Bull. Aust. Math. Soc. **102** (2020), 31–**38** doi:10.1017/S0004972719001187

LOWER BOUNDS FOR PERIODS OF DUCCI SEQUENCES

(Received 13 September 2019; accepted 25 September 2019; first published online 22 November 2019)

Abstract

A Ducci sequence is a sequence of integer *n*-tuples obtained by iterating the map

 $D: (a_1, a_2, \dots, a_n) \mapsto (|a_1 - a_2|, |a_2 - a_3|, \dots, |a_n - a_1|).$

Such a sequence is eventually periodic and we denote by P(n) the maximal period of such sequences for given odd n. We prove a lower bound for P(n) by counting certain partitions. We then estimate the size of these partitions via the multiplicative order of two modulo n.

2010 *Mathematics subject classification*: primary 11B83; secondary 11P83, 11T30. *Keywords and phrases*: Ducci sequence, finite field, multiplicative order, partition.

1. Introduction

Let *n* be a positive integer. A Ducci sequence is a sequence of integer *n*-tuples obtained by iterating the map $D : \mathbb{Z}^n \to \mathbb{Z}^n$ defined by

$$D: (a_1, a_2, \dots, a_n) \mapsto (|a_1 - a_2|, |a_2 - a_3|, \dots, |a_n - a_1|).$$

There is a long literature on Ducci sequences (see, for example, [3–9, 15, 16, 23]).

Ducci sequences are eventually periodic. For each *n*, the largest period is denoted by P(n); it is the period of the sequence starting with (0, 0, ..., 0, 1). The sequence P(1), P(2), ... is entry A038553 in the On-line Encyclopedia of Integer Sequences [18]. Since $P(2^k) = 1$ and $P(2^km) = 2^k P(m)$, if *m* is not a power of two by [9, Theorem 4], we restrict our attention to odd *n*.

Denote by $t = \operatorname{ord}_{(\mathbb{Z}/n\mathbb{Z})^*}(2)$ the multiplicative order of two modulo *n*. If there exists an integer *M* for which $2^M \equiv -1 \mod n$, then we say that *n* is 'with -1'. It is convenient to introduce the quantities

$$B_1(n) = 2^t - 1$$
 and $B_2(n) = n(2^{t/2} - 1).$ (1.1)

The following upper bounds on P(n) are known. The first is proved in [15], the second in [9] and the third in [3].

The second author was supported in part by the Australian Research Council Grant DP180100201. © 2019 Australian Mathematical Publishing Association Inc.

THEOREM 1.1. Let n be an odd integer and let t be the multiplicative order of two modulo n.

(1) P(n) divides $B_1(n)$.

32

- (2) If n is with -1, then P(n) divides $B_2(n)$.
- (3) Suppose that $n = p^k$ with $p \equiv 5 \mod 8$ prime and 2 is a primitive root modulo p^k . If the equation $x^2 - py^2 = -4$ has no solutions in odd integers $x, y \in \mathbb{Z}$, then P(n) divides $\frac{1}{3}B_2(n)$.

As for lower bounds, the first of the following results is found in [9] and the rest are in [12].

THEOREM 1.2. Let *n* be an odd integer.

- (1) n divides P(n).
- (2) P(n) = n if and only if $n = 2^r 1$ for some positive integer r.
- (3) If n is with -1, then $P(n) \ge n(n-2)$.
- (4) If n is with -1, then P(n) = n(n-2) if and only if $n = 2^r + 1$ for some positive integer r.

The goal of the present paper is to prove new asymptotic lower bounds for P(n) in terms of *t* and *n*. Our starting point is the fact from [4] that P(n) is the lowest common multiple of the multiplicative orders of the elements $\zeta + 1$, where $\zeta \neq 1$ ranges over the *n*th roots of unity in the finite field $\mathbb{F}_{2^{t}}$.

Since our results require that $t > \sqrt{2n}$, in Section 5, we also give a short survey of known results about the size of t.

2. Multiplicative orders and partitions

Let $1 \le a < n$ be an integer prime to *n*.

