
Ergod. Th. & Dynam. Sys., (2021), 41, 3178–3200 © The Author(s), 2020. Published by

Cambridge University Press.

doi:10.1017/etds.2020.95

3178

A context in which finite or unique

ergodicity is generic

ANDY Q. YINGST

University of South Carolina Lancaster, PO Box 889, Lancaster, SC 29721, USA

(e-mail: andy.yingst@gmail.com)

(Received 30 January 2018 and accepted in revised form 9 July 2020)

Abstract. We show that for good measures, the set of homeomorphisms of Cantor space

which preserve that measure and which have no invariant clopen sets contains a residual set

of homeomorphisms which are uniquely ergodic. Additionally, we show that for refinable

Bernoulli trial measures, the same set of homeomorphisms contains a residual set of

homeomorphisms which admit only finitely many ergodic measures.
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1. Stating the main theorem

In their fundamental 1941 paper, [8], Oxtoby and Ulam showed that for n ≥ 2, among

homeomorphisms of the cube [0, 1]n which preserve Lebesgue measure, the property of

being ergodic was generic. That is, the collection of such homeomorphisms which are

ergodic is residual in the space. This result was extended in many ways and replicated in

many spaces; the book of Alpern and Prasad [2] contains a wide range of results of this

form, primarily focused on generic behavior in spaces of homeomorphisms of manifolds.

More recently there have been similar investigations for groups of homeomorphisms of

Cantor space. One surprising result in this field due to Kechris and Rosendal [7] is that

in the space of homeomorphisms of Cantor space, there exists a single homeomorphism

whose isomorphism class is generic. This homeomorphism was then constructed more

explicitly by Akin, Glasner and Weiss [4] providing a fairly complete understanding of its

dynamical properties, which then are immediately understood to be generic properties in

the homeomorphism space of the Cantor set.

In the present paper, we focus our attention on the group of homeomorphisms of Cantor

space which preserve a single given measure. Let C = {0, 1}N denote Cantor space in two

symbols, and let µr denote the Bernoulli trial measure on the Borel subsets of C so that

the symbol ‘1’ occurs with probability r independently in each coordinate. Suppose that

r is an algebraic number in (0, 1) with an algebraic conjugate r̄ in the interval. If H is
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any homeomorphism of C which preserves µr , then, for any clopen set C, the property that

µr(H(C)) = µr(C) is equivalent to an integer polynomial equation about r. This equation

must therefore also be true for r̄ , and so H must also preserve the measure µr̄ , on the clopen

sets and therefore on the Borel sets. A homeomorphism of C cannot distinguish between

preserving µr and preserving µr̄ for any algebraic conjugate of r: the measures are glued

together in a certain sense.

We show in this paper that for certain choices of r (those for which µr has a

homogeneity property called refinability) and with a suitable restriction on the space of

homeomorphisms considered, the generic behavior is that the set of ergodic measures are

precisely those µr̄ where r̄ is an algebraic conjugate of r in (0, 1). Prior to this, we will

use a simpler version of the same techniques to show that if µ is a measure on C (not

necessarily a Bernoulli trial measure) with another homogeneity property called goodness,

then unique ergodicity is generic in the same restricted sense.

Let hom(C) denote the class of all homeomorphisms of C. Fixing a complete metric d

on C, let d̂ be the metric on hom(C) defined by

d̂(G, H) = max
x∈C

{max{d(G(x), H(x)), d(G−1(x), H−1(x))}}.

This metric is compatible with the usual topology of uniform convergence on hom(C)

and, since a limit in this metric will have an inverse, (hom(C), d̂) is a complete metric

space. More commonly, however, we will understand this topology through the following

notation: when H ∈ hom(C) and P is a partition of C into clopen sets, let N(H , P)

denote the set of all homeomorphisms G ∈ hom(C) with the property that for C1, C2 ∈ P ,

G−1(C2) ∩ C1 is empty if and only if H−1(C2) ∩ C1 is empty. It is easy to verify that

the sets of the form N(H , P) are open and constitute a system of neighborhoods for the

uniform topology on hom(C).

Because we are interested in ergodicity, we would like to restrict our attention to the

class of homeomorphisms with no invariant proper non-empty clopen sets, which we will

call hom∗(C). On C, this is equivalent to the class of homeomorphisms with no proper

attractors, or the class of homeomorphisms which are chain transitive. If H ∈ hom(C)

leaves the clopen set E invariant, and if E is distance ǫ away from the remainder of C, then

every homeomorphism whose d̂ distance to H is within ǫ also leaves E invariant. So, the

set of all homeomorphisms having an invariant clopen set is open in hom(C) and removing

them leaves hom∗(C) as a complete metric space in its own right. (Note that hom∗(C) is

non-empty, for instance, because it includes the two-sided shift.)

For a measure m on C, we let hom(m) be the set of all h ∈ hom(C) that preserve the

measure m, and we let hom∗(m) be the set of all h ∈ hom∗(C) which preserve m. It is easy

to verify that hom(m) and hom∗(m) are each closed in hom(C), so each of these is also a

complete metric space. One of our two main theorems is the following, which demonstrates

a large class of uniquely or finitely ergodic homeomorphisms.

THEOREM 1.1. For an irreducible integer polynomial p(x) with p(0) = ±1 and p(1) =
±1, let R be the set of roots of p(x) which lie in (0, 1) and let r ∈ R. Let E be the set of

all finitely ergodic homeomorphisms in hom∗(µr) whose ergodic measures are precisely

those µs where s ∈ R. Then E is residual in hom∗(µr).
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2. Definitions and preliminaries

A measure on Cantor space is full when open sets have positive measure and is non-atomic

when points have measure zero. In [1], Akin defined a full, non-atomic probability measure

m on C to be good when for any two clopen sets E and F with m(E) ≤ m(F), there exists

a clopen set Ê ⊆ F with m(Ê) = m(E). That is, a measure on Cantor space is good if

whenever a clopen set with a certain measure exists, such clopen sets exist in any clopen

set large enough to hold it. One motivation for this definition is as follows.

Given two full, non-atomic probability measures on C, there is not necessarily a

homeomorphism of C that maps one measure to the other. This can be seen because the

clopen values set of a measure m, {m(E) : E is clopen in C}, is a countable dense subset of

the interval which is invariant under homeomorphism. Two measures on C will typically

not have the same clopen values set and so will not be homeomorphic and, as it turns out,

even two measures with the same clopen values set will sometimes not be homeomorphic.

But, in [1], Akin showed that if two measures with the same clopen values set are both

good, then they are homeomorphic.

A full non-atomic measure m was defined by Dougherty, Mauldin and Yingst [9] to

be refinable when given three clopen sets E1, E2 and F with m(E1) + m(E2) = m(F),

there exists a decomposition of F into clopen sets Ê1, Ê2 with m(Ê1) = m(E1). (And,

hence, m(Ê2) = m(E2).) It is clear that any good measure is refinable. The term refinable

came about while trying to generalize Akin’s homeomorphism theorem. In [9], Dougherty,

Mauldin and Yingst showed the following result, with a proof almost identical to the proof

of the same result for a good measure by Akin in [1].

THEOREM 2.1. (Dougherty, Mauldin and Yingst, and Akin) Let µ and ν be good or

refinable measures on Cantor spaces C1 and C2. Suppose that µ and ν have the same

clopen values set. Then there is a homeomorphism T : C1 → C2 with µ ◦ T = ν.

Slightly further, suppose that P1 and P2 are (finite) partitions of C1 and C2 into clopen

sets, and that π : C1 → C2 is a bijection so that µ(C) = ν(π(C)) for every C ∈ P1. Then

there is a homeomorphism T : C1 → C2 with µ ◦ T = ν such that T (C) = π(C) for each

C ∈ P1.

The notions of goodness and refinability were characterized for a Bernoulli trial measure

in [9].

THEOREM 2.2. (Dougherty, Mauldin and Yingst) The Bernoulli trial measure µr is

refinable if and only if there is an integer polynomial p(x) with p(0) = ±1, p(1) = ±1

and p(r) = 0. Further, µr is good when it is refinable and also r is the only one of its

conjugates in [0, 1].

In the above theorem, we may assume that p(x) is the irreducible polynomial of r over

Z[x]. With this characterization, Theorem 1.1 is discussing exactly those r for which µr is

refinable. When µr is refinable or good, we sometimes say that the number r is refinable

or good as well. As an example, µ1/2 is good, since 1/2 is the unique root of 2x − 1, an

integer polynomial which equals ±1 at 0 and 1. Meanwhile, α = (2 +
√

2)/4 is one of two

roots of 8x2 − 8x + 1 in the interval, so µα is refinable but not good.
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Additionally, the following characterizing property was shown by Akin [1] and Glasner

and Weiss [5]. (Glasner and Weiss showed that uniquely ergodic homeomorphisms yield

good measures, and Akin showed the converse.)

