 iterations, the solution is within 
5-10% of asymptotic state which can be estimated from the 
increase of kinetic energy inherent to the system (Fig. 8). 

Now, having derived the velocity field for a given ice 
thickness distribution, transient changes of the ice shelf 
shape are investigated using the mass conservation equation 
(24). In terms of centred differences, the new ice thickness 
at time t+dt at node (ij) arises from: 

H ( i ,  j ) t+*t  = H ( i ,  j ) t  

H ( i +  l , j ) u ( i +  1 , j )  

H( i l j  4- l )u ( i , j  + 1) 

H ( i -  l , j ) u ( i -  1 , j )  t 

H ( i , j  - 1)u(i1j - 1) 
1 
1 

- - [  2Ax 2Ax 

- 1  2Ax 2Ax 
- 

+ . ( i , j)  - m(i,j) .  (A5)  

In a time-dependent simulation, ice thickness changes are 
small and thus only few iterations are needed to re-evaluate 
the velocity field. A time step of 0.5 a was found lo provide 
a good progress in the prognostic runs, which are extended 
to 2000 a of future ice shelf evolution. 

.- 1 2 0 0 5 -  

Fig. 8. Convergence of the solution: kinetic energy in the 
system versus number of iterations 
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