Consider the set of representatives, chosen in the interval [1, n], of the coset $a\langle 2 \rangle \subseteq (\mathbb{Z}/n\mathbb{Z})^*$ of the multiplicative group $\langle 2 \rangle$ generated by 2 in the residue ring modulo *n*, that is,

$$\mathcal{S}_{a,n} := \{ j \in \mathbb{Z}_{>0} : 1 \leq j \leq n, \gcd(j,n) = 1, \exists e_j \in \mathbb{Z}_{>0}, j \equiv a2^{e_j} \bmod n \}.$$

Its cardinality is $\#S_{a,n} = t$.

Next, we consider the set of partitions of numbers $\leq t - 1$ into distinct parts from $S_{a,n}$: that is,

$$\mathcal{P}_{a,n} := \left\{ (u_j)_{j \in \mathcal{S}_{a,n}} \in \{0,1\}^t : \sum_{j \in \mathcal{S}_{a,n}} u_j j \le t-1 \right\}.$$
 (2.1)

Our main result is the following theorem.

THEOREM 2.1. Suppose that n is odd and a is relatively prime to n. Then $P(n) \ge \# \mathcal{P}_{a,n}$.

PROOF. It follows from [4, Theorem 3.9] that P(n) is the lowest common multiple of the multiplicative orders of $\zeta + 1$, where $\zeta \neq 1$ ranges over all *n*th roots of unity $\zeta \in \mathbb{F}_{2^{\prime}}$.

Let $\zeta \in \mathbb{F}_{2^t}$ be a primitive *n*th root of unity. The idea is to show that every partition in $\mathcal{P}_{a,n}$ leads to a distinct power of $\zeta + 1$. For this, we follow the strategy of [1].

Let $u = (u_i)_{i \in S_{a,n}} \in \mathcal{P}_{a,n}$ and set

$$Q_u = \sum_{j \in \mathcal{S}_{a,n}} u_j 2^{e_j},$$

where $j \equiv a2^{e_j} \mod n$. We also choose an integer *b* for which $ab \equiv 1 \mod n$. Now

$$\begin{split} (\zeta+1)^{Q_u} &= \prod_{j \in S_{a,n}} (\zeta+1)^{u_j 2^{e_j}} = \prod_{j \in S_{a,n}} (\zeta^{2^{e_j}}+1)^{u_j} \\ &= \prod_{j \in S_{a,n}} (\zeta^{b_j}+1)^{u_j} = \prod_{j \in S_{a,n}} (\vartheta^j+1)^{u_j}, \end{split}$$

where $\vartheta = \zeta^b \in \mathbb{F}_{2^t}$ is another primitive *n*th root of unity. Let

$$v = (v_j)_{j \in \mathcal{S}_{a,n}} \in \mathcal{P}_{a,r}$$

be another partition distinct from *u*. We must show that *v* gives rise to a distinct power of $\zeta + 1$. Suppose that $(\zeta + 1)^{Q_u} = (\zeta + 1)^{Q_v}$, so

$$\prod_{j\in\mathcal{S}_{a,n}}(\vartheta^j+1)^{u_j}=\prod_{j\in\mathcal{S}_{a,n}}(\vartheta^j+1)^{v_j}.$$

Denote by $f(X) \in \mathbb{F}_2[X]$ the minimal polynomial of ϑ ; it has degree *t*. Then f(X) must divide U(X) - V(X), where

$$U(X) = \prod_{j \in S_{a,n}} (X^j + 1)^{u_j}$$
 and $V(X) = \prod_{j \in S_{a,n}} (X^j + 1)^{v_j}$

Since these polynomials have degree $\leq t - 1 < \deg f$, it follows that U(X) = V(X). After removing common factors from both polynomials (corresponding to $u_j = v_j$), we obtain the identity

$$\prod_{h \in \mathcal{H}} (X^h + 1)^{u_h} = \prod_{k \in \mathcal{K}} (X^k + 1)^{v_k},$$
(2.2)

where \mathcal{H} and \mathcal{K} are disjoint subsets of $S_{a,n}$. But now we find that the term of smallest positive degree is x^e , where e is the smallest element of $\mathcal{H} \cup \mathcal{K}$, and this term only appears on one side of the identity (2.2). This contradiction concludes the proof. \Box

REMARK 2.2. Some parts of the proof of Theorem 2.1 can be shortened by appealing to [20, Lemma 1]. However, for completeness and since [20] may not be easily accessible, we present a full self-contained proof.

