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Three-dimensional bluff body aerodynamics are pertinent across a broad range
of engineering disciplines. In three-dimensional bluff body flows, shear layer
behaviour has a primary influence on the surface pressure distributions and, therefore,
the integrated forces and moments. There currently exists a significant gap in
understanding of the flow around canonical three-dimensional bluff bodies such as
rectangular prisms and short circular cylinders. High-fidelity numerical experiments
using a hybrid turbulence closure that resolves large eddies in separated wakes close
this gap and provide new insights into the unsteady behaviour of these bodies. A
time-averaging technique that captures the mean shear layer behaviours in these
unsteady turbulent flows is developed, and empirical characterizations are developed
for important quantities, including the shear layer reattachment distance, the separation
bubble pressure, the maximum reattachment pressure, and the stagnation point location.
Many of these quantities are found to exhibit a universal behaviour that varies
only with the incidence angle and face shape (flat or curved) when an appropriate
normalization is applied.
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1. Introduction
Flows around bluff bodies are important in a wide range of engineering disciplines.

Many structures pertinent to industrial applications, including cables, girders and
power lines, may be represented as long circular cylinders, while towers and
skyscrapers often have rectangular cross-sections. In such cases, the length dimension
is typically at least an order of magnitude greater than the other dimensions, and
three-dimensional flow effects are often neglected (Zdravkovich 2003a). However,
many applications exist in which short, finite-length bluff bodies are of interest.
One example is in the area of tethered loads in aviation and construction. In
aviation operations, a wide variety of bluff bodies may be transported underneath
a helicopter attached by a system of cables. These configurations result in complex
aerodynamic–dynamic interactions of the tethered load, which are also coupled with
the dynamics of the tether system and helicopter (Greenwell 2011; Prosser & Smith
2015a). Typical tethered loads include cargo containers such as the CONEX, which
is a short rectangular bluff body (or rectangular prism), and oil drums and engine
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2 D. T. Prosser and M. J. Smith

canisters, which may be approximately represented as short finite cylinders. Other
applications requiring finite bluff body aerodynamics include towed bodies, air drops,
and store separation.

Numerous researchers have studied the aerodynamics of two-dimensional (or
infinite) bluff bodies. Zdravkovich (2003a,b) has presented a comprehensive review
of the aerodynamics of circular cylinders, including finite aspect ratio effects as well
as the effects of incidence angle. Both of these effects are important to (for instance)
the tethered load applications, in which finite bluff bodies undergo large changes in
incidence angle relative to the free-stream flow. However, these two effects (finite
aspect ratio and incidence) are considered together in the review of Zdravkovich only
in the case of long or infinite cylinders (with aspect ratio, L/D, greater than 20 or
with end plates).

In comparison, there has been very little focus on short, finite-length cylinders
with two free ends. One of the earliest experimental studies was undertaken by
Wieselsberger (1922), in which the drag coefficient of cylinders in normal flow (the
orientation where the curved surface is normal to the flow) was measured over
a broad range of Reynolds numbers. Both infinite (without free ends) and finite
circular cylinders with L/D= 5 were considered. Wieselsberger observed that, in the
subcritical and transitional Reynolds number regimes, the drag of the finite cylinder
was significantly less than that of the infinite cylinder. However, this difference
vanished at supercritical Reynolds numbers of the order of 106. Additionally, the
changes between subcritical, transitional, and supercritical flow occurred at similar
Reynolds numbers for the infinite and short circular cylinders. The magnitude of the
change in drag during these transitions was also comparable.

Zdravkovich et al. (1989) performed wind-tunnel experiments in the subcritical
Reynolds number regime on finite cylinders (2 6 L/D 6 10). Their observations were
similar to those of Wieselsberger, in that decreasing the aspect ratio resulted in a
decrease in drag. However, below L/D= 5, further decreases in aspect ratio resulted
in little if any additional drag decrease. The researchers also found that the Strouhal
number for short circular cylinders with L/D < 5 was in the range 0.15–0.27, but
the shedding behaviour was highly irregular and difficult to assign a single dominant
frequency. This irregular shedding was attributed to the turbulent shear layers and
three-dimensional flow interactions. Hoerner (1958) compiled drag data for circular
cylinders and disks in axial flow (with the flat face normal to the flow). In this
orientation, the drag was found to decrease abruptly as the aspect ratio increased
from zero (circular disk) to two, but it then remained approximately constant as
the aspect ratio was increased further. Other than the normal flow and axial flow
orientations, very little information is available regarding the aerodynamics of short
circular cylinders.

In the case of two-dimensional rectangular bluff bodies, more extensive treatment
of incidence angle effects is present. Norberg (1993) performed experimental
investigations of two-dimensional flow around rectangular bluff bodies with the
ratio of length to width (L/W) ranging from one to five at Reynolds numbers in
the range 400–30 000. The Strouhal number, drag, lift, and moment coefficients were
measured for each of the bluff bodies as functions of the Reynolds number and the
angle of incidence, which ranged from 0◦ to 90◦. Abrupt changes in the forces and
moments were found to occur when shear layer reattachment occurred, which has
also been confirmed by Matsumoto et al. (1998).

Robertson et al. (1978) recorded wall pressures of reattachment on square bluff
bodies in two-dimensional flow for angles of attack ranging from 0◦ to 45◦. This study
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Numerical characterization of shear layer behaviour 3

identified low-pressure separation bubble, pressure recovery and attached flow regions
that occur during shear layer reattachment, and quantified how the extents of these
distinct regions change as the angle of attack increases. It was also observed that,
for the square bluff body, the portions of the pressure distributions leading up to the
attached flow region collapse onto a single curve for the two-dimensional square bluff
body when particular normalizations are applied involving the reattachment distance
and maximum pressure coefficient.

Motivated by the large changes in forces and moments that are caused by shear
layer reattachment, Greenwell (2011) developed empirical models describing the
reattachment behaviour of two-dimensional rectangular bluff bodies, drawing from
available experimental data, including that of Robertson et al. (1978), Norberg (1993),
Matsumoto et al. (1998). A major contribution of his work was the development
of an empirical equation which indicated that the reattachment distance for these
bluff bodies, when normalized by the dimensional perpendicular to the side on
which reattachment occurs, depends on the angle of incidence but not the aspect
ratio. This empirical model is significant because it predicts the reattachment angle,
at which sudden changes in the forces and moments occur, for two-dimensional
rectangular bluff bodies. Greenwell also studied three-dimensional rectangular prisms.
A comparison of the reattachment behaviours of the two- and three-dimensional bluff
bodies was made for a few specific cases, but it was not thoroughly characterized.
Greenwell also developed empirical reconstructions of the attached flow portion of
the pressure distribution, which can be applied to either reattaching or fully attached
shear layers.

