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Abstract. The concept of magnetic entropy, the entropy pertaining to a
magnetic configuration, is introduced and illustrated through its application to
the description of the magnetic states assumed preferentially by a tokamak and
of the transition between them. The magnetic equilibria associated with
stationary magnetic entropy admit a bifurcation, and a new state can arise that
can be attained spontaneously with an increase in the magnetic entropy. The
thermodynamic relations between entropy production, heat transport and
plasma energy allow one to express quantitatively the modifications of these
quantities generated by the magnetic transition to the new state and to identify
it with the L–H transition. The power and temperature thresholds of the
transition are expressed in terms of the confinement time of the L state, and
definite scalings are derived that compare favourably with observations. The
theory implies the hysteresis and the upper density limit of the H state.

1. Introduction

In this paper, the point of view that considers the L–H transition as a
bifurcation process involving the global magnetic configuration of a tokamak,
entailing also a global change of the transport properties of the plasma, is
developed with the aim of arriving at a quantitative formulation that could
allow a comparison with observations. The concept underlying this approach is
that of magnetic entropy, a quantity associated with the magnetic con-
figuration, which, through the requirement that it should increase in an isolated
system, determines the branch of the new bifurcated state that the plasma
should reach spontaneously, and also, through the relations inherent to its
thermodynamic meaning, determines the general transport properties of the
new state.

In view of its relevance for this work, the meaning of the magnetic entropy
and its domain of application are illustrated in an extended summary of the
results of previous papers (especially in Secs 2 and 3) in order to allow the reader
to understand the essential aspects of the concept without direct reference to
the literature.

In Sec. 2, the framework of information theory is presented, in which the
magnetic entropy is derived and is interpreted as a measure of the probability
of coarse-grained magnetic configurations under given constraints that express
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the testable information available on the system. In Sec. 3, the magnetic
entropy is applied to a tokamak, considered as an open system in which an
equilibrium exists between the entropy produced in the system and the entropy
injected into it by auxiliary power and by an Ohmic transformer. In this way,
a family of magnetic equilibria is defined that corresponds to stationary
entropy and to a stationary thermal state. However, when the condition of
stationary entropy is relaxed, a bifurcation of the equilibrium can arise, and a
new magnetic state appears that can be reached with a spontaneous entropy-
increasing transition (Sec. 4). The transport properties of this state are
discussed on the basis of the thermodynamic relations between the entropy
production in the transition and the power balance equation (Sec. 5). This state,
which has the physical characters of the H state, is not in thermal equilibrium,
and an expression for the increase of the plasma energy per unit time is
explicitly given.

A property inherent to the physics of the magnetic transition is the increase
in the current density at the edge in a constant-total-current regime, possibly
giving rise to peeling modes and to the phenomenon of ELMs.

The bifurcation condition or transition threshold is expressed by a relation
between the auxiliary power (or the temperature) and the confinement time of
the L state (Sec. 6). Assuming that the confinement time is given by the
empirical scaling ITER89-P, one obtains from the bifurcation condition a
scaling law for the threshold values of the auxiliary power and of the
temperature. The theoretical results compare favourably with observations.
Also, the bifurcation condition implies a hysteresis of the threshold, which is a
consequence of the better confinement of the H state, and the occurrence of a
reverse transition at an upper density limit.

2. The thermodynamics of magnetic plasma equilibria

2.1. The statistical model

The thermodynamics of magnetic plasma equilibria is based on the concept of
magnetic entropy, a quantity that measures, in the framework of information
theory, the probability of coarse-grained current density configurations in a
suitably constrained possibility space (or information space) of this variable.

The information space is the site where the information available on the
system can be specified. Let us subdivide the plasma volume V into N volume
elements ∆V (sufficiently small that the macroscopic equilibrium can be
considered as homogeneous in ∆V, but large enough to contain many particles).
Let us consider the assembly of N volume elements, each in a six-dimensional
space (j, x) of current density and position, where they can be arranged at
random (taking care that their positions are all different, because the volume
elements cannot overlap in V). The information space Γ is the joint 6N-
dimensional space (j

"
,… j

N
; x

"
,…x

N
) of the N volume elements. A single point

of Γ represents a particular current density configuration, reconstructed in the
volume V with a coarse-graining ∆V.