3. Counting partitions

Now we construct lower bounds for the cardinality of $\mathcal{P}_{a,n}$ for *n* of prescribed arithmetic structure. As we have mentioned, these bounds are only useful if *t* is not too small, specifically, $t > \sqrt{2n}$.

First, suppose that $t = \varphi(n)$, that is, 2 is a primitive root modulo *n*. In this case, $n = p^k$ must be a power of an odd prime *p*.

When n = p, we find that $\mathcal{P}_{a,n}$ contains the set of partitions of n - 2 into distinct parts, and the standard asymptotic (see, for example, [2, Theorem 6.4]) gives the following result.

COROLLARY 3.1. Suppose that n = p is an odd prime and 2 is a primitive root modulo *p*. Then, as $n \to \infty$,

$$P(n) \ge \exp\left[\left(\frac{\pi}{\sqrt{3}} + o(1)\right)\sqrt{n}\right].$$

Corollary 3.1 is already contained in [19, Theorem 1]; in particular, the completely explicit lower bound (for 2 a primitive root modulo n = p),

$$P(n) \ge (80(n-2))^{-\sqrt{2}} \exp\left(\pi \sqrt{\frac{n-2}{3}}\right),$$

follows from [19, Corollary 4]. (See also [20] for some related results.)

Next, suppose that $n = p^k$ and 2 is a primitive root modulo *n*. For this, it suffices that 2 is a primitive root modulo *p* and *p* is not a Wieferich prime, that is, $2^{p-1} \not\equiv 1 \mod p^2$.

We have $t = p^{k-1}(p-1)$ and $\mathcal{P}_{a,n}$ contains the set of partitions of t-1 into distinct parts which are not divisible by p. An asymptotic formula for the number of such partitions appears in [13, Corollary 7.2], leading to the following result.

COROLLARY 3.2. Fix an odd non-Wieferich prime p and suppose that 2 is a primitive root modulo p. For $n = p^k$, as $k \to \infty$,

$$P(n) \ge \exp\left[\left(\frac{\pi}{\sqrt{3}}\sqrt{\frac{p-1}{p}} + o(1)\right)\sqrt{n}\right].$$

If $t < \varphi(n)$, then, inspired by [11], we estimate the cardinality of $\mathcal{P}_{a,n}$ as follows. Let $2 \leq N < t$ be an integer and set $S_{a,n}(N) = S_{a,n} \cap [1, N]$. Each subset $\mathcal{J} \subseteq S_{a,n}(N)$ of cardinality $\#\mathcal{J} = J \leq t/N$ produces a valid partition $u \in \mathcal{P}_{a,n}$, where $u_j = 1$ if $j \in \mathcal{J}$ and $u_j = 0$ otherwise. Thus we obtain

$$\#\mathcal{P}_{a,n} \ge \sum_{J \leqslant t/N} \begin{pmatrix} \#\mathcal{S}_{a,n}(N) \\ J \end{pmatrix}.$$

It remains to estimate $\#S_{a,n}(N)$ and choose suitable *a* and *N*.

It is well known (see, for example, [21, Lemma 2.1]) that

$$\#\{j: 1 \leq j \leq N, \gcd(j, n) = 1\} = N\varphi(n)/n + O(n^{O(1)}).$$

Periods of Ducci sequences

Among the cosets of $\langle 2 \rangle \subseteq (\mathbb{Z}/n\mathbb{Z})^*$ at least one must have at least the average number of representatives in [1, N], so there exists an integer *a*, prime to *n*, for which

$$\begin{aligned} \#S_{a,n}(N) &\ge \frac{t}{\varphi(n)} \cdot \#\{j : 1 \le j \le N, \gcd(j,n) = 1\} \\ &= \frac{t}{\varphi(n)} (N\varphi(n)/n + O(n^{o(1)})) = (1 + o(1))\frac{tN}{n} \end{aligned}$$

as $n \to \infty$, provided $N \ge n^{\varepsilon}$ for some fixed $\varepsilon > 0$.