The available literature indicates that shear layer behaviour plays a major role
in dictating the surface pressure distribution on bluff bodies. However, there
remains a marked lack of understanding of this behaviour for finite bluff bodies.
Empirical models quantifying some aspects of the shear layer behaviour (including
the reattachment angle) have been developed for two-dimensional rectangular bluff
bodies, but these have not been characterized for common three-dimensional bluff
bodies, including rectangular prisms and circular cylinders. In the current work, the
aerodynamics of short rectangular prisms and circular cylinders are examined via
high-fidelity numerical experiments. The primary goal of the examination is to begin
to characterize the aerodynamics of these geometries over the range of angles and
Reynolds numbers required by applications such as tethered loads, air drops, store
separation, and towed bodies. The configurations, numerical methods, and validation
of the numerical model are first discussed. Subsequently, techniques for ascertaining
the mean shear layer behaviour in unsteady flow are explained, and empirical models
for important shear layer quantities, including the reattachment distance, stagnation
point location, and relevant pressure coefficients, are developed. As part of the
characterization process, sensitivities with respect to bluff body geometry, face shape,
aspect ratio, Reynolds number and incidence angle are determined.

2. Configurations

Several bluff body configurations have been selected for this investigation. All
have small aspect ratio (for cylinders, the ratio of length to diameter, or L/D; for
rectangular prisms, the ratio of length to width, or L/W) of the order of one to
two, so three-dimensional aerodynamics are highly important. The configurations
represent canonical configurations, meaning that basic geometries (i.e., rectangular
prisms and circular cylinders) are modelled. Secondary geometric features such
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4 D. T. Prosser and M. J. Smith

(a) (b)

(c) (d )
Prism model

Engine canister

CONEX container

FIGURE 1. (Colour online) Bluff body types modelled and the full-scale sling loads they
represent (Cicolani et al. 2010).

Length, L (m) Width, W (m) Height, H (m) Re0.5(L+W) Yaw angle, β, range (deg.)

0.232 0.165 0.176 2.12× 105 0–90

TABLE 1. Rectangular prism dimensions and flow conditions.

as surface imperfections and wind-tunnel mounting hardware are not modelled.
This approach is important, because it ensures that the results are representative of
fundamental aerodynamic behaviours that are also applicable to more complex shapes.
The canonical geometries are also common in many engineering applications, so the
findings are broadly pertinent.

The specific configurations investigated are rectangular prisms and circular cylinders.
These have been selected due to prevalence in a wide range of applications, including
helicopter and crane tethered loads, as well as air drops. Figure 1 depicts two of
the computational models and full-scale tethered loads they represent. Figure 1(b)
is a 6 × 6 × 8 ft. CONtainer EXpress (CONEX) cargo container. Prior evaluations
(Rosen, Cecutta & Yaffe 1999; Raz et al. 2010) have indicated that the corrugations
and skids do not play a major role in the integrated forces and moments for this
bluff body. Short finite cylinders with aspect ratios of 1.0 and 2.0 were also evaluated.
These cylinders are also representative of common tethered loads; for instance, engine
canisters (as depicted in figure 1d) and oil drums.

The dimensions and flow conditions examined are listed in tables 1 and 2. The
Mach numbers are not listed here but are very low (below 0.1). Only a single
Reynolds number was considered for the rectangular prism, which was selected to
compare with available wind-tunnel test data. Several investigators (Raz et al. 2010,
2011, 2014) have noted that the rectangular prism is insensitive to Reynolds number,
because separation is fixed at the sharp leading edges of the faces. Conversely,
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x

y

z

x

y

z
(a) (b)

Rectangular prism Circular cylinder

FIGURE 2. (Colour online) Convention for the angles α and β.

Length, L (m) Diameter, D (m) Reynolds number, ReD Yaw angle, β, range (deg.)

0.2191 0.2191 0.96× 105 0–90
0.2191 0.2191 1.00× 106 0–90
0.4382 0.2191 1.56× 105 0–90
0.4382 0.2191 0.96× 105 0–90
0.4382 0.2191 1.00× 106 0–90

TABLE 2. Cylinder dimensions and flow conditions.

cylinders are known to be sensitive to Reynolds number when separation occurs on
the curved face. Therefore, the flow around the cylinders was examined over a broad
range of Reynolds numbers ranging from values typical of a low-speed wind tunnel
to a full-scale tethered load.

In each case, the yaw angle was varied in the range 0◦–90◦, but symmetry
considerations can be applied to complete the range of yaw angles from −180◦
to 180◦. The angle of attack was held constant at 0◦. The convention for the yaw
angle is as follows: for the rectangular prism, a yaw angle of 0◦ corresponds
to the broader side (the length) facing into the free-stream flow, which is the
highest-drag configuration for this geometry. At a yaw angle of 90◦, the shorter
side (the width) faces into the flow. For the circular cylinder, a yaw angle of 0◦
corresponds to the curved surface facing into the free-stream flow (the normal flow
configuration), and a yaw angle of 90◦ corresponds to the flat surface facing into
the flow (the axial flow configuration). For both geometries, a positive yaw angle
represents a counterclockwise rotation when viewed from above. The conventions
used for these angles are presented in figure 2.

3. Numerical model
A methodology that couples the unsteady Reynolds-averaged Navier–Stokes

(URANS) equations with a subgrid-scale turbulence closure for large eddy simulations
(LES) has been developed and validated using both structured and unstructured solvers.
The development of the model, including details on the turbulence closure modelling,
validation of the approach on a wide range of canonical problems, and demonstration
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6 D. T. Prosser and M. J. Smith

with experimental correlation on complex configurations can be found in Kim &
Menon (1999), Sánchez-Rocha & Menon (2009, 2011), Lynch & Smith (2011),
Smith, Liggett & Koukol (2011), Shenoy, Smith & Park (2014), Hodara & Smith
(2015), and Hodara et al. (2016). As the focus of the paper is not on the hybrid
methodology development, but rather its application for studying fluid physics, a short
review of the methodology is provided here for the reader who may wish to replicate
the computational assessment.