THEOREM 2.3. (Akin, and Glasner and Weiss) A measure on Cantor space is good if and

only if there is a uniquely ergodic homeomorphism for which that measure is the unique

ergodic measure.

This result was extended from the case of a single measure to a finite-dimensional

Choquet simplex of measures in an unpublished paper [3] of Dahl.

THEOREM 2.4. (Dahl) Let K be a Choquet simplex of non-atomic full probability measures

on C. Assume that K has finitely many extreme points which are mutually singular, and that

when E, F are clopen sets in C with m(E) < m(F) for every m ∈ K , there exists a clopen

set Ê ⊆ F with m(E) = m(Ê) for all m ∈ K . Then there is a homeomorphism T of C

whose invariant measures are exactly the elements of K.

This result was further extended by Ibarlucía and Melleray in [6], who gave a complete

characterization of when a given simplex K of probability measures (not necessarily

finite-dimensional) is the set of invariant measures of some minimal homeomorphism of

Cantor space. We will return to this result at the end of our paper.

The present paper is motivated by a question asked by Mauldin in 2006: if the existence

of a unique root r of P(x) in the interval is equivalent to the existence of a homeomorphism

with µr as a unique measure, does the refinable case which involves finitely many roots in

the interval correspond with the existence of a finitely ergodic homeomorphism of C with

the corresponding measures as its ergodic measures? Fixing a refinable number, we may

let K be the convex hull of the set of µr , where r is an algebraic conjugate in (0, 1) of that

refinable number. In §5, we will see that this set K does satisfy the conditions of Theorem

2.4 above, giving an affirmative answer to Mauldin’s question. In this paper, Theorem 1.1

goes further, giving that such homeomorphisms are generic in hom∗(µr) for any single

refinable Bernoulli trial measure µr .

Note that in Theorem 1.1, the case when r has no other algebraic conjugate in the interval

is exactly the case when µr is a good measure, and that in that case we have that home-

omorphisms in hom∗(µr) are generically uniquely ergodic. It turns out that in the good

case, we do not need our measure to be a Bernoulli trial measure. A much simpler version

of the proof of Theorem 1.1 applies, and we have the following, our second main theorem.

THEOREM 2.5. Let µ be a good (full, non-atomic) measure on the Borel subsets of C. The

set of all uniquely ergodic homeomorphisms in hom∗(µ) is residual in hom∗(µ). (And, the

unique ergodic measure for any such homeomorphism is µ.)

Note that we defined C = {0, 1}N, but the above theorem holds for any expression of

Cantor space.

Continuing our example, the fair coin-tossing measure µ1/2 was noted above to be a

good measure, and this theorem shows that among homeomorphisms of C which preserve

µ1/2 and which have no invariant clopen subsets, unique ergodicity is generic.
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In the present context, because we are restricting our attention to homeomorphisms with

no invariant clopen sets, we need the following theorem, which is a mild strengthening of

Theorem 2.1, which stated that refinable measures with the same clopen values set are

homeomorphic. This time, we map C to itself so as to end up with no invariant clopen

sets, allowing us to work in hom∗(µ) rather than just in hom(µ). Note that this theorem

shows us that the transition from hom(µ) to hom∗(µ) still leaves us in a large space of

homeomorphisms.

THEOREM 2.6. Let µ be a measure on C which is either good or is a refinable Bernoulli

trial measure, and let P and Q be two partitions of C into non-empty proper clopen sets

with a bijection π : P → Q so that µ(π(C)) = µ(C) for all C ∈ P and so that no proper

non-empty clopen subset of C is left invariant by this correspondence. (That is, if ∅ (

S ( P , then ∪C∈SC 6= ∪C∈Sπ(C).) Then there is a homeomorphism H : C → C with no

invariant clopen subsets so that H(C) = π(C) for each C ∈ P .

Proof. Since C is compact, P and Q are finite. As in the proofs of Theorem 2.1 in [1]

and [9], for each i ≥ 0, we construct Pi and Qi , partitions of C into non-empty proper

clopen subsets of C, and πi a bijection from Pi to Qi which preserves µ, so that Pi+1 is a

refinement of Pi , Qi+1 is a refinement of Qi and so that for P ∈ Pi , πi+1 sends subsets of

P to subsets of πi(P ).

Let P1 = P , Q1 = Q and π1 = π . We go back and forth, at each step alternately

refining either Pi or Qi into basic clopen sets which separate any two points which differ in

one of the first i coordinates, and we use refinability to generate the corresponding partition

on the other side: if P2k , Q2k and π2k are constructed, let P2k+1 be any refinement of P2k

into basic clopen sets which separate points which differ in the first 2k + 1 coordinates.

For each C ∈ P2k , P2k+1 contains a partition of C into clopen sets. By refinability, there

must be a partition of π2k(C) into clopen sets having the same measures as the refinement

of C; we would like to choose such sets and let π2k+1 be this correspondence. The tricky

part is that now we must ensure that the resulting correspondence leaves no clopen set

fixed. When using refinability to choose elements of Q2k+1, if we wish to ensure that

no clopen subset defined by π2k+1 is left invariant, there are finitely many clopen sets

to consider: those which are expressible as a union of elements of P2k+1. Thus, we may

choose elements of Q2k+1 one at a time. In each case, avoiding an invariant clopen set

requires that we avoid one of at most finitely many choices, but for a good measure or a

refinable Bernoulli trial measure, there are infinitely many options to choose from. (To be

clear, when we choose an element of Q2k+1, we must consider any set which is a union

of elements of Q2k+1 already chosen, or of elements of Q2k , as they will eventually be

such a union after all choices have been made. When it comes time to ‘choose’ the final

subset of an element of Q2k , we have no choice at all as we must use the remainder left

from the pieces chosen already. However, any non-trivial invariant subset which includes

this remainder set would, by complement, leave an invariant set which does not include the

remainder and so this possibility will already have been avoided.)

With P2k+1, Q2k+1 and π2k+1 constructed, we build the (2k + 2)th stage similarly,

choosing basic clopen sets on the Q side, and letting refinability induce the P side while

avoiding invariant clopen sets.
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With the sequences {Pn} and {Qn} constructed, let H be defined as follows: for x in

C, for each n there is a unique En ∈ Pn with x ∈ En. Because P2n+1 and Q2n separate

points in the first 2n − 1 coordinates, we have ∩∞
n=1En = {x}, and we may let H(x) be

the unique element of
⋂∞

n=1 πn(En). Any clopen set is a union of basic sets in Pn for

some sufficiently large n, since by construction any basic open set depending on the first k

elements is a union of elements of Pk+1. A clopen set is a finite union of basic open sets,

so is defined by some Pn. Its image under H is the corresponding union of elements of Qn,

and πn witnesses that this clopen set is not invariant except trivially and that its measure

is preserved. Our homeomorphism preserves measure for any clopen set and hence for any

Borel set. �

Note that this theorem does not hold for a general refinable measure. As an example,

if ν is any probability measure on C for which no two different clopen sets have the same

measure, then ν is trivially refinable, but the only homeomorphism that preserves this

measure is the identity.

3. Reducing the main theorems to lemmas

The bulk of the work proving Theorems 1.1 and 2.5 will come in proving the upcoming

Lemmas 6.1 and 4.1. Proving the main theorems given their respective lemmas is almost

identical however and we handle both cases simultaneously in this section. (The following

is just a combined restatement of Theorems 1.1 and 2.5.)

THEOREM 3.1. If µ is a good measure on C, then the set of all uniquely ergodic

homeomorphisms in hom∗(µ) is residual in hom∗(µ). (And, for each such measure, its

unique ergodic measure is µ.)

If r ∈ (0, 1) is a root of an irreducible integer polynomial p(x) with p(0) = ±1 and

p(1) = ±1, if R is the set of roots of p(x) which lie in (0, 1) and if E is the set of all finitely

ergodic homeomorphisms in hom∗(µr ) whose ergodic measures are precisely those µs

where s ∈ R, then E is a residual set in hom∗(µr).

Proof. Let either µ or µr be as above. (If in the second case, let R be as above as well.)

We let K be the set of all measures of interest in either case. That is, K = {µ} if we are in

the case of a good measure µ, or we let K = {µr : r ∈ R} for the refinable case.

Suppose that H is some homeomorphism of C in hom∗(µ) which admits an ergodic

measure not in K; call it m. Then m is supported on some Borel set with measure zero for

each measure in K. Approximating that set by a clopen set D, we find the existence of D

clopen with ν(D) < m(D) for all ν ∈ K . By the ergodic theorem, for m-almost every x in

C (and, in particular, for some x), we have that

lim
n→∞

1

n + 1
#{j = 0, . . . , n : H j (x) ∈ D} = m(D) > max

ν∈K
ν(D).