Considering a large number of copies of the assembly of N volume elements,
an equilibrium ensemble is set up by assigning the probability distribution
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p(j
"
,… j

N
; x

"
,…x

"
) for the assembly to occupy any given volume element dΓ in

the space Γ. The distribution is assigned by maximizing the entropy

S¯®&
Γ

p lnpdΓ (1)

under given constraints that express the testable information available on the
system. The degree of adherence of the statistical predictions to observations
provides a test of the reliability of the information (this point of view is called
Bayesian; see Jaynes (1989) and, for a very readable exposition, see Garrett
(1991) and Gull (1991)).

The constraints involved in our thermodynamic model of magnetic equilibria
are as follows.

(i) There is a fixed (but unspecified) value of the current density dispersion
generated by the underlying particle structure.

(ii) The fluctuations of the current density are superimposed on a fixed (but a
priori unspecified) macroscopic configuration of the current density
localized in a subdomain Ω'V (where V tends eventually to infinity with
fixed V}N, according to the thermodynamic limit). The volume outside Ω

is filled with a neutral fluctuating background of ions and electrons. The
macroscopic equilibrium in Ω can exchange electric charges and energy
with the background without modifying it. The background plays formally
the same role of the heat bath in Gibbsian statistics.

(iii) However, the electromagnetic energy exchanged with the background can
be finite on average, and is given by a fixed value Φ

int
. The energy Φ

int

simulates the interaction of the macroscopic magnetic equilibrium with the
external world, and depends on the particular physical situation at hand.
For instance, Φ

int
can describe a Poynting flux of energy (as can be shown

explicitly in the appropriate cases). In situations where the macroscopic
equilibrium is isolated, one has Φ

int
¯ 0.

The entropy S, maximized under these constraints, is expressed by the
following functional of the macroscopic current density distribution j(x) in Ω

and of the related vector potential A(x) (Minardi, 1992a):

S¯
3

2∆V©∆jh #ª (®&Ω

j# dV
µ#c

4π &Ω

j[A dV1 , (2)

where ©∆jh #ª is the variance of the current density fluctuations in each ∆V and
an inessential additive constant has been omitted. µ# is a parameter (positive
or negative) related to the Lagrange multiplier involved in the constraint (iii),
and is given by the expression

µ−#¯
1

8π

&
Ω

A# dV

ΦΦ
int

, (3)

where

Φ¯
1

2c&Ω

j[A dV. (4)
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2.2. Isothermal variations

In an isolated system, one has S% 0, as can be seen by substituting µ# given by
(3) (where Φ

int
¯ 0) into (2) and applying the Schwartz inequality. The

maximum S¯ 0 corresponds to j¯ (µ#c}4π)A and to the relaxed states of the
Bessel function model of the pinch (Taylor 1974), the relaxation now being
related to the increase in the magnetic entropy in a dissipative plasma totally
isolated from the external world by a perfectly conducting shell.

However, a system is never rigorously isolated, and a point of view in which
Φ

int
is allowed to be non-zero is then appropriate. This is obtained by

considering the meaning of the expression (3) for µ# and of the Lagrange
multiplier τ, to which µ# is related by

τ¯®
4π∆V©∆jh #ª

3µ#c#
(5)

(τ is negative when µ#" 0). The parameter τ plays in our formalism the role of
a generalized temperature. When infinitesimal variations of j and A are
considered (compatible with d’Alembert’s equation) starting from an equi-
librium with Φ

int
¯ 0 and taking τ (and µ#) fixed (isothermal variations), Φ

int
is

forced to change in order to be consistent with (3), and the macroscopic system
undergoes an infinitesimal exchange of energy with the external world. One can
then proceed to study the variational properties of S with respect to the
isothermal variations above. For instance, in the case of the pinch, one finds
that S is maximum precisely for those values of µ# for which the equilibrium is
stable according to the Bessel function model. Conversely, if S is not maximum,
the increase in the magnetic entropy in the perturbed state implies the
development of an instability and the appearance of large macroscopic motions
in the plasma (Minardi 1989, 1992a).