3.1. Governing equations and numerical methods
FUN3D, NASA’s URANS flow solver for unstructured grids (Anderson, Rausch &
Bonhaus 1996), is employed in this work. FUN3D is capable of solving the URANS
equations in fully compressible or incompressible formulations on mixed-element
grids. To accurately resolve the turbulent wake in bluff body flows, a hybrid
Reynolds-averaged Navier–Stokes – large eddy simulation (HRLES) turbulence closure
(Sánchez-Rocha & Menon 2009, 2011) has been implemented into and validated
in FUN3D (see Lynch & Smith 2011). Consider the compressible Navier–Stokes
equations, defined by

∂ρ

∂t
+ ∂

∂xj
(ρuj)= 0,

∂

∂t
(ρui)+ ∂

∂xj
(ρuiuj)= ∂

∂xj
(−pδij + τij),

∂

∂t
(ρE)+ ∂

∂xj
(ρujE)= ∂

∂xj

(
κ
∂T
∂xj
+ (−pδij + τij)ui

)
,


(3.1)

where t is time, x is a spatial coordinate, ρ is the fluid density, u is a fluid velocity
component, p is the static pressure, τ is the fluid stress tensor, E is the total energy, κ
is the thermal conductivity, T is the temperature, and δ is the Kronecker delta function,
which is equal to one if i = j and zero otherwise. The fluid is assumed to be an
ideal gas; thus, p= ρRT , where R is the gas constant. The total energy is defined as
E= cvT+ (ukuk)/2, where cv is the specific heat at constant volume. The stress tensor
τij is defined as

τij = 2µ
(

Sij − 1
3

Skkδij

)
, where Sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (3.2)

and where µ is the dynamic viscosity. In the HRLES formulation, the density,
pressure, and thermal conductivity are Reynolds-averaged, while the remaining
variables are Favre-averaged. A mathematical description of these two averaging
(or filtering) approaches is available in Sánchez-Rocha & Menon (2009). The filtering
process results in several fluctuating terms which are not present in the original
Navier–Stokes equations, including the turbulent viscous stress, (τij)turb=−ρu′′i u′′j , and
the turbulent heat flux, (qi)turb= ρu′′i H′′, where H is the total enthalpy, E+ p/ρ. Here,
the operator (·) is the Reynolds-averaging operator and the notation (·)′′ signifies the
fluctuating component of a Favre-averaged variable. These fluctuating terms arising
from the filtering process are not resolved by the grid and must be closed by a
turbulence model.
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Numerical characterization of shear layer behaviour 7

Closure for the turbulent viscous stress is achieved by the Boussinesq approximation,

(τij)turb = 2ρ
(
νTSij − 1

3 kδij
)
, (3.3)

where νT is the known as the eddy viscosity and k is the turbulent kinetic energy.
In the HRLES approach, k is calculated via a linear blending of the URANS and
subgrid-scale (SGS) LES model equations of the turbulent kinetic energy, G(k) =
FG1(kURANS) + (1 − F)G2(kSGS). In this work, the two-equation k–ω SST model of
Menter (1994) is applied as the URANS turbulence model, while the LES turbulent
kinetic energy equation of Kim & Menon (1999) is employed to model kSGS. The
eddy viscosity, νT , is computed by blending the URANS and LES eddy viscosities,
which are functions of kURANS and kSGS, respectively. The function F1 of the k–ω SST
model (Menter 1994) is selected as the blending function, which varies smoothly from
one in attached boundary layers to zero in separated wakes. More information on
blending functions is available in Lynch & Smith (2011) and Smith et al. (2013). It
has been demonstrated that an approach which resolves turbulence in the wake, such
as HRLES, is necessary for massively separated flows around airfoils undergoing static
and dynamic stall (Sánchez-Rocha, Kirtas & Menon 2006; Liggett & Smith 2012) and
bluff bodies (Theron et al. 2006; Lynch & Smith 2011; Shenoy et al. 2013; Prosser
& Smith 2014).

As the flow conditions of interest in this work correspond to very low Mach
number (less than 0.1), the incompressible path is taken to solve the governing flow
equations. In FUN3D, incompressible flows are treated using the method of artificial
compressibility of Chorin (1967). In this method, ρ in the continuity equation is
replaced by Γ p, where Γ is the artificial compressibility parameter. Additionally,
ρ is replaced by the free-stream value in the momentum equation, and the energy
equation no longer needs to be solved. As a consequence, the pressure is not resolved
by the ideal gas law but rather is evolved as part of the flow solution. This formulation
is both powerful and convenient because it maintains the same form of the governing
equations, permitting algorithms developed for solution of the compressible flow
equations to also be applied in incompressible flow.

FUN3D uses a finite-volume spatial discretization; thus, (3.1) is transformed
into the integral form using the divergence theorem in the numerical method. The
discretization is second-order accurate spatially, which is typical for unstructured
finite-volume solvers. Inviscid fluxes are resolved using Roe’s approximate Riemann
solver, and flow gradients for viscous fluxes are computed via least squares. As bluff
body flows are highly unsteady, time-accurate computations are required. FUN3D
applies a backwards differentiation (BDF) scheme to achieve temporal accuracy that
is formally second order but has lower truncation error than the standard second-order
BDF scheme. The form is given by (3.4) (see Biedron, Vatsa & Atkins 2005):

V
1t
(θn+1 Qn+1 + θn Qn + θn−1 Qn−1 + θn−2 Qn−2)= Rn+1. (3.4)

Here, V is the cell volume, n is the physical time level, 1t is the physical
time-step size, Q is the vector of conserved variables and θ are the backwards
differentiation coefficients, given by Biedron et al. (2005). R is the residual vector,
which encompasses all the terms that are not operated on by ∂/∂t in (3.1). Since
Rn+1 is not known, it is typically evaluated using a Taylor-series linearization of the
form

Rn+1 ≈ Rn + ∂Rn

∂Qn
(Qn+1 − Qn). (3.5)
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8 D. T. Prosser and M. J. Smith

This linearization introduces additional error, but this is mitigated by the introduction
of pseudo time terms and a pseudo time-stepping process which simultaneously causes
these artificial terms to vanish and Rn+1 to be recovered during a convergent time
step. More information on this approach is available in Biedron et al. (2005) and
Prosser (2015). The time-step size and number of pseudo time steps have been
selected so that the residual vector converges by several orders of magnitude for both
the momentum and turbulence equations.

Though unstructured grid topologies are already able to handle a wide range of
complex geometries, further flexibility is afforded by overset grids. In this approach,
multiple grids are placed on top of each other and solved simultaneously. Holes
are cut in nodes of the background grids that are enclosed by a solid body in the
near-body grids. Outer boundary conditions on the near-body grids are handled by
interpolation from the background grid, which implies that the grid resolution must
be similar at the interface between the grids and that there must be sufficient overlap.
FUN3D supports overset grid simulations through the SUGGAR++ (Noack 2005b)
and DiRTlib (Noack 2005a) libraries. SUGGAR++ determines blanked cells, donors
and recipients, while DiRTlib interpolates data to and from overset grids. In addition
to simplifying the grid generation process for complex geometries, this method is
also beneficial for static simulations of internal flows when the body of interest must
change orientations multiple times, as it allows the same near-body and background
grids to be reused for each orientation.