For D clopen and for η > 0, let V (D, η) be the set of all H ∈ hom∗(µ) so that for some

x ∈ C, we have

lim inf
n→∞

1

n + 1
#{j = 0, . . . , n : H j (x) ∈ D} >

(

max
ν∈K

ν(D)
)

+ η.
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By the preceding paragraph, we have that any H in hom∗(µ) which has an ergodic measure

not in K must be in V (D, η) for some clopen D and some rational η. To show that the set

of non-uniquely-ergodic homeomorphisms is meager in hom∗(µ), it suffices to show that

each V (D, η) is nowhere dense.

For the good case, the upcoming Lemma 4.1 will give us that for any T ∈ hom∗(µ) and

any neighborhood N(T , P) of T, there is a subneighborhood N(H , Q) with N(H , Q) ∩
V (D, η) = ∅, while Lemma 6.1 will do the same for the refinable case. �

Our proof is largely inspired by the proof by Oxtoby and Ulam in [8] that the set of

all ergodic measures in hom([0, 1]n) is residual in hom([0, 1]n) for n ≥ 2. It may be

worth noting how our argument differs from the classical case to give unique or finite

ergodicity rather than just ergodicity. In our upcoming lemmas, we show that in any

neighborhood of T, there is a homeomorphism H for which every point x enters the set

D with frequency not too far from expected, and that this holds in a neighborhood of H as

well. In the Oxtoby–Ulam proof, for a given T and D the equivalent lemma shows that for

any neighborhood of T, there is a homeomorphism H (and a neighborhood of H) for which

there is a periodic set of positive measure (a Cantor set) with the property that the number

of its iterates inside D is approximately the correct proportion, and so that the union of the

iterates has total measure 1/2. This gives that for a set of x of measure 1/2, the frequency

with which they enter D is approximately the expected proportion.

A fundamental feature of our upcoming construction, then, is that rather than giving a

large (by measure) set of points whose iterates under H are well behaved, in the current

context we are able to do it for every point.

4. The lemma for good measures

We almost have all the tools necessary to state and prove Lemma 4.1, which will complete

our proof of Theorem 2.5. To approximate a homeomorphism T on C, it is sufficient to

consider a fine partition P of C and the directed graph whose vertices are elements of P

and whose edges are those Ca → Cb for which T −1(Cb) ∩ Ca 6= ∅. If µ is a measure on

C which T preserves, we will also often consider the weighted directed graph generated

by giving the edge Ca → Cb weight equal to µ(T −1(Cb) ∩ Ca), and considering an

edge of weight zero to not exist. The resulting graph is balanced, meaning that the

total weight of edges leaving a vertex equals the total weight of edges entering that

vertex. While the weight of an edge is sometimes interpreted as the cost or difficulty to

move along that edge, for us it represents how much movement happens along that edge,

both by the given homeomorphism T and by the nearby homeomorphism we attempt

to construct. In this paper, we treat any weight on an edge in a weighted graph as

positive and, when altering a graph, if the weight of an edge becomes zero, that edge is

removed.

We will make use of the following theorem, whose statement and proof are reminiscent

of the well-known theorem that a connected graph for which every vertex has even degree

admits an Eulerian circuit. The following was shown using slightly different terminology

by Sun and Wang in [10].
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THEOREM 4.1. (Sun and Wang) Let G be a balanced weighted directed graph which

is connected. Let c1, . . . , cL be the cycles in this graph. Then there exist positive

values w1, . . . , wL such that for each edge Ca → Cb in G, the weight of that edge is
∑

j :(Ca→Cb)∈cj
wi .

Here note that by cycle we mean simple cycle. That is, each cj is a finite sequence of

distinct edges C1 → C2 → · · · → Cn = C1, where the vertices are distinct except that the

initial vertex is the same as the final one. We do not need to repeat our cycles for every

possible choice of starting vertex: whenever we discuss the set of all cycles of a graph,

assume that one representative is chosen for each collection of cycles which are equivalent

under shifting. Also note that the final sum above indicates a sum over all cycles for which

the edge Ca → Cb appears in that cycle. We include a proof, as we will need to refer to its

details later.

Proof. We move weight from the graph G to the values wj in stages, labelling the tth stage

wt
j and Gt . Let G0 be G and let w0

j = 0 for all j. Let WGt (Ca → Cb) denote the weight of

the edge Ca → Cb in the graph Gt . As we make our construction, at every stage we will

have for each edge that WG(Ca → Cb) = (
∑

j :(Ca→Cb)∈cj
wt

j ) + WGt (Ca → Cb). At the

start, all the weight of this sum is in the second term above, and as we proceed we move it

out of the graph and into the wj .

Let α be small. We would like all wj to be positive, so we begin by removing a weight

of α from each cycle and adding it to each w: let G1 be obtained from G by subtracting α

from the weight of each edge in G0 once for each cycle which passes through that edge,

and let each w1
j = α for each j. (Assume that α is sufficiently small that each edge in G1

has some weight remaining.)

Note that G1 is still balanced, and we have for each edge Ca → Cb that WG(Ca →
Cb) = (

∑

j :(Ca→Cb)∈cj
w1

j ) + (WG1
(Ca → Cb)). Choose an edge in G1 with smallest

positive weight. We argue that there must be a cycle (containing edges of positive G1

weight) which contains this edge: consider the set of all vertices that can be reached from

this edge in G1. There can be no edge which leaves this set and, if the initial vertex of

our chosen edge is not in this set, that edge witnesses that the set has some incoming

weight, contradicting that G1 is balanced. Thus, there is a path from our edge to the

initial vertex of it and, by removing repetition, we find a cycle, cm, containing our chosen

edge.

Because the weight of our edge was minimal, every edge in this cycle has at least this

much weight and so we remove this much weight from our graph and give it to wm. Let

{w2
j } be the same as {w1

j } except for w2
m, to which we add the minimal weight described.

Let G2 be obtained from G1 by subtracting this minimal weight from each edge of the

cycle cm and leaving all other weights unchanged. When this subtraction leaves an edge of

weight zero, remove that edge from G2.

The resulting G2 is still balanced but has at least one fewer edge than G1 had. We may

continue in this way until some t for which all edges in Gt have weight zero. Letting

{wj } denote this final state of the construction, these values satisfy WG(Ca → Cb) =
∑

j :(Ca→Cb)∈cj
wj , as desired. �
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Recall that for a homeomorphism H of C and a partition P of C into clopen sets,

N(H , P) was defined to be the set of all homeomorphisms T of C with the property that for

C, D ∈ P , T −1(D) ∩ C is empty if and only if H−1(D) ∩ C is empty. In §3, we showed

that Theorem 2.5 follows from the following lemma.

LEMMA 4.1. Let µ be a good measure on C, let η > 0, let P be a clopen partition of

C and let T ∈ hom∗(µ) be a homeomorphism. For any clopen set D ⊆ C, there exist a

homeomorphism H0 ∈ N(T , P) and a clopen refinement Q of P so that for any H ∈
N(H0, Q) and for any sufficiently large n, every x ∈ C has

1

n + 1
#{j = 0, . . . , n : H j (x) ∈ D} < µ(D) + η.

Proof. Let µ, P , T , D, η be as in the statement. By refining P if necessary, assume that

D is a union of sets in P . Let G be the weighted directed graph whose vertices are the sets

in P , whose edges are those Ca → Cb for which T −1(Cb) ∩ Ca is non-empty and which

gives the edge Ca → Cb weight equal to µ(T −1(Cb) ∩ Ca). This graph is balanced.

Let c1, . . . , cL be the cycles of our graph. By Theorem 4.1, there are positive values

w1, . . . , wL such that µ(T −1(Cb) ∩ Ca) =
∑

j :(Ca→Cb)∈cj
wj . Note that by adding over

Cb, we also find that µ(Ca) =
∑

j :Ca∈cj
wj .

Our intent is now to build a closed path P in the graph G which for each C ∈ P passes

through that vertex with frequency roughly proportional to µ(C). We will construct this

path by repeatedly traversing cycles, and the values wj give us the relative number of times

to include the cycle cj . To do this, we make these wj discrete, finding integers Nj which

are approximately proportional to wj .

Suppose that N is a large integer. Let Nj = ⌊Nwj ⌋ = Nwj − ρj . (Here and later we

manage error by using ρ to indicate a quantity between zero and one.) Let Z be a clopen

set whose measure is between 1/N and 1/(N + 1), and let δ be µ(Z). (Since µ is full and

non-atomic, the set of µ-measures of clopen sets is dense in [0, 1], so this is possible.)

Since we have 1/(N + 1) < δ < 1/N and thus Nj δ ≤ Nwj δ < wj , it follows that for

each Ca , Cb ∈ P , we have

µ(T −1(Cb) ∩ Ca) =
∑

j :(Ca→Cb)∈cj

wj >
∑

j :(Ca→Cb)∈cj

Nj δ.

Using goodness, we will soon decompose the elements of P into sets of size δ. The above

verifies that there is room in the set T −1(Cb) ∩ Ca to find Nj of them, disjoint, for each

cycle cj which contains the edge Ca → Cb, and this ability to remove clopen sets witnesses

that the measure left over is the measure of some clopen set. Before finding and naming

these removed sets, however, we examine what can be done with the leftovers.