Stability with respect to localized interchange and tearing modes can also be
expressed by the variational properties of a suitable local version of the
functional S, independently of specific dynamical considerations.

In general, S is not maximum when neighbouring equilibria exist, and τ is
necessarily negative in this case.

The point of view above where Φ
int

1 0 will be particularly relevant in the
treatment of an open system like a tokamak, which interacts with the external
world through an Ohmic transformer and additional heating (see Sec. 3).

2.3. The tokamak

The entropy of an open (non-isolated) system is not required to be maximum
in general, but when the system is stationary one can require that equilibrium
exists between the entropy produced by the system and the entropy injected
into it. In order to introduce this condition for a tokamak, we need an
expression for the magnetic entropy of the tokamak states.

A convenient idealization of an Ohmic tokamak can be formulated by
including the time-dependent current of the primary of the transformer in the
current entering S. By considering a thin conducting shell at the edge of the
plasma column where this current is localized and by including the shell in the
integration domain of S, (2), the primary is treated as part of the system
described by S. Then the entropy production of an Ohmic tokamak is calculated
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by taking the time derivative of S with respect to the time dependence of the
localized current. The detailed calculation is given in the Appendix. One arrives
at the expression

dS

dt
¯

1

τ &
Vp

0Eµ#

[~# j
p
E[j

p1 dV, (6)

where V
p

is the plasma volume (excluding the shell), E¯ eφ E, with E¯
E

!
R

!
}R, is the toroidal electric field and j

p
¯ eφ jφ is the toroidal current density

of the plasma.
In the presence of auxiliary heating with deposition profile p

A
(r), the total

entropy production takes the following form (dropping the subscript p on j
p
) :

dS

dt
¯

1

τ &
Vp

0Eµ#

[~# jE[jp
A1 dV. (7)

This relation is the starting point of this paper.

2.4. Connection with dynamics

A relevant property of the entropy functional S should now be mentioned
before concluding this brief summary. This functional has been constructed on
the sole basis of the standard formalism of information theory applied to our
particular information space Γ, independently of any specific dynamical
assumption. Nevertheless, one finds that in the case of reversible processes (i.e.
in the absence of dissipation) and for an isolated ergodic system, the functional
S acquires a dynamical meaning (Minardi 1992b, 1993). Indeed, the vanishing
of the first variation of S (δS¯ 0 with respect to the primary static variations
δj and δA compatible with d’Alembert’s equation) implies Hamilton’s principle
applied to a Lagrangian describing the motion of a system of independent
electrons in a fixed ion background, compatible with the presence of the
magnetic equilibrium described by the macroscopic current density j(r) and the
related vector potential A(r) (assumed to be toroidally symmetric and in a
small-Larmor-radius approximation).

The connection is lost in the presence of dissipative or radiative processes –
a reflection of the fact that, in accordance with its definition in information
theory, the entropy is basically not a dynamical concept.

3. Entropy production and heat transport

3.1. Constraint on the thermal conductivity

The relation (7) will be applied to the confinement zone of the tokamak, where
the plasma is supposed to be quiescent enough to allow the use of our
thermodynamic concepts. We write (7) in the form

dS

dt
¯

1

µ#τ&3

(E¡jφ®jφ ¡E)[dg
1

τ &
Vc

(E[jp
A
) dV, (8)

where V
c
is the volume delimited by the two magnetic surfaces (denoted by 3 )

associated with the values q¯ 1 and qE 2 of the safety factor and dg is
directed outside V

c
.
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Let us suppose for a moment that the confinement region is the site of a
reversible process. Then

dS

dt
¯

1

τ

dQ

dt
, (9)

where dQ}dt is the net heat per unit time absorbed or emitted by the plasma in
the confinement region:

dQ

dt
¯®&

3

q
h
[dg&

Vc

(E[jp
A
) dV. (10)

In a one-fluid approximation, q
h
can be expressed in terms of a single diffusivity

coefficient χ, q
h
¯®nχ¡T, and the power balance in the confinement zone

takes the form

3

2

d

dt&
Vc

nTdV¯&
3

nχ¡T[dg&
Vc

(E[jp
A
) dV (11)