3.2. Computational grids and grid convergence
Grids have been created for the bluff body geometries using best practices established
for similar configurations during validation of the HRLES turbulence closure (Lynch
& Smith 2011; Smith et al. 2011; Shenoy et al. 2013). The grids are unstructured and
overset, with hexahedral boundary layer cells aligned with the wall-normal direction.
At least 35 cells are present in this normal growth layer, with dimensionless wall
distance, y+ = (ρu∗y)/µ, less than 1.0 at the wall. Here, u∗ is the friction velocity,
u∗=√τw/ρ, and τw is the shear stress at the wall. It has been previously demonstrated
that a y+ value and number of normal-growth-layer cells similar to those applied here
are important to capture separation and reattachment on surfaces at high angles of
incidence (Lynch & Smith 2011; Smith et al. 2011; Liggett & Smith 2012). Figure 3
shows representative views of the grid spacing on the surface. The surface spacing is
non-uniform, with points clustered near the sharp edges where separation occurs. In
all cases, there are at least 300–400 cells around the perimeter in either of the surface
tangential directions, and the maximum surface cell width is in all cases less than 2 %
of the length or diameter.

Outside the boundary layer region, grid cells are tetrahedral. As the results
are compared with wind-tunnel data, the near-body grids are superimposed on a
background grid representing the wind-tunnel test section. The tunnel walls extend
approximately 10.5 times the cylinder diameter upstream and downstream, and tunnel
blockage is 1.85 % at maximum, which occurs for the cylinder with L/D = 2 at a
yaw angle of 0◦. Sensitivity studies have indicated that the effect of this blockage is
minimal (see Prosser 2015). The wind-tunnel mounting hardware is not included in
the grids to avoid interactions that would not be present for true canonical geometries.

Appropriate grid resolution has been determined by grid convergence studies,
validation of integrated quantities with experimental data (see § 4), and established
best practices. In the case of the rectangular prism, results accurate to within
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x
y

z

x
y

z(a) (b)

Cylinder surface grid Prism surface grid

FIGURE 3. Representative surface grid spacing.

(a) (b) (c)

Cylinder and wind tunnel grids Cylinder near-body grid Prism near-body grid

FIGURE 4. Side views of bluff body overset grids.

experimental uncertainty have been verified with 3.5 million total nodes. For the
cylinder, experimental data are not available over most of the range of yaw angles
investigated, so a grid convergence study has been performed to determine the required
number of nodes (see below). The final cylinder grids have 6.5–8 million nodes, with
the higher count pertaining to the longer cylinder. The higher grid resolution required
for the cylinders is a direct consequence of the separation location on the curved face
being sensitive to grid resolution, whereas the rectangular prism has fixed separation
points. The number of nodes in the finite cylinder grids is also greater than, but
of the same order of magnitude as, previous validated computations for a cylinder
between walls at ReD = 3900 (Lynch & Smith 2011).

Three side views of the grids are presented in figure 4. Figure 4(a) illustrates the
grid for the cylinder with L/D = 1.0 from a perspective that includes the top and
bottom walls of the wind tunnel. In addition to the fact that the near-body grid has
fine resolution, the background grid resolution is also increased in the vicinity of the
cylinder and its wake to prevent orphans (nodes lacking an adequate interpolation
stencil at overset grid boundaries) and to ensure that wake turbulence is accurately
captured. Figure 4(b) depicts the same configuration, but from a closer perspective so
that the normal growth region is visible. Figure 4(c) is a side view of the rectangular
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10 D. T. Prosser and M. J. Smith

(a) (b)

First adaptation (5.5 million nodes) Second adaptation (8.5 million nodes)

FIGURE 5. Side views of cylinder grids refined via feature-based adaptation.

prism, which is coarser than the cylinder near-body grid. Similar grid resolution and
characteristics are present in the top and front views, which are not shown.

While comparisons with wind-tunnel data have confirmed that accurate integrated
loads are obtained for the rectangular prism on 3.5-million-node grids, a grid
convergence study has been performed for the cylinder. The sensitivity has been
evaluated by comparison of the forces and moments on grids with various levels of
refinement at low yaw angles, where the sensitivity is expected to be the highest.
The Reynolds number based on diameter for the grid sensitivity study is 3.2 × 105,
which is between the low and high range of Reynolds numbers investigated in the
rest of this paper. The aspect ratio of the cylinder is 1.0 for the sensitivity study.
Two different refinement techniques have been applied:

(i) uniform refinement, and
(ii) feature-based adaptation to vorticity magnitude.

Feature-based adaptation capability has been introduced in FUN3D for overset
grids by Shenoy et al. (see Shenoy & Smith 2011; Shenoy et al. 2014). In this
technique, flow features of interest (such as separated shear layers and shed vortices)
can be resolved while reducing the number of grid points in regions of smooth
flow. The baseline grid contains 3.7 million nodes, which is only slightly larger than
the rectangular prism grids, while the finest grid has 8.5 million nodes. In both the
feature-based and uniform refinement approaches, the node count has been increased
by clustering points near the surface and in the wake. Illustrations of the uniformly
refined grid are included in figure 4(a,b). Figure 5(a,b) presents similar depictions of
the cylinder grids after one and two cycles of feature-based refinement, respectively.
The feature-based adaptation strategy follows the approach of Shenoy et al. (2014),
in which a vorticity-based indicator F|ω| is constructed for each edge over time. The
indicator is defined as

F|ω| = 0.5l(|ωn1| + |ωn2|), (3.6)

where l is the edge length, n1 and n2 are the two nodes defining the edge, and ω is
the instantaneous non-dimensional vorticity. To account for unsteadiness in the flow,
F|ω| is tracked throughout the grid over enough steps to resolve several cycles of vortex
shedding. Following this period, the maximum value of the indicator over time at
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FIGURE 6. Grid sensitivity study, cylinder with an aspect ratio of 1.0 at low yaw angle
and a Reynolds number of 3.2 × 105. (a) Drag coefficient, (b) side force coefficient,
(c) yaw moment coefficient.

each edge is used to establish an adaptation intensity field to define the regions of
grid refinement. Coarsening may also occur up to approximately 15 % of the original
spacing. More information on the feature-based algorithm is available in Shenoy &
Smith (2011) and Shenoy et al. (2014). As is apparent in figure 5, this approach is
effective in clustering grid points in the wake region between the two separated shear
layers where vorticity magnitude is large. The figure also shows that the algorithm is
able to traverse overset grid boundaries effectively.