Consider the graph Ḡ with sets in P as vertices and which gives the edge Ca → Cb

weight equal to

µ(T −1(Cb) ∩ Ca) −
(

∑

j :(Ca→Cb)∈cj

Nj δ

)

.
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As observed above, each of these weights is the measure of a clopen set. By choice of

wj and Nj , this weight is

∑

j :(Ca→Cb)∈cj

(

wj − Nj δ
)

=
∑

j :(Ca→Cb)∈cj

(wj (1 − δN) + δρj ).

From 1/N > δ > 1/(N + 1), it follows that 0 < (1 − δN) < δ and so the weight of each

edge in Ḡ is bounded by 2Lδ. Again, this graph is balanced, and again we can decompose

it into cycles.

We apply Theorem 4.1 again. Note that in the graph Ḡ, the weight of each edge is the µ

measure of some clopen set. In the proof of Theorem 4.1, if the first small positive value

α was chosen to be the measure of a clopen set, then every edge weight involved in that

construction will be derived as the difference of µ measures of clopen sets, and will by

goodness again be the measure of a clopen set. Applying the theorem in this way, we find

values et , each of which is the µ measure of a clopen set, so that for any Ca , Cb ∈ P , we

have

µ(T −1(Cb) ∩ Ca) −
(

∑

j :(Ca→Cb)∈cj

Nj δ

)

=
∑

j :(Ca→Cb)∈cj

ej .

Finally, we would like these ej to have size at most δ. To do this, we will remove as

many copies of δ as necessary. For each j, write ej = dj δ + ǫj , where dj ≥ 0 is an integer

and 0 < ǫj ≤ δ. Note that the quantity on the left above was shown to be less than 2Lδ, so

we have each dj < 2L. Also note that since ǫj can be produced by taking ej and repeatedly

subtracting δ, each ǫj is also the measure of a clopen set.

These extra copies of δ will now be absorbed into the Nj . Let N̂j = Nj + dj for each j.

We now have for each Ca and Cb in P that

µ(T −1(Cb) ∩ Ca) =
(

∑

j :(Ca→Cb)∈cj

N̂j δ

)

+
(

∑

j :(Ca→Cb)∈cj

ǫj

)

,

and, in particular, adding over all Cb, we have for C ∈ P that

µ(C) =
(

∑

j :C∈cj

N̂j δ

)

+
(

∑

j :C∈cj

ǫj

)

. (4.1)

Recall that our first graph G had elements of P as vertices, and had an edge Ca → Cb

when µ(T −1(Cb) ∩ Ca) 6= 0. We will now argue the existence of a closed path in G so

that the number of times it visits the vertex C is exactly
∑

j :C∈cj
N̂j .

Begin by considering the closed path in G which travels the cycle c1N̂1 times. Because

the map T has no invariant clopen sets, the union of those elements of P which occur in

this path cannot be a proper T-invariant subset and so one of them must occur in another

cycle, say cj1
. By choosing an appearance of this vertex in our path as constructed so far,

we can break our path and insert a copy of cj1
, shifted so that it begins (and ends) with this

overlapping vertex. We repeat, inserting a total of N̂j1
copies of this cycle into our path. If

these were the only cycles, we are done. If not, again one of the vertices used in our path

as constructed so far must occur in one of the cycles not yet incorporated, as otherwise the
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union of vertices already used would be a non-trivial T-invariant set. Continue in this way

until we have inserted N̂j copies of the cycle cj for each j. Name this resulting path P.

As desired, for any C ∈ P , the total number of times it occurs in this path is
∑

j :C∈cj
N̂j . Since each ǫj is non-negative, equation (4.1) shows that the set C has room

to contain this many clopen sets of measure δ. Using goodness, remove this many disjoint

clopen sets from each C ∈ P and arrange them as ordered in the path P constructed above,

naming them

F1 → F2 → F3 → · · · Fz → F1,

where z =
∑

C∈P
∑

j :C∈cj
N̂j is the total length of the path and each set Ft is a disjoint

subset of the tth element of our path P.

Lastly, we need to divide our leftovers into sets of size ǫj and work out how these will

be incorporated into our path. From (4.1), we know that the part of each C ∈ P not used

in the Fi has measure equal to
∑

j :(C)∈cj
ǫj . Since ǫj is the measure of some clopen set,

we can decompose these remainder sets into clopen sets of these sizes using goodness. For

each j = 1, . . . , L, let l(cj ) denote the length of the cycle cj and write

cj = Cj ,1 → Cj ,2 → · · · → Cj ,l(cj ) → Cj ,1.

For each j and each i = 1, . . . , l(cj ), let Ej ,i be the set chosen from the remainder of C
j
i

of size equal to ǫj . (Or let it be a distinct one of those sets in the unlikely event some ǫj

are equal.)

Note that at this point, we are close to building our homeomorphism as desired. We

could here let P and Q be the partitions of C into the sets Fj and Ej ,i , let π be the

partition which maps Fj 7→ Fj+1 (but Fz 7→ F1) and which for each j maps Ej ,i 7→
Ej ,i+1 (but Ej ,l(cj ) 7→ Ej ,1). We would then be able to use Theorem 2.1 to extend π to

a homeomorphism which maps set to set along these paths. The resulting map would not

satisfy our requirements for two reasons, however: for points in the Fj sets, the proportion

of time they spend in D would be approximately the proportion of the Fj which are in D,

which, since the Fj are almost all of C, would be close the the correct proportion. But,

for points in our leftover sets Ej ,i , we would have no such control. Further, the resulting

homeomorphism could not be in hom∗(µ), since the union of the Fj would be a non-trivial

invariant clopen set. We will fix both these problems by interrupting the F path, allowing

points to sometimes take ‘detours’ along the E. This will stop the invariant clopen set from

existing, but since a point can enter each one of the E detours at most once during its long

journey down the F path, we will not significantly affect the proportion of time our point

spends in D. We do this now.

For each j = 1, . . . , L, let b(j) be an index along our path so that Fb(j) ∈ Cj ,l(cj ) and

so that Fb(j)+1 ∈ Cj ,1. This is possible because the edge Cj ,l(cj ) → Cj ,1 appears in the

cycle cj , and many copies of this cycle were used in the construction of the path P which

led to the path of the Fk . Further, having so many choices, we can assume that the indices

b(j) and b(j) + 1 are all distinct and that none of them is 1 or z. For each of these indices,

let A(j) ⊆ Fb(j) and B(j) ⊆ Fb(j)+1 be clopen sets of size ǫj . (This is possible because

δ > ǫj , because ǫj is the measure of a clopen set and because µ is good.) These carved
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out sets will be the entry and exit from our detours out of the F and into the E, and then

back into the F.

We are now ready to construct our map. Let P0 be the partition of C into all the sets

Ej ,i , all the sets B(j), all the sets Fj which do not contain a set B(j) and all the sets

Fb(j) \ B(j). Meanwhile, let Q0 be the partition of C into all the sets Ej ,i , all the sets

A(j), all the sets Fj which do not contain a set A(j) and all the sets Fb(j)+1 \ A(j). Let

π0 be the bijection from P0 → Q0 defined by

Fi 7→ Fi+1 if i 6= z and i 6= b(j) for any j ,

Fz 7→ F1,

Fb(j) \ B(j) 7→ Fb(j)+1 \ A(j),

B(j) 7→ Ej ,1,

Ej ,k 7→ Ej ,k+1 if k 6= l(cj ) and

Ej ,l(cj ) 7→ A(j).

An inspection of this map shows that it preserves µ. (Every set involved has measure equal

to δ, ǫj or δ − ǫj for some j.) Slightly more complicated is verifying that it allows no

invariant clopen sets: first note that because our indices b(j) and b(j) + 1 were all distinct

and different from 1 and z, that the set Fi for each i must appear unaltered in either P

or Q. Because an invariant set must be expressible both as a union of sets in P and as a

union of sets in Q, it must be expressible as a union of sets Fi and Ej ,i . Since at least part

of Fi maps to at least part of Fi+1, if an invariant set contains any part of any set Fi , it

must contain all of all sets Fi . A similar statement applies for each group of sets {Ej ,i}
l(cj )

i=1 .

Finally, since the set B(j) is a part of an Fi set which maps into one of the Ej ,i sets, an

invariant set which contains part of an Fi set or part of an Ej ,i set must contain all of both

and hence must contain all Ej ,i sets and hence must be all of C.

We may therefore apply Theorem 2.6. There is a homeomorphism H0 ∈ hom∗(µ) which

maps set to set according to π0. Let Q be the refinement of P0 and Q0. Note that any

H ∈ N(H0, Q) must also map set to set according to π0.

Fix H ∈ N(H0, Q), let n be a large integer and consider the expression

1

n + 1
#{j = 0, . . . , n : H j (x) ∈ D}.