Combining (8)–(11), one derives the relations

&
S

nχ¡T[dg¯
1

µ#
&

3

(E¡jφ®jφ ¡E)[dg, (12a)

dS

dt
¯

3

2

d

dt&
Vc

nTdV. (12b)

Equation (12a) is a definite relation between the current density profile and the
heat flux, and implies stringent conditions on the transport properties of the
plasma, whatever the scaling of the transport coefficients with respect to the
fundamental parameters related to Larmor radius, collisionality and beta. We
refer for a discussion of these conditions to a forthcoming paper (Lazzaro and
Minardi, 1999), where the relation (12a) is applied to the description of the
thermal transport of negative- or low-magnetic-shear states with stationary
entropy, generated by strong auxiliary power.

The relations (12) will play an important role in our discussion.

3.2. States with stationary magnetic entropy

We require that the entropy be locally stationary so that the expression (7) will
vanish when the integration is applied to any volume delimited by magnetic
surfaces in the confinement zone of the plasma. Then the following equation
should hold (in the cylindrical approximation) :

~# jφµ# jφ ¯®
µ#p

A

E
!

(sλ% r% s), (13)

where the range of r is delimited by q
s
3 q(s)E 2 and qW 3 q(sλ)¯ 1 (here and in

the following, ‘hats ’ denote quantities taken on the surface qW ¯ 1). Equation
(13) describes a family of magnetic states with stationary entropy labelled by
the parameter µ#.

Ingeneral jφ is notOhmically relaxed, but relaxation ( jφ £T$/#) can reasonably
be assumed near the edge, where the temperature is low and the resistivity is
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higher. Thus, introducing the Spitzer resistivity η¯A(Z
eff

)T−$/# (where Z
eff

is
uniform), the following is a convenient choice of the relation between jφ and T :

jφ(r)¯
E

!

A(Z
eff

)
T$/#(r)Cφ ln

r

s
, (14)

where Cφ is a constant that will be determined from the power balance across
the surface qW ¯ 1. With the choice (14), the equation (13) for jφ reduces to the
power balance equation

®
1

r

¦
¦r 9rnχ

¦
¦r

T(r):¯E
!
jφ(r)p

A
(r) (sλ% r% s), (15)

provided that χ has the form

n(r)χ(r)¯
3

2

E#
!

A(Z
eff

)µ#

T"/#(r). (16)

According to this relation, χ should scale as T"/#}n, which agrees with models
of transport in Ohmic tokamaks proposed some years ago by Ohkawa (1978),
Inoue et al. (1980) and Itoh et al. (1986).

The power balance across the surface qW ¯ 1 is expressed by the equality

®nχ
dT

dr )
sλ

3W ¯E
!
jWVW &

V
W
p
A

dV, (17)

where VW ¯ 2π#(sλ)#R
!
is the volume of the sawtooth region, 3W ¯ 4π#sλR

!
is the

area of the surface qW ¯ 1, and the current density jW has been assumed to be
uniform in the sawtooth region (by taking the average over sawtoothing) and
equal to the value corresponding to qW ¯ 1,

jW ¯
cB

2πR
!

. (18)

The derivative of (14), using (16), gives

Cφ

sλ
¯

djφ
dAφ

dAφ

dr )
sλ

®
µ#

E
!

nχ
dT

dr )
sλ

, (19)

where Aφ is the toroidal component of the vector potential and

®0dAφ

dr 1
sλ

¯Bθ(sλ)¯
2πjW sλ

c
.

Putting

νW #3
4π

c 0
djφ
dAφ

1
sλ

and recalling (17), one obtains

Cφ ¯
(µsλ)# jW

2 01®
ν# #
µ#
1µ#

E
!

& sλ

!

p
A

r dr. (20)

Once Cφ is given, the temperature profile is determined by (14), where jφ(r) is
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fixed as a solution of (13) with the boundary conditions jφ(sλ)¯ jW and
jφ(s)¯ j

s
. In particular, (14) fixes the temperature TW on the surface qW ¯ 1,

while the temperature at the border r¯ s is related to j
s
by Ohmic relaxation.