The mean drag, side force, and yaw moment between yaw angles of 0◦ and 10◦
are presented in figure 6. The reference area used for non-dimensionalization here is
the frontal area, LD, and the reference length for normalizing the yaw moment is the
diameter, D. While increasing the node count reduces the drag, the 5.5-million-node
grid is within 5 % the drag of the finest grid. The side force behaviour is more
sensitive to grid refinement than the drag, particularly between the coarsest grid and
any of the finer grids. The coarsest grid predicts an incorrect side force trend between
yaw angles of 0◦ and 2.5◦; on the coarsest grid, the side force is positive at a yaw
angle of 2.5◦, while it is negative on the finer grids. The side force at a yaw angle of
zero is also further from the expected value of zero (based on geometric symmetry)
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12 D. T. Prosser and M. J. Smith

on the coarsest grid. Wind-tunnel experiments (see Zdravkovich et al. 1989) have
indicated that the asymmetric behaviour occurs due to the bi-stable nature of vortex
shedding for very short cylinders with two free ends at low yaw angles. In terms
of the side force, all of the grids with node counts of 5.5 million and above offer
comparable results. The yaw moment trends are the same for all grids evaluated,
and the variation in yaw moment is less than the variation in drag and side force
coefficients across the grids evaluated.

Based on the results of the grid sensitivity analysis, acceptable grid convergence is
observed with the finest grids in figure 6, so the final grids were created with node
counts in the range 6.5–8 million. Point spacings on the surface and the wake are
similar in all cases; the higher node counts correspond to the cylinder with higher
aspect ratio. Though feature-based adaptive refinement has been applied in the grid
convergence study, uniform refinement has been leveraged here to generate the final
grids, as adaptive refinement needs to be performed at each yaw angle to account for
the changing shear layer behaviour, and thus would introduce significant additional
cost.

Because the numerical solver is unstructured, the simulation is limited to a
second-order spatial algorithm. This approach requires a finer grid than is required
for a higher-order structured solver to obtain similar results. A study on the effect of
dissipation in the wake, separation location, and pressures was previously conducted
with an infinite circular cylinder at a Reynolds number of 3900 (Lynch & Smith
2011). From the results of this canonical test case, used extensively for large eddy
simulation assessment, the unstructured grid topology and numerical options necessary
to minimize dissipation in simulations with separation and turbulent wakes was
determined. This grid topology has been applied here to ensure that numerical
dissipation was minimized for the configurations evaluated.

4. Approach validation

Static force and moment coefficients have been compiled for the rectangular prism
and circular cylinders for the configurations and flow conditions listed in tables 1
and 2. These are compared with wind-tunnel experiments performed at the Georgia
Institute of Technology (Mantri et al. 2011) and other extant data (Wieselsberger 1922;
Hoerner 1958; Rosen et al. 1999), where available. The reference area used for non-
dimensionalizing the forces and moments is, for the rectangular prism, 0.5H(L+W),
the average area of the two vertical faces. Similarly, the reference length for moments
is 0.5(L+W), and the moments are computed about the geometric centre of the prism.
The cylinder force and moment coefficients are typically presented with LD as the
reference area and D as the reference length for moments, which are also taken about
the geometric centre. The planform area (LD) as the reference for the short cylinders,
rather than the circular face area (π/4)D2, has been selected so that force coefficients
in the normal flow orientation may be compared directly with two-dimensional results,
as in various experimental studies (Wieselsberger 1922; Hoerner 1958; Zdravkovich
et al. 1989).

The numerical simulations are time-accurate and the integrated loads are unsteady,
so the forces and moments are time-averaged and presented as mean values with
fluctuations plotted as dashed lines (they are not uncertainties, but rather an indication
of the influence of vortex shedding fluctuations). To ensure that no bias due to vortex
shedding is present in the time-averaging process, the time-averaging procedure
described in § 5.1 was applied to these variables.
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FIGURE 7. (Colour online) Rectangular prism computed force and moment coefficients
and comparison with experimental data (Rosen et al. 1999; Mantri et al. 2011). Dashed
lines represent min and max values for the unsteady simulations. (a) Drag coefficient,
(b) side force coefficient, (c) yaw moment coefficient.

Figure 7 depicts the drag, side force, and yaw moment coefficients for the
rectangular prism. The experimental data were measured using a load cell attached to
the wind-tunnel model, and in the Georgia Tech experiments the reported uncertainty
in these measurements is ±3.5 % for forces and ±5 % for moments. The agreement
between these quantities and both sets of data is satisfactory, as the computed values
are typically within 7 % of at least one of the experimental data sets. There is some
variation between the two sets of wind-tunnel data, but in general at least one of
the two experimental sets lies within the bounds of unsteadiness of the computations,
and the computations generally lie between the two experimental data sets. While the
data by Rosen et al. (1999) were taken at a lower Reynolds number (Re= 1.5× 105

rather than the Reynolds number, Re = 2.1 × 105, of the other data), these minor
variations in Reynolds number are not expected to have a significant effect on the
integrated loads for bodies with sharp-edge separation (Raz et al. 2010, 2011, 2014).
In comparison with other computational evaluations of the CONEX rectangular prism
and similar bluff bodies to date, the present computations better predict the forces
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FIGURE 8. Comparison of the current computations in normal and axial flow
configurations with experimental data by Wieselsberger (1922), Hoerner (1958), and
previous computations by Lynch & Smith (2011).

and moments measured experimentally. This improved correlation is thought to be
due in large part to the HRLES turbulence approach that resolves large turbulent
wake structures. The prior evaluations with traditional URANS models have proved
less successful, particularly in the prediction of side of side force (Theron et al.
2005, 2006; Cicolani et al. 2009). Similar findings have been reported across a
broad spectrum of configurations (with smooth curves and sharp corners) at moderate
and high Reynolds numbers where separation and reattachment is present, including
airfoils and wings at high and reverse angles of attack (Smith et al. 2011; Hodara
et al. 2016) and rotor–fuselage interactions (Shenoy et al. 2014), for example. These
latter simulations were performed with both URANS and HRLES using the same
grids and otherwise the same numerical parameters, verifying the inability of the
URANS turbulence methods to correctly capture the leeward-side physics of all of
these configurations.