Choose $N = \lfloor \sqrt{2n} \rfloor$. Since $t \ge n^{1/2+\varepsilon}$,

$$\#S_{a,n}(N) \ge \frac{tN}{n} + O(n^{o(1)}) = (2 + o(1))\frac{t}{N}$$

By the Stirling formula,

$$\#\mathcal{P}_{a,n} \ge \sum_{J \le t/N} \binom{\#\mathcal{S}_{a,n}(N)}{J} \ge \binom{\#\mathcal{S}_{a,n}(N)}{\lfloor t/N \rfloor} \ge \exp\left((2\log 2 + o(1))\frac{t}{N}\right).$$

Thus we have proved the following result.

COROLLARY 3.3. Suppose that *n* is odd and *t* is the multiplicative order of two modulo *n*. Then

$$P(n) \ge \exp\left[(\log 4 + o(1))\frac{t}{\sqrt{2n}}\right].$$

In particular, if $n = p^k$, then it is easy to show that $t \ge c(p)p^k$, where c(p) > 0 depends only on p, and hence Corollary 3.3 gives a version of Corollary 3.2 in the form

$$P(n) \ge \exp(c(p)\sqrt{n}).$$

We remark that the condition $t > \sqrt{2n}$ of Corollary 3.3 corresponds to the limits of our method. Indeed, there are about $\varphi(n)/t$ distinct cosets $S_{a,n}$ and, since $\varphi(n) = n^{1+o(1)}$, each of them is expected to contain very few elements from the interval [1, t], which are the only suitable elements that can be used in the construction of the set $\mathcal{P}_{a,n}$ given by (2.1).

Since

$$\frac{\log 4}{\sqrt{2}} \approx 0.98025 \quad \text{and} \quad \frac{\pi}{\sqrt{3}} \approx 1.8138,$$

in the case of $t \approx n$ we recover a result similar to Corollaries 3.1 and 3.2, but with a smaller constant in the exponent.

Our lower bounds are quite small compared with the upper bounds $P(n) \le B_1(n) \sim 2^t$ and $P(n) \le B_2(n) \sim n2^{t/2}$ (see (1.1)), which follow from Theorem 1.1. On the other hand, they are typically much stronger than the linear and quadratic in *n* lower bounds which one can extract from Theorem 1.2.

4. Numerical results

It is interesting to compare the lower bound of Theorem 2.1 with actual values of P(n). Table 1 shows numerical values of P(n) and $\#\mathcal{P}_{a,n}$ for odd $n \leq 101$ and a