There is a number A so that a point can be iterated under H at most A times before it enters

the set F1. (We may take A to be the total number of sets in P0, for example.) Once a point

enters F1, it will then pass through every set Ft , possibly including some detours along a

path {Ej ,i}
l(cj )

i=1 for some j values. Prior to its re-entering F1 again, the proportion of time

it will have spent in D will be exactly

∑

C∈P :C⊆D

∑

j :C∈cj
(N̂j + Ij )

∑

E∈P
∑

j :E∈cj
(N̂j + Ij ))

, (4.2)

where Ij is 1 if our point entered the Ej detour or is 0 if it did not.
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Recall that N̂j = Nj + dj , where dj < 2L, and that Nj = Nwj − ρj , where 0 ≤ ρj ≤
1. Expanding, the above becomes

∑

C∈P :C⊆D

∑

j :C∈cj
(Nwj − ρj + dj + Ij )

∑

E∈P
∑

j :E∈cj
(Nwj − ρj + dj + Ij ))

≤
∑

C∈P :C⊆D

∑

j :C∈cj
(wj + (2L + 1)/N)

∑

E∈P
∑

j :E∈cj
(wj − 1/N))

.

As N becomes large, this expression approaches

∑

C∈P :C⊆D

∑

j :C∈cj
wj

∑

E∈P
∑

j :E∈cj
wj

=
∑

C∈P :C⊆D µ(C)
∑

E∈P µ(E)
= µ(D)

1
.

Because the wj were fixed before choosing N, we may assume that N was chosen

sufficiently large that the expression in (4.2) is less than µ(D) + η/2. Thus, for any point

x, the proportion of time it spends in D in its first n iterates under any map H2 ∈ N(H , Q)

is at most µ(D) + η/2 for the time between the first time it enters F1 and the last time

it enters Fz. This amount of time includes all but at most 2A iterates. It is elementary to

verify that for sufficiently large n, the total proportion of time will be less than µ(D) + η.

�

With Lemma 4.1 now proved, our proof of Theorem 2.5 is complete. �

5. Partition polynomials

We now prepare to prove Lemma 6.1, which is proved similarly to Lemma 4.1 but for

a refinable Bernoulli trial measure rather than any good measure. When working with

Bernoulli trial measures, the following terminology is useful. A partition polynomial

p(x) is any polynomial for which there is some (sufficiently) large n so that p(x) can be

expressed in the form p(x) =
∑n

k=0 ckx
k(1 − x)n−k , where each ck is an integer between

0 and
(

n
k

)

. Any clopen set E ⊆ C can be written as a finite disjoint union of basic open

sets which depend on the first n symbols. Letting ck be the number of these which have

exactly k 1’s in those n symbols shows the existence of a partition polynomial p with

p(x) = µx(E). Likewise, given a partition polynomial, the coefficients ck can be taken as

instructions for how many basic clopen sets of length n having k 1’s to use, giving a clopen

set E such that p(x) = µx(E). In either situation we say that p is the partition polynomial

associated with E, or that E is a clopen set associated with p.

We need the following three known results about partition polynomials and refinable

measures, which were shown by Dougherty, Mauldin and Yingst in [9].

THEOREM 5.1. (Dougherty, Mauldin and Yingst) The set of partition polynomials consists

of the constant polynomials zero and one, and those integer polynomials which map the

open interval (0, 1) into itself.

https://doi.org/10.1017/etds.2020.95 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.95


A context in which finite or unique ergodicity is generic 3191

(It is clear that the partition polynomials 0 and 1 correspond with ∅ and C. For any other

partition polynomial, the equation p(x) = µx(E) for some proper non-empty clopen E

means that we must have 0 < p(x) < 1 when 0 < x < 1. The above theorem gives that

this property is also sufficient for an integer polynomial to be a partition polynomial.)

THEOREM 5.2. (Dougherty, Mauldin and Yingst) Given a clopen set E whose associated

partition polynomial is p, there is a clopen subset of E associated with the partition

polynomial q if and only if 0 < q < p on (0, 1).

THEOREM 5.3. (Dougherty, Mauldin and Yingst) Given a refinable number r in (0, 1), R

the set of algebraic conjugates of r in (0, 1), and given an integer polynomial f (x), the set

of all integer polynomials which agree with f at r is dense (in the L∞([0, 1]) sense) in the

set of all continuous functions which are integer-valued at 0 and 1 and which agree with f

at every r in R.

Slightly further, if g is a polynomial which is positive on (0, 1), and f is an integer

polynomial which is positive and less than g and less than 1 at each r in R, then there is a

partition polynomial f̂ which agrees with f at each r in R and with 0 < f̂ < g on (0, 1).

Combining these, we find the following, which lays bare the connection between a good

measure and a refinable Bernoulli trial measure. This theorem was never stated clearly in

[9], but follows easily from the results above.

THEOREM 5.4. Let µr be a refinable Bernoulli trial measure, let R be the set of algebraic

conjugates of r in (0, 1) and let E and F be clopen sets in C with µr(E) < µr(F ). Then

there exists a clopen set Ê ⊆ F with µr(E) = µr(Ê) if and only if we have µs(E) <

µs(F ) for every s ∈ R.

Proof. Suppose such an Ê exists. Letting pE and p
Ê

be the partition polynomials

associated with E and Ê, we have that pE(r) = p
Ê
(r). This is a polynomial equation

satisfied by r and so is satisfied by each s ∈ R, meaning that µs(E) = pE(s) = p
Ê
(s) =

µs(Ê) < µs(F ).

On the other hand, if µs(E) < µs(F ) for all s ∈ R, let pE and pF be the partition

polynomials associated with E and F. By Theorem 5.3, there is an integer polynomial f

which agrees with pE at each s ∈ R with 0 < f < pF on (0, 1). By Theorem 5.1, f is a

partition polynomial and by Theorem 5.2 there is a clopen subset Ê ⊆ F associated with

f. This subset has µr(Ê) = f (r) = pE(r) = µr(E). �

In [6], Ibarlucía and Melleray defined a collection of measures K on a Cantor space

to be good when given two clopen sets A and B with m(A) < m(B) for all m ∈ K , there

exists a subset Â of B with m(Â) = m(A) for all m in K. (This definition follows Glasner

and Weiss, who showed in [5] that if K is the set of all T-invariant measures for some

minimal homeomorphism on Cantor space, that K is good in this sense, and also follows

Akin, who in [1] used the word ‘good’ to define this property for a single measure.) We

note that the above Theorem 5.4 shows that the set {µr }r∈R is good in this sense and this

property extends to the convex hull of the set.
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6. Proving the lemma for refinable Bernoulli trial measures

We already showed in §3 how Theorem 1.1 follows from Lemma 6.1 below. We prove this

lemma now.

LEMMA 6.1. Let µr be a refinable Bernoulli trial measure, let {r = r1, r2, . . . , rR} be the

set of algebraic conjugates of r in (0, 1), let T ∈ hom∗(C), let P be a clopen partition of

C, let D be a clopen set in C and let η > 0. There exist a homeomorphism H0 ∈ N(T , P),

a clopen refinement Q of P , and M > 0, so that for any homeomorphism H ∈ N(H0, Q),

any x ∈ C and any n > M , we have that

1

n + 1
#{j = 0, . . . , n : H j (x) ∈ D} < max

s∈R
{µs(D)} + η.

Before moving into the proof, we discuss how this is more difficult than the proof of

Lemma 4.1, which applied to a single good measure. In that construction, we built a closed

path in P so that for each C ∈ P our path spent an amount of time in C proportional to the

measure of C. In this way, we decomposed elements of P into small sets and mapped these

set to set according to our path. Because these proportions lined up, these sets could absorb

almost all of the measure of C. The small remainder was then decomposed into cycles and

then integrated into the path without significantly affecting the proportion of time a point

spent in any C when iterated under a homeomorphism constructed to respect that path.

For the refinable case, we have several measures to consider at once, requiring three

major modifications. One is that we will need a different path for each measure: a path Pi

will be made so that the proportion of time it spends in a set in P will be approximately

the µri measure of that set. The small sets which our homeomorphism will map along that

path can be chosen to take up most of the µri measure of C while using very little µrj

measure for i 6= j . In this way, the total measure will be consumed for each µri , meaning

that we will have used up almost all of C in the construction under any relevant measure.

The second modification comes when trying to integrate the remainder left after the

paths are made. In order to decompose the remainder into cycles considering all measures

simultaneously, we will want our remainder sets to have almost the exact same measure for

each µri . To enforce this, we will need our main paths to not only occupy most of the space

under their respective measure, but to occupy almost exactly the correct amount. Thirdly,

the question of what the µri measure of the small sets that move along our paths should

be for each measure and for each path so that all combined they take up almost exactly the

correct amount of space eventually leads an overdetermined system of linear equations,

which we cannot solve. To correct this, we use not one path per measure, but several paths

per measure. These different paths used by each measure will be similar enough to each

other that they all spend an approximately correct proportion of time in each set in P , but

will be different enough from each other to impact the solvability of the resulting system

of equations. With this outline in mind, we begin the proof.