The component Aφ of the vector potential is also fixed. Indeed, combining
d’Alembert’s equation ~#Aφ ¯®(4π}c)jφ with (13), one has

µ#c

4π
Aφ ¯ jφ®j

s
®jW (µs)#&"

x

dx

x &
x

!

pxdx®Cφ ln x, (21)

where we have put Aφ(s)¯ 0, p3p
A
}E

!
jW and x¯ r}s. It follows from this

relation that the completely Ohmically relaxed state (Cφ ¯ 0) of an Ohmic
tokamak (p

A
¯ 0) with vanishing current density at the boundary ( j

s
¯ 0) is an

absolute maximum of the entropy (2) applied to a configuration with j¯ eφ jφ
(see Sec. 2.2).

It is convenient to divide the current density of (21) into two parts :

jφ ¯
µ#c

4π
Aφ , (22)

where

¯ jW (µs)#&"

x

dx

x &
x

!

pxdxCφ ln x. (23)

Here we have omitted the constant term j
s
because in the statistical procedure

one has the freedom to define the coordinates of the information space Γ, as well
as Aφ, apart from the constant.

The function represents the factors related to the interaction of the plasma
in the confinement zone with the external world, namely the auxiliary power p

A

and the thermal interaction with the sawtooth zone described by the term
involving Cφ. The part of the current density makes the following contribution
to the magnetic energy:

1

2c& Aφ dV¯
1

2c& jφ Aφ dV®
µ#

8π&A#φ dV

¯Φ®
µ#

8π&A#φ dV.

(24)

Comparing this expression with (3), one finds that it is just equal to ®Φ
int

,
where Φ

int
is the interaction energy between the macroscopic equilibrium and

the external world simulated by the infinite background. Consistently with its
definition in the statistical procedure, Φ

int
does not vanish when the macroscopic

system is not isolated.

4. Magnetic transitions and irreversible transformations

In this section, we shall consider a certain transition between magnetic states
that is associated with an increase in the magnetic entropy. In an isolated
system, this transition should occur spontaneously. We shall see that the
transition can be identified with the L–H transition.
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4.1. Bifurcation of the magnetic equilibrium

We introduce the function J(Aφ(r))¯ jφ(r) (with Aφ(r) and jφ(r) monotonic) and
write d’Alembert’s equation in the form

~#Aφ ¯®
4π

c
J(Aφ(r)). (25)

Let us consider a neighbouring state AφA
"
defined in the confinement zone by

the equation

~#(AφA
"
)¯®

4π

c
J(AφA

"
) (sλ% r% s), (26)

where J(AφA
"
) is the same function of its argument as in (25). Subtraction of

(25) from (26) gives a nonlinear equation for A
"
:

~#A
"
¯®

4π

c
[J(AφA

"
)®J(Aφ)]. (27)

We impose the following boundary conditions:

¦A
"

¦r )
sλ

¯ 0, (28a)

A
"
(s)¯ 0. (28b)

The condition (28a) implies continuity of the poloidal magnetic field on the
surface qW ¯ 1 (one could take A

"
(sλ)¯ 0 instead, but this would imply a sheet

current on this surface). The condition (28b) follows from conservation of the
poloidal magnetic flux in the confinement zone.

Let us consider the eigenvalue equation

~#A
"
(x)

4πs#

c

dJ

dAφ

A
"
(x)¯HA

"
(x) (λ% x% 1), (29)

where H is its first eigenvalue. For H¯ 0, this equation can be obtained from
(27) by neglecting the terms nonlinear in A

"
. Thus, in this limit, the nonlinear

solution for AφA
"

tends to the linear solution when A
"

is very small and in
particular when A

"
¯ 0. The eigenvalue H¯ 0 is then the bifurcation point

between the state Aφ and the nonlinear state AφA
"
.