The present numerical analysis approach has also been previously validated for
flows over infinite cylinders via comparisons with experiments in the subcritical
Reynolds number regime at ReD = 3900 (Lynch & Smith 2011). The drag coefficient,
shedding frequency, and separation location were all well within the error bounds of
experimental measurements in that study. Because many of the applications of this
work typically involve larger Reynolds numbers, here the focus is on transitional and
supercritical flows. The computations are compared with experimental data at yaw
angles of 0◦ and 90◦, as other orientations are not available in the literature for short
finite cylinders.

Figure 8 presents the drag coefficients of the present computations in normal flow
with the experimental data of Wieselsberger (1922) and the prior computations by
Lynch & Smith (2011). Here, the drag coefficient is computed with the frontal area
(LD) as the reference area. It is apparent from this figure that the agreement with
experimental data is excellent (within 4 % of experimental measurements) in both
the subcritical and supercritical regimes. Furthermore, in both the transitional and
supercritical regimes, the difference in drag between aspect ratios of 1.0 and 2.0 is
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small, as the difference in drag is less than 7 % at both Reynolds numbers when the
aspect ratio changes from 1.0 to 2.0. This result is in agreement with experimental
observations of Zdravkovich et al. (1989), who found that the drag coefficient is
insensitive to aspect ratio for L/D 6 5 in the normal flow orientation (the change in
drag was also less than 10 % when the aspect ratio is decreased from 5.0 to 1.0).

The finite cylinder drag predictions in the range of Reynolds numbers from
0.96 × 105 to 1.56 × 105 are somewhat lower than the experimental data for the
cylinder with an aspect ratio of 5.0, with only minor variation across this range.
However, they are comparable to the experimental drag in the transitional regime,
which occurs at a somewhat higher Reynolds number, and over a small range of
Reynolds numbers, in the experiments. The URANS model active inside the boundary
layer in this work is the two-equation Menter k–ω shear stress transport (SST) model
(Menter, Kuntz & Langtry 2003), which assumes a fully turbulent boundary layer.
Hodara & Smith (2015) have developed a new transition-based HRLES approach
(tHRLES), which shows improved prediction of integrated forces in the transitional
regime than both URANS and the present original HRLES model. While this model
was not available for this study, it holds promise for future applications of the
hybrid turbulence closure. Despite this transition modelling shortcoming, Prosser
(2015) demonstrated that the transition prediction primarily affects the drag for yaw
angles below 30◦ but has minimal influence on most other quantities of interest.
Furthermore, it will be shown later that many of the shear layer behaviours are
insensitive to Reynolds number, so transition does not have a significant impact on
the main quantities of interest for this work.

The drag in axial flow is compared with experimental data from Hoerner (1958) for
circular disks and finite cylinders in figure 8(b). The drag force is again normalized
by the frontal area, which in this orientation is (π/4)D2 instead of LD. Complete
details of the flow conditions for the experimental data were not available, but at least
some of the tests were performed with Reynolds numbers in the range 105–106. In any
case, the computational results in figure 8(b) indicate that in axial flow, there is no
sensitivity of the drag to the Reynolds number, at least over the range investigated
here. This result is not surprising, as in this orientation separation occurs at the sharp
edges of the flat face, whereas in normal flow separation occurs from the curved
face and is dependent on the boundary layer and wake turbulence characteristics. The
present computations at an aspect ratio of 1.0 result in drag comparable to a circular
disk in the experimental data. The data indicate that there is a sharp decrease in drag
near this aspect ratio corresponding to a change in the shear layer behaviour. Due
to the abruptness of this change, it is not unusual for the drop in drag to occur at
a slightly different aspect ratio depending on the flow conditions (in particular, the
wind-tunnel turbulence level, which was not recorded in the wind-tunnel data). The
computations for the cylinders with an aspect ratio of 2.0 are consistent with the
experimental data.

Figure 9 highlights the differences in shear layer behaviour for cylinders with two
different aspect ratios (1 and 2) in axial flow. Time-averaged streamlines and pressure
coefficient contours are shown in a planform view. Separation occurs at the sharp
edges of the front face, promoting the formation of low-pressure, vortical separation
bubbles that draw the outer flow back towards the surface. For the cylinder with an
aspect ratio of 2.0, the shear layer reattaches on the aft portion of the curved face,
but it remains separated for the shorter cylinder, as its length is not sufficient for
reattachment to occur. Reattachment is accompanied by a pressure recovery, resulting
in significantly lower base pressure and drag for the longer cylinder.
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FIGURE 9. (Colour online) Time-averaged contours of pressure coefficient and streamlines
in a top-down view for the axial flow condition of the circular cylinder.

5. Shear layer behaviour

The significant unsteadiness and complex turbulent structures in flows about short
three-dimensional bluff bodies present challenges in characterizing the shear layer
behaviour. To illustrate these difficulties, figure 10 presents flow-field snapshots for a
cylinder with an aspect ratio of 2.0 at a yaw angle of 10◦ and a rectangular prism
at a yaw angle of 25◦. Surfaces of constant Q-criterion in the wake are rendered as
smoke, while the surface is coloured by contours of pressure coefficient. Q is defined
as:

Q= 1
2(‖Ω‖2 − ‖S‖2), (5.1)

where Ω is the vorticity tensor and S is the strain rate tensor (Haller 2005). In
both snapshots, there exist complex, highly three-dimensional turbulent structures
that are resolved by the hybrid RANS–LES turbulence methodology. For example,
in figure 10(a), ‘roller’ vortices originating from the separation point on the curved
face are visible, but these structures break down as they blend with the vortices
shed from the flat face. The interactions between these structures emanating from
the different faces of short bluff bodies result in multi-modal and variable shedding
frequencies that have also been observed in wind-tunnel tests (Ayoub & Karamcheti
1982; Zdravkovich et al. 1989) as well as computations (Prosser & Smith 2014,
2015b).

In addition to the turbulent structures, multiple different shear layer behaviours are
visible in each illustration. There are three possible behaviours, including (1) separated
shear layer, (2) reattaching shear layer, and (3) attached shear layer. These three
behaviours are illustrated in figure 11, which is representative of the rectangular
prism in a top view. At low yaw angles, the shear layers are both fully separated (1).
As the yaw angle increases, the shear layer eventually reattaches on the right side,
marked by (2), but the flow is fully attached on the front side, identified by (3).
Increasing the yaw angle further results in full attachment on the side marked by (3),
while a separation bubble and reattaching flow occurs on the side, (2), and eventually
fully separated flow on this side, (1).
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FIGURE 10. (Colour online) Unsteady flow snapshots on various short bluff bodies. Flow
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FIGURE 11. (Colour online) Illustration of shear layer behaviour for a rectangular bluff
body. (1) Fully separated, (2) reattaching, and (3) fully attached.