Proof. We begin as in the proof of Lemma 4.1 for a good measure. By refining P by D if

necessary, we may assume that D is a union of elements of P . Consider the directed graph

G whose vertices are elements of P and so that there is an edge from Ca to Cb exactly

when Ca ∩ T −1(Cb) is non-empty, and let c1, . . . , cL be the cycles in this graph. (Again,
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we do not need repetition for different shifts of a cycle.) As before, G is connected and

each edge appears in some cycle.

For each ri , we can consider the weighted directed graph Gi which has the same edges

as G and which assigns to the edge Ca → Cb a weight equal to µri (T
−1(Cb) ∩ Ca).

Applying Theorem 4.1 for each i, we find positive values wi,j for i = 1, . . . , R and j =
1, . . . , L so that for all Ca , Cb ∈ P , µri (Ca ∩ T −1(Cb)) =

∑

j :(Ca→Cb)∈cj
wi,j . Note that

we additionally have for C ∈ P that µri (C) =
∑

j :C∈cj
wi,j .

Suppose that N is a large integer. Let Ni,j = ⌊Nwi,j ⌋ = Nwi,j − ρi,j . (The symbol ρ

continues to indicate a quantity between zero and one.)

Building a path that traverses the cycle cjNi,j times will lead to a path that spends

time in each set roughly equal to its µri measure. But, as noted before this proof, this will

eventually lead to an overdetermined system of equations and so we now instead replace

Ni,j with several similar values, Ni,j ,t .

Let β = 1/
√

N and, for t = 0, . . . , L, let Ni,j ,t = Ni,j if j 6= t , but let Ni,j ,j = ⌊(1 −
β)Ni,j⌋ = (1 − β)Ni,j − ρ̂i,j .

Note that we now have that Ni,j ,t is always equal to either Nwi,j − ρi,j or to (1 −
β)(Nwi,j − ρi,j ) − ρ̂i,j . In either case, we always have that Ni,j ,t/N → wi,j as N → ∞
and we have the following.

∑

C:C⊆D

∑

j :C∈cj
Ni,j ,t

∑

E∈P
∑

j :E∈P Ni,j ,t
≈

∑

C:C⊆D

∑

j :C∈cj
wi,j

∑

E∈P
∑

j :E∈P wi,j
=

∑

C:C⊆D µri (C)
∑

E∈P µri (E)
= µri (D).

Assume that N is sufficiently large that we have

∑

C:C⊆D

∑

j :C∈cj
Ni,j ,t

∑

E∈P
∑

j :E∈P Ni,j ,t
< µri (D) + η

2

for all i and t. Slightly further, to accommodate detours at the end, assume that this

inequality holds even if some of the Ni,j ,t values were increased by one. Along the

way, we will also need to assume that N is sufficiently large that wi,j > 1/N3, and that

8L/(N3/2wi,j ) < 1/(2(L + 1)N) for each i, j . We may now fix N to be so large that all

of these hold.

Fixing k and t, we build a closed path Pk,t as in the proof of Lemma 4.1 by beginning

with the cycle c1 repeated Nk,1,t times, finding a cycle ca which intersects it and inserting

that cycle Nk,a,t times, continuing until we have used all cycles. (We will always have

a cycle which intersects, as otherwise the cycles used before we ran out of options will

create an invariant set.) Construct such a path Pk,t for each k and t. By cycling if necessary,

we may assume that each path Pk,t begins with the same vertex C1. The path Pk,t will

include an edge Ca → Cb a number of times equal to
∑

j :Ca→Cb∈cj
Nk,j ,t . For each path,

let n(k, t) be the number of edges in Pk,t .

In order to be able to decompose our final remainder sets at the end, we will need

the remainder sets to be almost exactly the same size. We now find adjusted wi,j values

to reserve this remainder size. Let {gj }Lj=1 be a set of real numbers between 1/2 and

1 which are linearly independent over the rationals. Let ǫ = 1/N3 and, for all i and j, let

w∗
i,j = wi,j − ǫgj . We chose N so that wi,j > 1/N3, giving that these w∗

i,j are all positive.

https://doi.org/10.1017/etds.2020.95 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.95


3194 A. Q. Yingst

Soon we will find small clopen sets to move along the paths so that the total measure

occupied by the sets approximately fills up the space. We now need to work out what size

these sets should be. We have already decomposed the measure of the space into cycles:

the values w∗
i,j represent the total µri measure of motion along each edge in the cycle cj

we wish to use, and this should be the total contribution along the cycle by all paths. We

now let xi,k,t denote the desired µri measure of a typical small set which moves according

to the path Pk,t . For each k and t, the number of copies of cj used in the path Pk,t was

Nk,j ,t and so we expect that the values xi,k,t should satisfy

w∗
i,j =

R
∑

k=1

L
∑

t=0

Nk,j ,txi,k,t (6.3)

for all i = 1, . . . , R and j = 1, . . . , L. We will now show that the above system of

equations has a solution {xi,k,t } with each xi,k,t > 0. (The extra parameter t was introduced

so that this system would not be overdetermined.) Note that the value t = 0 gives us

an additional variable xi,k,0 to work with, but that j = 0 does not correspond with an

additional requirement.

For k 6= i, let xi,k,t = δ, where δ = 1/R(L + 1)N2, and, for k = i, let xi,k,t =
1/(L + 1 − β)N + φi,t , where φi,t will be defined shortly. (The Pk,t paths are supposed

to take up most of the µri measure when r = i and almost no measure when r 6= i, as

reflected by δ being much smaller than the xi,k,t for i = k.) With this, we split off the k = i

term to find

R
∑

k=1

L
∑

t=0

Nk,j ,txi,k,t =
( R

∑

k=1,k 6=i

L
∑

t=0

Nk,j ,tδ

)

+
L

∑

t=0

Ni,j ,t

(

1

(L + 1 − β)N
+ φi,t

)

.

We let F(i, j) =
∑R

k=1,k 6=i

∑L
t=0 Nk,j ,t , so the first sum above can be written as

δF (i, j). For most t values, Ni,j ,t = Ni,j , with the exception being that Ni,j ,j = Ni,j −
βNi,j − ρ̂i,j . If we pull out the extra contribution from the t = j term, we find that the

above equals

δF (i, j) +
( L

∑

t=0

Ni,j

(

1

(L + 1 − β)N
+ φi,t

))

− (βNi,j + ρ̂i,j )

(

1

(L + 1 − β)N
+ φi,t

)

.

Note that most of the first sum has no dependence on t. If we assume that our φi,t values

satisfy
∑L

t=0 φi,t = 0, then this becomes

δF (i, j) +
(

(L + 1)Ni,j

(L + 1 − β)N

)

− βNi,j + ρ̂i,j

(L + 1 − β)N
− (βNi,j + ρ̂i,j )φi,t .

Moving the βNi,j from the second fraction to the first reduces that fraction to Ni,j/N .

Then, expanding Ni,j = Nwi,j − ρi,j , the above becomes

wi,j + δF (i, j) − ρi,j

N
− ρ̂i,j

(L + 1 − β)N
− (βNi,j − ρ̂i,j )φi,t .
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The above will equal w∗
i,j = wi,j − ǫgj if for t = 1, . . . , L we take

φi,t = 1

βNi,j + ρ̂i,j

(

δF (i, j) − ρi,j

N
− ρ̂i,j

(L + 1 − β)N
+ ǫgj

)

,

while our above assumption that
∑L

t=0 φi,t = 0 forces us to take φi,0 = −
∑L

t=1 φi,t .

We now show that φi,j is sufficiently small to ensure that our xi,j ,t are positive. From

β = 1/
√

N and Ni,j ≈ Nwi,j , we find that the initial factor of φi,t above is approximately

1/
√

Nwi,j and can be no greater than 2/
√

Nwi,j . The definition of F(i, j) is as a sum of

(L + 1)(R − 1) terms each no greater than N, and the factor of δ = 1/R(L + 1)N2 gives

us that δF (i, j) < 1/N . Each ρ is at most one and ǫ = 1/N3, so we find that for t 6= 0,

we have

|φi,t | <
2√

Nwi,j

(

1

N
+ 1

N
+ 1

(L + 1 − β)N
+ 1

N3

)

<
8

N3/2wi,j

,

while φi,0, being a sum of L terms of at most this size, has |φi,0| < 8L/N3/2wi,j .

When we fixed N we assumed that it was sufficiently large that this gives |φi,t | <

8L/N3/2wi,j < 1/2(L + 1 − β)N for all t. Since xi,k,t was defined to be either δ or

1/(L + 1 − β)N + φi,t , we find that xi,k,t > 0. (For later, it is convenient to note that

δ < 1/N2 < 1/2(L + 1 − β)N means that δ is the smallest of all xi,k,t values.)