In order to study the nonlinear properties of (27), we expand the right-hand
side up to second order in A

"
. Putting

ν#(x)¯
4π

c

dJ

dAφ

, (30a)

β(x)¯®
2πs#

c

d #J

dA#φ

, (30b)

one obtains
~#A

"
(νs)#A

"
¯βA#

"
. (31)

Integration of both sides after multiplication by xA
"

gives

&"

λ

[®(¡A
"
)#(νs)#A#

"
] x dx¯&"

λ

βA$
"
x dx. (32)
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As is well known, the first eigenvalue is characterized by the following
variational property:

®H¯ inf

1

2
3

4

&"

λ

[(¡A
"
)#®(νsA

"
)#]x dx

&"

λ

A#
"
x dx

5

6
7

8

. (33)

Thus, on comparing (32) and (33), one has

&"

λ

βA$
"
x dx

&"

λ

A#
"
x dx

%H. (34)

It follows from this inequality that, for H! 0, a non-trivial (A
"
1 0) solution of

(31) can exist only if βA
"
! 0 in a sufficiently large range of r. Conversely, a

nonlinear state with βA
"
" 0 exists only for H" 0.

It has been shown that H! 0 is sufficient for stability of the state Aφ with
respect to the φ-independent collionsless modes A

"
(Laval et al. 1965; Schindler

1965). Thus only the nonlinear states AφA
"

associated with H" 0 are
accessible from the state Aφ with a nonlinear perturbation A

"
.

The sign of H depends on the parameters ν and β of (31). We assume that the
state Aφ is the state of stationary entropy described by (21). One then obtains
the relations

ν#(r)¯
4π

c

dJ

dAφ

¯µ#
2πjWµ#

I(r) &
r

sλ

pr dr®
π(µsλ)#

I(r) 01®
νW #
µ#
1 , (35)

β(r)¯®
2πs#

c

d #J

dA#φ

¯
2πjW (µs)#

cB#θ(r)
9p(r)

πj(r)

I(r)
(sλ)# 01®

νW #
µ#
1®2πj(r)

I(r) &
r

sλ

pr dr: , (36)

where I(r)¯ "
#
cBθr. Numerical inspection of (36) shows that β can be negative or

positive. Moreover, a numerical treatment of the eigenvalue equation (31)
(assuming p(r) to be uniform; Minardi 1992c) shows that when β is positive, H
is always negative, and therefore the system is stable.

In the case of negative β, the nonlinear state with A
"
! 0 corresponds to

H" 0, consistently with (34). The situation is sketched in Fig. 1, where
yW 3A

"
(sλ) is plotted versus the control parameter H. The axis AW

"
¯ 0

corresponds to the state Aφ, while the branch AW
"
(H) corresponds to the

neighbouring nonlinear state AφA
"
that bifurcates at H¯ 0. It follows from

bifurcation theory, under certain conditions, that when the state Aφ is stable
the neighbouring state AφA

l
is unstable and vice versa. Thus the transition

to the neighbouring state with A
"
! 0, H" 0, leads to a stable state.
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ŷ

Stable
H < 0 0

Disruption

Transition

Unstable
H > 0

β < 0

U
nstable

Stable

Figure 1. Sketch of the bifurcated states of (26) and of their stability properties for β! 0.
The maximum amplitude yW 3A

"
(sλ) of the nonlinear perturbation is shown as a function of

the control parameter H. The axis yW ¯ 0 corresponds to the state Aφ. The states Aφ and
AφA

"
bifurcate at H¯ 0, and a spontaneous transition Aφ UAφA

"
(indicated by the lower

arrow) can occur for H" 0, leading to a stable state with yW ! 0 and a higher magnetic
entropy. The upward-pointing arrow corresponds to a decrease in the magnetic entropy, and
does not lead to an equilibrium.