						$\#\mathcal{P}_{a,n}$ for odd $n \leq P(n)$			#0
n	P(n)	t	а	$\#\mathcal{P}_{a,n}$	n 65	4095	12	a 1	#P _{a,n} 12
3	3	2	1	2	65	4095	12	3	4
5	15	4	1	5	_	_	_	7	3
7	7	3	1	3	-	_	_	11	2
9	63	6	3	1	67	575525617597	66	1	176945
11	341	10	1	33	69	4194303	22	1	31
13	819	10	1	55	71	34359738367	35	5	17 1427
15	15	4	1	4		54559758507		7	35
-	_	_	7	1	73	511	9	1	9
17	255	8	1	8	_	_	_	3	3
		- 10	3	5	-	—	—	5	3
19 21	9709 63	18	1	207	-	—	_	9 11	1
			5	2	_		_	13	1
23	2047	11	1	28	_	_	_	17	1
-	_	_	5	4	-	_	_	25	1
25	25575	20	1	190	75	1048575	20	1	24
27	13797	18	1	79	77	1072741922		7	6
29 31	475107	28 5	1	1261		1073741823	30	1 3	100 70
	31	<u> </u>	3	5 2	79	549755813887	39	1	1028
_	_	_	5	1		-	_	3	106
-	_	_	7	1	81	10871635887	54	1	6159
-	—	—	11	1	83	182518930210733	82	1	911361
	1022		15	1	85	255	8	1	8
33	1023	10	1 5	10 3	-	—	_	3 7	3 2
35	4095	12	1	16		_	_	9	1
_	_	_	3	4	_	_	_	13	1
37	3233097	36	1	4310	-	—	_	21	1
39	4095	12	1	22		—	_	29	1
41	41943	20	7	2 70	87	268435455	28	37	1 154
41	41943	20	3	25		208435455		5	9
43	5461	14	1	17	89	2047	11	1	11
_	_	_	3	10	-	—	_	3	6
_	_	—	7	4	-	—	_	5	3
45	4095	12	1	12		_	_	9 11	2 1
47	8388607	23	7	3 241		_	_	13	1
			5	14	_	_	_	19	1
49	2097151	21	1	53	—	—	—	33	1
-	_	_	3	27	91	4095	12	1	12
51	255	8	1	8		—	_	3 9	8 2
-	_	_	5	3		_	_	11	2
	_	_	11 19	1	_	_	_	17	1
53	3556769739	52	1	35680			_	19	1
55	1048575	20	1	66	93	1023	10	1	10
	_	_	3	8		—		5 7	2 2
57	29127	18	1	33		_		11	1
59	31675383749	58	5	8 72503	_	_	_	17	1
61	65498251203	60	1	91103				23	1
63	63	6	1	6	95	22906492245	36	1	905
_		_	5	2	97	1627389855	48	7	17 2216
-	—	_	11	1		102/369833	40	5	2216
-	—	—	13 23	1	99	3243933	30	1	49
	_	_	23 31	1			_	5	32
L			~ •		101	37905296863701641	100	1	4827382

TABLE 1. Values of P(n) and $\# \mathcal{P}_{a,n}$ for odd $n \leq 101$.

representative *a* for each coset of the factor group $(\mathbb{Z}/n\mathbb{Z})^*/\langle 2 \rangle$. These values were computed using Sage. Unsurprisingly, the largest value of $\#\mathcal{P}_{a,n}$ is achieved for a = 1 in these small cases, due to the presence of small powers of two in $S_{1,n}$. However, when n = 109, we find that

$$\#\mathcal{P}_{1,109} = 99 < 178 = \#\mathcal{P}_{3,109} = \max_{\gcd(a,109)=1} \#\mathcal{P}_{a,109}.$$

5. Lower bounds on multiplicative orders

Since the quality of our bounds depends rather dramatically on the multiplicative order of two modulo *n*, here we give a short outline of known results.

First, we observe that the applicability of Corollary 3.1 for infinitely many prime n = p is equivalent to *Artin's conjecture* (see [17] for an exhaustive survey). On the other hand, we are not aware of any conditional (let alone unconditional) results or well-established conjectures towards a version of Artin's conjecture for the non-Wieferich primes which appear in Corollary 3.2. It is natural to expect that there are infinitely many such primes but known results are scarce [22].

Primes *p* and integers *n* for which *t* is large, in particular, exceeding \sqrt{p} , have been studied in many different contexts, but most commonly in the theory of *pseudorandom number generators*. These results originate from the work of Erdős and Murty [10] and are conveniently summarised in [14]. For example, for any function $\psi(n) \rightarrow 0$ as $n \rightarrow \infty$, we have $t \ge n^{1/2+\psi(n)}$ for almost all (in a sense of relative density) primes p = n (see [10, Theorem 1]) and odd integers *n* (see [14, Theorem 11]). Furthermore, for a positive proportion of primes p = n (see [14, Lemma 19])) and odd integers *n* (see [14, Theorem 21]) we have $t \ge n^{0.677}$.

Acknowledgement

The first author thanks the Alexander–von-Humboldt Foundation for support, the Universität Heidelberg for hospitality and Hannes Breuer for interesting discussions.