We have now found positive values xi,k,t which satisfy
∑R

k=1

∑L
t=0 Nk,j ,txi,k,t = w∗

i,j .

Using that the integer polynomials are dense in L∞[α, 1 − α] for any small positive α,

for any k and t we can find an integer polynomial q(x) with q(ri) ≈ xi,k,t and then, by

using Theorem 5.3, we may then replace qk,t with a partition polynomial which takes the

same value at each ri . For each k and t, we find a partition polynomial pk,t with pk,t (ri) ≈
xi,k,t for each i with pk,t (ri) < xi,k,t . Write pk,t (ri) = xi,k,t − ǫ#

i,k,t and note that we can

assume that the ǫ#
i,k,t are as small as needed in the following paragraphs. We have for each

Ca , Cb ∈ P that

µri (T
−1(Cb) ∩ Ca) =

∑

j :(Ca→Cb)∈cj

wi,j >
∑

j :(Ca→Cb)∈cj

w∗
i,j

=
∑

j :(Ca→Cb)∈cj

R
∑

k=1

L
∑

t=0

Nk,j ,txi,k,t >
∑

j :(Ca→Cb)∈cj

R
∑

k=1

L
∑

t=0

Nk,j ,tpk,t (ri).

Using Theorem 5.2 repeatedly, we can then find disjoint clopen subsets of T −1(Cb) ∩ Ca

associated with the partition polynomial pk,t . In particular, for all k and t we can find
∑

j :(Ca→Cb)∈cj
Nk,j ,t such sets, all disjoint. This means that for each C ∈ P , we have

found a total of
∑

j :C∈cj
Nk,j ,t such sets. The path Pk,t was constructed so that it entered

the set C exactly this many times. For each vertex C on the path, choose a distinct one

of these subsets of C associated with the partition polynomial pk,t . (For the first and last

vertices of our closed path, use the same choice.) Name these sets

Fk,t ,1 → Fk,t ,2 → Fk,t ,3 → · · · → Fk,t ,n(k,t)−1 → Fk,t ,n(k,t) → Fk,t ,1,

so that the set Fk,t ,u is a subset of the uth set in the path Pk,t .
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When these sets are removed from T −1(Cb) ∩ Ca , the remainder is a clopen set, call it

La,b, having µri measure

µri (La,b) = µri (T
−1(Cb) ∩ Ca) −

∑

j :(Ca→Cb)∈cj

R
∑

k=1

L
∑

t=0

Nk,j ,tpk,t (ri)

=
∑

j :(Ca→Cb)∈cj

(

wi,j −
R

∑

k=1

L
∑

t=0

Nk,j ,t (xi,k,t + ǫ#
i,k,t )

)

=
∑

j :(Ca→Cb)∈cj

(

wi,j − w∗
i,j −

R
∑

k=1

L
∑

t=0

Nk,j ,tǫ
#
i,k,t

)

=
∑

j :(Ca→Cb)∈cj

ǫgj −
∑

j :(Ca→Cb)∈cj

ǭi,j , (6.4)

where we let ǭi,j =
∑R

k=1

∑L
t=0 Nk,j ,tǫ

#
i,k,t .

To be able to incorporate these remaining sets into our homeomorphism H, we will need

to decompose these leftovers into cycles. We do this as in the proof of Theorem 4.1 but

with the added difficulty that instead of finding values for each i separately, we need to find

actual clopen sets, meaning that we must work with all i values at the same time.

For each i, consider the weighted directed graph G1
i which has elements of P as vertices

and which has an edge Ca → Cb when the edge Ca → Cb appears in our original graph

G, and which gives that edge weight equal to the value in (6.4). Note that this is positive

if either sum has any terms, which is exactly when the edge exists in G1
i . Also note that

for each i the sum can also be viewed as an integer linear combination (over j) of terms

of the form (ǫgj − ǭi,j ). Because each set in P is an initial vertex of an edge in some

cycle exactly when it is a terminal vertex of an edge in that cycle, this graph is balanced.

We consider the question, which edge has the smallest weight? Recall that ǫ = 1/N3 was

chosen early in the proof, while the ǫ#
i,k,t were chosen to be small more recently, meaning

that we may assume that the ǭi,j are much smaller than ǫ. When the ǭi,j are small enough,

the edge with the smallest weight is an edge for which the first sum,
∑

(Ca→Cb)∈cj
ǫgj , is

smallest.

Because the gj are linearly independent over Q, no two of these sums can be equal

except trivially. That is, the only way two edges can have the same (smallest) value of the

first sum is if those two sums use the same coefficients in all ǫgj terms. But, rewriting the

value as
∑

j :(Ca→Cb)∈cj
(ǫgj − ǭi,j ), we see that in that case, the entire expression is the

same, and any such edges all have the same weight. Furthermore, since the first sum has

no dependence on i, we find that these edges of minimal weight are actually minimal for

each i, provided again that the ǫ# are sufficiently small to prevent interference.

This means that for some choice of a1 and b1, the clopen set La1,b1
has the smallest

µri measure among non-empty choices for all i and, furthermore, that if some La,b has the

same measure as La1,b1
for some µri , then it has equal measure for all i. By Theorem 5.4,

this means that each nonempty La,b contains (or is) a clopen set which for all i has the

same µri measure as La1,b1
.
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For any i, our graph G1
i balanced, so any edge must appear in a cycle, and that must be

a cycle in Gi,1 for each i. Let e(1) be an index so that ce(1) is a cycle in Gi,1 containing the

edge Ca1
→ Cb1

, and let n(1) be its length. Write ce(1) = Cd1
→ Cd2

→ · · · → Cdn(1)
→

Cd1
. For each set Ldi ,di+1

, remove a clopen set with µri measure equal to µri (La1,b1
) for

each i. Let L2
di ,di+1

be the portion remaining (or ∅ if none remains). Name the removed sets

{E1
t }n(1)

t=1 , so that E1
t is a subset of Cdt for each t. (When La,b did not contain a E1

t set, let

L2
a,b = La,b.) Letting G2

i denote the graph which gives the edge Ca → Cb weight equal

to the µri measure of L2
a,b, removing edges which now have weight zero, we again have a

balanced weighted directed graph, but with at least one fewer edge. The weight of a typical

edge in this graph will now either be the weight of an edge from the previous graph, or

else will be the difference of two weights of edges of the previous graph. In either case, we

again have that the weight of each edge is an integer linear combination (over j) of terms

(ǫgj − ǭi,j ).

By the same reasoning, if the ǫ# are small enough, then the question of which edge in

G2
i has the smallest weight will depend only on which combination of the ǫgj is smallest.

Because the ǭi,j occur only in the same linear combinations as the ǫgj , if two edges have

the same minimal combination of the ǫgj , they must be completely the same, and be the

same for all i. As before, we may choose a cycle containing this edge of minimal weight,

remove a set of this measure from each L2
a,b in that cycle, calling the removed sets E2

i and

the remainder sets L3
a,b, and consider new graphs G3

i with edges of weight zero removed.

We may continue in this way, removing clopen sets arranged into cycles until all edges

have weight zero, at which point all of C will have been broken into cycles.

(During the above paragraph, we assumed that ǫ# was sufficiently small without an

explicit way of saying what ‘sufficiently small’ would mean that made sense at the time we

chose ǫ#. Since the procedure will repeat at most L times, and since taking the difference

of two integer linear combinations will produce another integer linear combination whose

maximum coefficient has increased by a factor of at most two, it is sufficient to choose

ǫ# sufficiently small that for any comparison of two of the finitely many integer linear

combinations of (ǫgj − ǭi,j ) having coefficients of size at most 2L, the ǭi,j do not impact

which is smaller.)

Let f be the number of cycles needed to decompose the error completely in this way,

so that our error sets are arranged into cycles {Es
t }

n(s)
t=1 , for s = 1, . . . , f , with e(s) being

the index such that the sets {Es
t }

n(s)
t=1 correspond with the cycle ce(s), meaning that Es

t is a

subset of the tth vertex of the cycle ce(s).

Let g be a partition polynomial which is smaller than any of the pk,t at any algebraic

conjugate of r in (0, 1). (We may for example take g(x) = xm(1 − x)m for any sufficiently

large m.) We would like to use Theorem 2.6 to construct our homeomorphism to map the

sets Fk,t ,1 → Fk,t ,2 → · · · → Fk,t ,n(k,t) → Fk,t ,1 as described above, but this will lead to

an invariant clopen set. To fix this, we carve out small clopen ‘transfer sets’ which allow a

small set from the end of Pk,t to move to the beginning of Pk,t+1, or from the end of Pk,L

to the beginning of Pk+1,0, or from the end of PR,L to the beginning of P1,0. For each k

and t, use Theorem 5.2 to find Ak,t , a subset of Fk,t ,1 associated with g, and Bk,t , a subset

of Fk,t ,n(k,t) associated with g.
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Lastly, we need to clarify where exactly our error sets will be incorporated into the

paths. We will fit them in as detours along the path P1,0. For each v, let b(v) be an index

for which the set F1,0,b(v) is a subset of the same element of P as Ev
n(v) is and for which

F1,0,b(v)+1 is a subset of the same element of P as Ev
1 is. Because we have only at most

one v for each cycle, and because the path P1,0 was built using many copies of each cycle,

we can assume that the choices b(v) and b(v) + 1 are all distinct and are not 1 or n(1, 0).