4.2. Transition to a state with higher magnetic entropy

In this subsection, we shall show that the transition Aφ UAφA
"
with A

"
! 0

and β! 0 indicated by the downward-pointing arrow in Fig. 1 increases the
magnetic entropy S, (2). Indeed, the change in S in this transition is given by
the equality (applying (27))

S
"
¯

2π

rτrµ#c# 9
c

2π&
Vc

J(Aφ)~#A
"
dV®0µc

4π1
#&

Vc

(Aφ~#A
"
A

"
~#Aφ) dV: . (37)

Noting that

&
Vc

J~#A
"
dV¯&

Vc

A
"
~#JdV&

3

(J¡A
"
®A

"
¡J)[dg, (38)

&
Vc

Aφ~#A
"
dV¯&

Vc

A
"
~#Aφ dV&

3

(Aφ¡A
"
®A

"
¡Aφ)[dg, (39)

where dg is directed outwards from V
c
, one obtains from (37)

S
"
¯

1

rτrµ#c 9&
Vc

A
"
(~#Jµ#J) dV&

3

(J¡A
"
®A

"
¡J)[dg

®
µ#c

8π &3

(Aφ¡A
"
®A

"
¡Aφ)[dg: . (40)

Taking the boundary conditions (28) into account, we have

&
3

A
"
¡J[dg¯ 0A"

Bθ

dJ

dAφ
1
sλ

gW , (41)

&
3

A
"
¡Aφ[dg¯ (A

"
Bθ)sλ gW . (42)
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We assume that the current density j
s
on the outer surface is small enough not

to influence the sign of S
"
. Also, consistently with (21), we take Aφ(s)¯ 0 (with

this choice, the zeroth-order magnetic energy (1}2c)!JAφ dV is equal to the
poloidal magnetic energy contained in r% s). Using (13) and (28), (40) becomes

S
"
¯®

1

rτrµ#c 9µ#&
Vc

A
"

p
A

E
!

dV0A"
Bθ0 dJ

dAφ

®
µ#c

8π11
sλ

3W : (43)

One sees that S
"

is positive for A
"
! 0 when the following inequality holds:

0 dJ

dAφ
1
sλ

"
µ#c

8π
. (44)

Now this inequality is a consequence of the fact that, in the case under
consideration, β is negative in a sufficiently large region of r, in particular for
r¯ sλ, where rβr is larger. Thus one has from (36)

β(sλ)! 0: 1
pW
A

E
!
jW
®

νW #

µ#

! 0, (45)

from which it follows that

cνW #
4π

3 0 dJ

dAφ
1
sλ

"
µ#c

4π 01
pW
A

E
!
jW 1"

µ#c

8π
. (46)

In conclusion, for H" 0 and A
"
! 0,β! 0, a new magnetic equilibrium exists,

associated with a poloidal flux-conserving rearrangement of the current
density, which is accessible with an increase in the magnetic entropy in a
spontaneous internal transition.

The opposite case, namely an evolution where A
"

is positive, is associated
with a decrease in the magnetic entropy, and can only be realized through
external perturbations. But when A

"
is positive, a nonlinear equilibrium

solution of (31) in the case H" 0 does not exist (see Fig. 1), and the magnetic
system cannot evolve toward a stationary situation. This case, which is possibly
related to tokamak disruption, is not discussed in this paper.

5. Thermodynamics of the L–H transition

It is now essential for physical interpretation and for comparison with
observations to identify the implications of the above magnetic transition on
the transport properties of the plasma and on the power balance.

The tools for this discussion are the thermodynamic relations of Sec. 3
between the rate of change of the entropy and the change of the heat flux and
of the plasma energy during the transition.

5.1. Magnetic entropy production in the transition

In the transition phase, the perturbation A
"
(t) is time-dependent and related to

the electric field by E
"
¯®(1}c)¦A

"
}¦t. We suppose that the transition is

adiabatic in the sense that the functional dependence of J(A) on its argument
is preserved and that (27) holds at least approximately also when A

"
is time-
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dependent. We note that the perturbations leading from a state J(Aφ) to a state
J(AφA

"
) where A

"
is independent of φ) minimize the magnetic energy (Laval

et al. 1965; Schindler 1965).
The entropy production associated with the change A

"
is then given by the

time derivative of (40) (where (27) has been used implicitly) :

dS
"

dt
¯

1

µ#τ 9&
Vc

E
"
(~#Jµ#J) dV&

3

(J¡E
"
®E

"
¡J)[dg


µ#c

8π &3

E
"
¡Aφ[dg:¯ 1

µ#τ&
Vc

J~#E
"
dV

1

τ &
Vc

E
"
JdV


c

8πτ&3

E
"
¡Aφ[dg (47)