The authors are grateful to the organisers of the the *Sixth Number Theory Down Under* Conference (NTDU-6), Canberra, 24–27 September, 2018, for creating a very encouraging and collaborative atmosphere, which has led to this work.

References

- O. Ahmadi, I. E. Shparlinski and J. F. Voloch, 'Multiplicative order of Gauss periods', *Internat. J. Number Theory* 6 (2010), 877–882.
- [2] G. E. Andrews, The Theory of Partitions (Addison-Wesley, New York, 1976).
- [3] F. Breuer, 'Periods of Ducci sequences and odd solutions to a Pellian equation', *Bull. Aust. Math. Soc.* **100** (2019), 201–205.
- [4] F. Breuer, E. Lötter and A. B. van der Merwe, "Ducci sequences and cyclotomic polynomials', *Finite Fields Appl.* 13 (2007), 293–304.
- [5] R. Brown and J. L. Merzel, 'The number of Ducci sequences with given period', *Fibonacci Quart*. 45 (2007), 115–121.

- [6] N. J. Calkin, J. G. Stevens and D. M. Thomas, 'A characterization for the length of cycles of the *n*-number Ducci game', *Fibonacci Quart.* **43** (2005), 53–59.
- [7] C. Ciamberlini and A. Marengoni, 'Su una interessante curiosità numerica', *Periodiche di Matematiche* 17 (1937), 25–30.
- [8] A. Clausing, 'Ducci matrices', Amer. Math. Monthly 125 (2018), 901–921.
- [9] A. Ehrlich, 'Periods of Ducci's *N*-number game of differences', *Fibonacci Quart.* **28** (1990), 302–305.
- [10] P. Erdős and M. R. Murty, 'On the order of a(mod p)', in: Proc. 5th Canadian Number Theory Association Conf. (American Mathematical Society, Providence, RI, 1999), 87–97.
- [11] J. von zur Gathen and I. E. Shparlinski, 'Orders of Gauss periods in finite fields', Appl. Algebra Engrg. Comm. Comput. 9 (1998), 15–24.
- [12] H. Glaser and G. Schöffl, 'Ducci-sequences and Pascal's triangle', *Fibonacci Quart.* 33 (1995), 313–324.
- [13] P. Hagis, 'On a class of partitions with distinct summands', *Trans. Amer. Math. Soc.* 112 (1964), 401–415.
- [14] P. Kurlberg and C. Pomerance, 'On the period of the linear congruential and power generators', *Acta Arith.* 119 (2005), 149–169.
- [15] A. L. Ludington, 'Cycles of differences of integers', J. Number Theory 13 (1981), 255–261.
- [16] M. Misiurewicz, J. G. Stevens and D. M. Thomas, 'Iterations of linear maps over finite fields', *Linear Algebra Appl.* 413 (2006), 218–234.
- [17] P. Moree, 'Artin's primitive root conjecture a survey', Integers 12A (2012), 1–100; Paper A13.
- [18] The On-line Encyclopedia of Integer Sequences, entry #A038553. https://oeis.org/A038553.
- [19] R. Popovych, 'Elements of high order in finite fields of the form $\mathbb{F}_q[x]/\Phi_r(x)$ ', *Finite Fields Appl.* **18**(4) (2012), 700–710.
- [20] R. Popovych, 'Sharpening of the explicit lower bounds for the order of elements in finite field extensions based on cyclotomic polynomials', *Ukrainian Math. J.* 66(6) (2014), 916–927.
- [21] I. E. Shparlinski, 'Linear equations with rational fractions of bounded height and stochastic matrices', Q. J. Math. 69 (2018), 487–499.
- [22] J. H. Silverman, 'Wieferich's criterion and the abc-conjecture', J. Number Theory **30** (1988), 226–237.
- [23] S. Solak and M. Bahşi, 'Some properties of circulant matrices with Ducci sequences', *Linear Algebra Appl.* 542 (2018), 557–568.

FLORIAN BREUER, School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia e-mail: florian.breuer@newcastle.edu.au

IGOR E. SHPARLINSKI, School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia e-mail: igor.shparlinski@unsw.edu.au