Noting that the error sets {Es
t } have µri (E

s
t ) < ǫ < δ while each F has measure at least as

large as δ for each i, we may use Theorem 5.4 to find a subset of F1,0,b(v) with the same

µri measure as the sets from {Ev
ak

}k=1,...,n(v). Name this set B(v). Also, find such a subset

of F1,0,b(v)+1, naming it A(v).

We are now ready to apply Theorem 2.6. Let P0 be the partition of C consisting of all

the sets B(v) and F1,0,b(v) \ B(v), all sets Bk,t and Fk,t ,n(k,t) \ Bk,t , all sets Fk,t ,α which

do not contain a set B(v) or a Bk,t and all sets Ev
i . Similarly, let Q0 be the partition of C

consisting of all sets A(v) and Ak,t , all sets F1,0,b(v)+1 \ A(v) and Fk,t ,1 \ Ak,t , all other

Fk,t ,α sets and all sets Ev
i .

Let π0 : P0 → Q0 be the bijection defined by

F1,0,b(v) \ B(v) 7→ F1,0,b(v)+1 \ A(v); Fk,t ,n(k,t) \ Bk,t 7→ Fk,t ,1 \ Ak,t ;

Fk,t ,α 7→ Fk,t ,α+1 for those Fk,t ,α not containing a B set;

Bk,t 7→ Ak,t+1 (if t < L); Bk,L 7→ Ak+1,0 (if k < R); BR,L 7→ A1,0;

B(v) 7→ Ev
1 ; Ev

i 7→ Ev
i+1 if i < n(v); Ev

n(v) 7→ A(v)

for all appropriate values of k, i, t or v.

The bijection π0 preserves µr1
. It has no non-empty proper invariant sets: for each

k, t , α, the set Fk,t ,α appears unaltered in either P0 or Q0 and, since an invariant set must

be expressible both as a union of sets in P0 and as a union of sets in Q0, it must be a union

of sets Fk,t ,α and sets Ev
n(v). But, for each set Fk,t ,α , π0 maps at least part of that set to

Fk,t ,α+1 if α < n(k, t), or to Fk,t+1,1 if α = n(k, t) and t < L, or to F1,0,1 if α = n(k, t)

and t = L. So, an invariant set which contains part of one Fk,t ,α set must contain all of the

Fk,t ,α sets. Similarly, part of an Fk,t ,α maps to Ev
1 and on to Ev

n(v), which maps to part of

an Fk,t ,α , so a set which contains the Fk,t ,α must contain all of the Ev
i and vice versa. So,

π0 has no non-trivial invariant set.

Using Theorem 2.6, there is a homeomorphism H0 ∈ hom∗(µr) which maps set to set

according to π0. Let Q be the refinement of P by the partitions P0 and Q0, and let H ∈
N(H0, Q0). Note that this means that H, like H0, maps any set U ∈ P0 to π0(U). We

consider a large integer n, a point x ∈ C and we examine the expression

1

n + 1
#{j = 0, . . . , n : H j (x) ∈ D}.

There is a fixed number A so that a point can be iterated at most A steps under H without

entering a set of the form Fk,t ,1 for some k and some t: we may take A to be the largest of

the n(k, t) plus the total number of the sets Ev
i . (See Figure 1.)
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FIGURE 1. The action of π0: a point must travel an entire path Pk,t (a horizontal row), after which it either returns

to the start of the path or transfers to the next path below. Only the top path P1,0 incorporates detours into the

error cycles, of which only one is displayed.

Let n be large. As in the proof of Lemma 4.1, the points {H j (x)}nj=0 can be grouped

into at most 2A points from the beginning and end, and groups which travel along a path

Pk,t with possible detours into the Ev
i sets if (k, t) = (0, 1). When there are no detours,

the number of times the path Pk,t enters a set C ∈ P is
∑

j :C∈cj
Nk,j ,t and so for such a

group of iterates, the proportion of time spent in D is then
∑

C∈P :C⊆D

∑

j :C∈cj
Nk,j ,t

∑

E∈P
∑

j :E∈cj
Nk,j ,t

.

By our first assumption on N, the above proportion is less than µrk (D) + η/2 and this will

remain true if some of the Nk,j ,t are increased by one, as they may if the point takes a

detour into a cycle of error sets corresponding with the cycle cj .

So, for all but 2A of the first n iterates of x under H, the proportion of time in D is a

weighted average of proportions which are each at most maxk{µrk (D)} + η/2. For large n,

the 2A uncontrolled points will have total weight less than η/2 and so the total proportion

of time in D will be less than max{µrk (D)} + η. �

With Lemma 6.1 proved, our proof of Theorem 1.1 is complete. �

Note that instead of doing the work of using transfer sets to ensure that our bijection π0

had no invariant clopen sets, we could have used Theorem 2.1 to construct a homeomor-

phism which has an invariant clopen set. This shows that the set of homeomorphisms with

an invariant clopen set is dense (and open) in hom(µr).
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It is worth viewing this result in the context of Ibarlucía and Melleray’s paper [6]. There,

a collection K of full, non-atomic probability measures on a Cantor space is defined to be

a dynamical simplex when it is compact, convex, good and when for any clopen set A, any

integer n and any ǫ > 0, there is a clopen set B ⊆ A with nµ(B) ∈ [µ(A) − ǫ, µ(A)] for

all µ ∈ K . The main theorem presented in [6] is the following.

THEOREM 6.1. (Ibarlucía and Melleray) A simplex K of probability measures on a Cantor

space is the set of invariant measures of some minimal homeomorphism if and only if K is

a dynamical simplex.

Suppose that r is a refinable number and R is the set of its conjugates in (0, 1), and let K

be the convex hull of {µr }r ∈ R. Then, as noted earlier, K is a good set of measures, and is

clearly compact and convex. That it satisfies the final requirement above also follows from

Theorems 5.3 and 5.2, giving us that K is a dynamical simplex, and the above theorem

applies. Further, the requirements above are very nearly exactly what were used in our

proof of Theorem 1.1 and so it seems likely that the construction used here can be applied

to any finite-dimensional dynamical simplex, showing for a dynamical simplex K, that

finite ergodicity is generic among homeomorphisms which preserve each measure in K.

Could it work in an infinite-dimensional case?

Acknowledgement. The author would like to thank Shemsi Alhaddad and the referee for

their helpful comments, which greatly enhanced the readability of this paper.

REFERENCES

[1] E. Akin. Good measures on Cantor space. Trans. Amer. Math. Soc. 357 (2005), 2681–2722.

[2] S. Alpern and V. S. Prasad. Typical Dynamics of Volume Preserving Homeomorphisms. Vol. 139.

Cambridge University Press, Cambridge, UK, 2000.

[3] H. Dahl. Dynamical Choquet simplices and Cantor minimal systems. PhD Thesis, Copenhagen, 2008.

[4] E. Akin, E. Glasner and B. Weiss. Generically there is but one self homeomorphism of the Cantor set.

Trans. Amer. Math. Soc. 360 (2008), 3613–3630.

[5] E. Glasner and B. Weiss. Weak orbit equivalence of minimal Cantor systems. Internat. J. Math.. 6 (1995),

559–579.

[6] T. Ibarlucía and J. Melleray. Dynamical simplices and minimal homeomorphisms. Proc. Amer. Math. Soc.

145 (2017), 4981–4994.

[7] A. S. Kechris and C. Rosendal. Turbulence, amalgamation, and generic automorphism of homogeneous

structures. Proc. Lond. Math. Soc. 94 (2007), 302–350.

[8] J. C. Oxtoby and S. M. Ulam. Measure preserving homeomorphisms and metrical transitivity. Ann. Math.

42 (1941), 874–920.

[9] R. Dougherty, R. D. Mauldin and A. Yingst. On homeomorphic Bernoulli measures on the Cantor space.

Trans. Amer. Math. Soc. 359 (2007), 6155–6166.

[10] L. Sun and M. Wang. An algorithm for a decomposition of weighted digraphs: with applications to life

cycle analysis in ecology. J. Math. Biol. 54 (2007), 199–226.

https://doi.org/10.1017/etds.2020.95 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.95

	1 Stating the main theorem
	2 Definitions and preliminaries
	3 Reducing the main theorems to lemmas
	4 The lemma for good measures
	5 Partition polynomials
	6 Proving the lemma for refinable Bernoulli trial measures
	Acknowledgements
	References