Each of these three shear layer behaviours is also visible in figure 10. For example,
reattachment is evidenced by a rapid increase in pressure over a short distance leading
up to the reattachment point. As clearly displayed in figure 10, large, unsteady
turbulent eddies are present during reattachment, unlike the diagram in figure 11
suggests. As in figure 10(a), the shear layer often breaks up into discrete vortical
structures that travel downstream and either interact with the reattached boundary
layer or are drawn into the separation bubble. The large, sudden changes in pressure
caused by reattachment also have a significant influence on the mean forces and
moments, but the unsteady, turbulent nature of the shear layer and its interaction with
the surface create difficulty in assessing these relationships with the mean integrated
loads.

5.1. Time averaging
To overcome these difficulties related to unsteady flow, the flow fields themselves have
been time-averaged to permit the mean separation and reattachment behaviours to be
studied. To illustrate the effect of time averaging, figure 12(a) presents a snapshot of
the unsteady non-dimensional vorticity magnitude, |ω| =√(∇× u)2, around a circular
cylinder with an aspect ratio of 1.0. In this orientation, shear layer reattachment
occurs near the aft end of the cylinder, but it is weak and highly unsteady. Time
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FIGURE 12. (Colour online) Unsteady and time-averaged reattachment behaviour for
L/D = 1 cylinder, ReD = 0.96 × 105, β = 2.5◦; top view shown. (The circular flat face
is normal to the page in this view.) (a) Unsteady flow field, (b) time-averaged flow field.

averaging the flow field, as illustrated in figure 12(b), smooths out discrete turbulent
structures and permits the mean trajectory of the shear layer and its reattachment
point on the side of the circular cylinder to be identified. Similar benefits of time
averaging have also been noted in direct numerical simulations of turbulent flows
around bluff bodies. For example, Vinuesa et al. (2015) found that a large horseshoe
vortex became visible in turbulent flows around wall-mounted rectangular prisms only
after time averaging. In instantaneous flow visualizations, small-scale turbulence was
too prevalent to distinguish the horseshoe vortex.

To ensure that no bias due to vortex shedding is present in the time-averaging
process, the following procedure was developed and verified. Each numerical
experiment was performed over 40–60 vortex shedding cycles based on a Strouhal
number of 0.2. As the flow fields were initialized from steady-state solutions, in
some cases transients were apparent in the forces and moments for up to the first
ten cycles, so this period of time was not included in the averaging. The flow fields
(as well as the forces and moments) were, therefore, averaged over a minimum of
30 cycles, which was found to result in converged reattachment locations and wall
pressures. This length of time corresponds to approximately 150 convective time units,
t∗ = tU∞/Lref (where U∞ is the speed of the incoming flow and Lref is the reference
length), for the circular cylinder with D taken as the reference length. The averaging
time in convective units is also similar for the rectangular prism with 0.5(L + W)
taken as the reference length. The window for time averaging was selected so that
the endpoints corresponded to peaks in the forces and moments, ensuring that the
time-averaging process did not include partial vortex shedding cycles. An example
time-averaging window is illustrated in figure 13, which represents the drag coefficient
for a circular cylinder with L/D= 1 at ReD = 106.

Similar to |ω|, the surface pressure distributions also become smooth and steady
as a result of the time-averaging process. This behaviour is important because the
time-averaged pressure distributions are directly related to the mean forces and
moments acting on the bluff body. Figure 14 presents typical pressure distributions
along the centreline of faces subject to shear layer reattachment and fully attached
flow. There are four important parameters in the reattaching pressure distribution
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FIGURE 13. (Colour online) Example time-averaging window of the drag coefficient
(CD) time history for a circular cylinder with L/D= 1 at ReD = 106.
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FIGURE 14. (Colour online) Typical pressure distributions and definition of empirical
modelling parameters. (a) Reattaching flow, (b) attached flow.

(figure 14a): the base pressure, cpb , the separation bubble pressure, cpS , the maximum
pressure at reattachment, cpM , and the reattachment distance, xM, defined as the
distance from the leading edge to the location of cpM . In attached flow (figure 14b), the
maximum pressure coefficient remains constant at 1.0 (the incompressible stagnation
pressure coefficient), and there is no separation bubble. As a result, the fully attached
pressure distribution can be characterized by just the stagnation point location, x0. In
fully separated flow (the behaviour labelled (1) in figure 11), Robertson et al. (1978)
observed that the pressure distribution is nearly constant, with a value close to the
base pressure.

In § 5.2, the data in figure 14 are assessed using the time-averaged pressure
distribution data from the numerical experiments. The variations are characterized
with bluff body type, face shape, orientation angle, aspect ratio, and Reynolds
number.
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(a) (b)

FIGURE 15. (Colour online) Depiction of the incidence angle, φ, and the incidence angle
at which reattachment first occurs, φR. Arrows indicate the free-stream flow direction.

5.2. Empirical modelling
Due to the inherent unsteadiness and nonlinearity resulting from transition, separation,
and reattachment in bluff body flows, simplified analytical theories are generally not
available. Empirical modelling represents an alternative to analytical modelling, with
similar benefits to applications such as real-time or training simulations that require
a method with low computational cost. Some development in the area of empirical
modelling of shear layer behaviour has been published by Greenwell (2011) for two-
dimensional rectangular bluff bodies. This work develops similar empirical models for
the mean behaviour of short three-dimensional bluff bodies.

One key parameter relevant to the shear layer behaviour is the incidence angle, φ,
which is the angle of the free stream relative to a given face. This angle is related
to the yaw angle but also depends on the orientation of the face at a yaw angle of
0◦, and, moreover, at a given yaw angle, each individual face of a bluff body has a
different incidence angle. This angle is depicted for a single face of a bluff body in
a top view in figure 15(a). The most relevant angle in the reattachment process is the
angle at which reattachment on a given face first occurs, or φR, which is illustrated in
figure 15(b). As shown in the illustration, the separation bubble spans the entire face
when φ = φR. If the incidence angle is further increased, the separation bubble will
shrink, or, alternatively, the shear layer will become fully separated if the incidence
angle is decreased from φR. The angle φR can be considered constant for a given face
of a bluff body at a particular free-stream condition.

Figure 16 quantifies the variation of the normalized reattachment distance with
incidence angle. Data from the present numerical experiments are included in this
figure as well as wind-tunnel data from Robertson et al. (1978) for two-dimensional
rectangular prisms. For the rectangular prisms, the reattachment distance is normalized
by the length of the side adjacent to the face on which reattachment occurs; for the
circular cylinders it is normalized by the diameter. These figures clearly indicate
that the normalized reattachment distance correlates with the geometry type and face
shape, but not the aspect ratio or Reynolds number. Though similar trends occur for
all three canonical configurations, the normalized reattachment distance is largest for
a given incidence angle on the rectangular prism, followed by the curved face of the
circular cylinder. It is smallest on the flat faces of the circular cylinder. The incidence
angle at which reattachment first occurs (φR) can be determined from these empirical
relationships by determining the reattachment distance equal to the length of the
relevant face and identifying the incidence angle from the curve fit in figure 16.

Empirical models of the four reattachment pressure distribution parameters
are presented in figure 17. Most collapse onto a single curve when normalized
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FIGURE 16. Normalized reattachment distance as a function of incidence angle.
Two-dimensional rectangular prism data from Robertson et al. (1978). (a) Flat cylinder
faces, (b) curved cylinder faces, (c) rectangular prism faces.

appropriately. The incidence angle, for instance, can be normalized as (φ − φR)/
(45◦ − φR). Similarly, the pressure coefficients can be normalized as (cp − cpb,φ=0)/
(1.0− cpb,φ=0), where cpb,φ=0 is the base pressure coefficient at an incidence angle
of 0◦. When normalized in this manner, the variation in reattachment distance can
be described with a single quadratic curve with coefficient of determination (R2)
of 0.97. The normalized reattachment distance is independent of the surface type,
canonical geometry type (cylinders and two- or three-dimensional rectangular bluff
bodies), aspect ratio, and Reynolds number. Conversely, if φR is not subtracted, as
in figure 16, then the empirical equations vary with geometry and surface type.
This result indicates that these geometric differences have a significant effect on the
incidence angle at which reattachment begins, but the variation of the reattachment
distance with incidence angle after reattachment begins follows a similar trend in
all cases. Therefore, the models provided in figure 16 can be used to determine the
incidence angle at which reattachment begins, and then the equation in figure 17(a)
can be applied.

The maximum pressure coefficient during reattachment, cpM , exhibits similar
independence when normalized appropriately. All geometries evaluated collapse
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FIGURE 17. (Colour online) Reattachment parameter variations with φ and empirical
curve fits. (a) xM, (b) cpM , (c) cpS , (d) cpb .

onto a single empirical curve with a coefficient of determination of 0.96, and the
maximum pressure coefficient increases with incidence angle in a cubic relationship.
The separation bubble pressure coefficient, cpS , collapses similarly, but in this case,
there are differences with respect to the type of surface. For reattachment on flat
faces (cylinder finite ends or rectangular bluff bodies), the separation bubble pressure
can be modelled by an empirical curve fit with a coefficient of determination of 0.98.
However, curved faces do not fit this trend; data for curved faces are highlighted in
red in figure 17(c). In fact, the separation bubble pressure on curved faces is found
to depend not only on the incidence angle but also the aspect ratio and Reynolds
number. The base pressure coefficient, cpb , exhibits significant scatter and is not
amenable to fitting by an empirical curve. However, this parameter is difficult to
determine, as the pressure coefficient drops off rapidly at the aft end of the face (see
figure 14a). Due to this rapid drop-off, the value of this coefficient is not expected
to significantly influence the integrated loads, and a representative value for a given
geometry could reasonably be applied at all yaw angles.

Figure 18 presents the variation of the stagnation point with incidence angle. As
stagnation on a given face implies that reattachment does not occur on the same
face, the incidence angle at which reattachment begins is not subtracted from the
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FIGURE 18. (Colour online) Variation of x0 with φ and empirical curve fit.

incidence angle for normalization. Instead, since the transition from reattaching to
fully attached flow occurs at 45◦, the incidence angle is normalized as (φ − 45◦)/45◦.
Figure 18 demonstrates that the stagnation point, when normalized in this manner,
also depends on the surface type. As was the case with the separation bubble pressure,
the normalized stagnation point collapses onto a single empirical curve for flat faces,
including both finite cylinders and rectangular bluff bodies. However, curved-face
stagnation (labelled on the figures) does not fit the same trend. On curved faces, the
stagnation point is found to depend on the aspect ratio but not the Reynolds number.

6. Conclusions
The aerodynamics of short three-dimensional bluff bodies have received very little

attention in the literature, particularly over a broad range of angles and at high
Reynolds number as required by applications including tethered loads, air drops, store
separation, and towed bodies. The present work addresses this gap by analysing the
flow around canonical three-dimensional bluff bodies, including rectangular prisms
and finite circular cylinders, with high-fidelity numerical experiments. Aspect ratios
of the bluff bodies for this work are in the range one to two, the Reynolds number
ranges from 0.96 × 105–1.0 × 106, and the yaw angle varies from 0◦ to 90◦. The
primary findings are as follows:

(i) Time averaging of the unsteady flow fields is required to quantify the characteri-
stics of the phenomena responsible for sudden changes in the mean forces and
moments at particular yaw angles. The time-averaging procedure permits clear
identification of shear layer behaviour through evaluation of surface pressure
indicators.

(ii) Given the range of geometric characteristics and flow conditions evaluated in this
study:
(1) The normalized reattachment distance can be correlated with bluff body type

and surface type. In the configurations evaluated, this distance is greatest, at
a given incidence angle, for the rectangular prism. The next greatest distance
corresponds to the curved faces of the circular cylinder, while the shortest
distance corresponds to the flat faces of the circular cylinder.
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(2) The distance to reattachment and the maximum pressure coefficient at
reattachment may be modelled empirically as functions of incidence angle
only. These quantities have been found to be independent of geometry type,
surface shape (flat or curved), Reynolds number, and aspect ratio for the
configurations examined, provided the proper normalization is applied to
compute the incidence angle when reattachment first occurs.

(3) The pressure coefficient in the separation bubble can be modelled empirically
as a single-valued function of incidence angle for flat bluff body faces
when normalized appropriately. On curved cylinder faces, this parameter
also depends on the Reynolds number and aspect ratio.

(4) The normalized stagnation point location is also a single-valued function
of incidence angle for flat bluff body faces. On curved cylinder faces, this
parameter also depends on the aspect ratio but not the Reynolds number.

Ongoing and future development related to this work include further validation of
the numerical predictions of the numerical method for finite cylinders at yaw angles
other than the normal and axial flow orientations, when experimental data become
available for comparison. Additionally, the shear layer behaviours will be investigated
for other canonical geometries and variations of those evaluated here (i.e., additional
aspect ratios). Methods to predict the mean forces and moments from the empirical
characterizations of shear layer behaviour are under development, as the shear layer
behaviour is largely responsible for the shape of the surface pressure distribution, and,
therefore, the mean forces and moments.
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