Applying Ampe' re’s law and the induction law

¦E
"

¦r
¯

1

c

¦B
"
θ

¦t
, (48)

the relation (47), after a partial integration, becomes

dS
"

dt
¯

1

µ#τ&
Vc

J~#E
"
dV®

1

4πτ&
Vc

¦B
"
θ

¦t
Bθ dV®

c

8πτ
EW

"
BW θ 3W . (49)

We now use the fact that, during the transition, the magnetic configuration in
the confinement zone undergoes a poloidal-flux-conserving rearrangement of
the current density. This means that the new current density J(AφA

"
) is

obtained from J(Aφ) by shifting its value at the point r to the point ρ
determined by the relation

Aφ(r)¯Aφ(ρ)A
"
(ρ). (50)

Putting ρ¯ rξ and linearizing, one has the following expression for the
shift ξ :

ξ¯®
A

"
(r, t)

¦Aφ}¦r
¯

A
"
(r, t)

Bθ(r)
. (51)

The poloidal magnetic energy in the shifting confinement region is given by the
relation

Wθ ¯
1

8π&
s

sλ+ξW (t)

B#θ rR
!
4π# dr, (52)

and its time derivative is

dWθ

dt
¯

1

4π&
s

sλ+ξW (t)

¦B
"
θ

¦t
Bθ rR

!
4π# dr®

1

8π

dξW

dt
BW #θ 3W . (53)

Noting that dξW}dt¯®cEW
"
}BW θ, one obtains from (49) the production of magnetic

entropy in the confinement region associated with the electromagnetic energy
change in the transition phase:

dS
"

dt
¯

1

µ#τ&
Vc

J~#E
"
dV®

1

τ

dWθ

dt
. (54)
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5.2. Total entropy production and power balance

In order to obtain the total entropy production, one must add to (54) the
contribution (7) associated with the equilibrium electric field E and with the
auxiliary power p

A
, taking into account that to the current density J¯J(Aφ)

one must now add the perturbation j
"
¯J(AφA

"
)®J(Aφ), i.e. j¯Jj

"
.

Taking the form (47) for dS
"
}dt, one has, up to first order,

dS
tot

dt
¯

dS

dt


dS
"

dt
¯

1

µ#τ&
Vc

J~#E
"
dV

1

µ#τ&3

(E¡j®j¡E)[dg


c

8πτ&3

E
"
¡Aφ[dg

1

τ &
Vc

(EE
"
)j dV

1

τ &
Vc

p
A

dV. (55)

The physical meaning of the terms in this relation follows from comparison with
the power balance in the confinement zone. The net heat dQ}dt absorbed or
emitted per unit time by the plasma is expressed by the equality

dQ

dt
¯®&

3

q
h
[dg&

Vc

(EE
"
) j dV&

Vc

p
A

dV (56)

which reduces to (10) of section 3.1 in the case E
"
¯ j

"
¯ 0. Just as in this

section we identify the surface terms of the power balance and of the entropy
production and obtain

®&
3

q
h
[dg¯

1

µ#
&

3

(E¡j®j¡E)[dg
c

8π&3

E
"
¡Aφ[dg. (57)

Thus the expression (55) for the total entropy production becomes

dS
tot

dt
¯

1

µ#τ&
Vc

J~#E
"
dV

1

τ

dQ

dt
. (58)

Let us introduce the entropy S
r
related to the reversible process :

dS
r

dt
¯

1

τ

dQ

dt
. (59)

We show that

dS
tot

dt
"

dS
r

dt
. (60)

Indeed, one has E
"
¯®(1}c)¦A

"
}¦t, where A

"
, which in a linear approximation

is the first eigenfunction of (29) and satisfies (28), is monotonic and negative. It
follows that the space derivative of E

"
is negative for r" sλ (it vanishes for

r¯ sλ). Then, recalling that τ is negative, we have

1

τ &
Vc

J~#E
"
dV¯

4π#R
!

τ & s

sλ

drJ
¦
¦r 0r

¦
¦r

E
"1

¯
4π#R

!

τ 0)Jr
¦E

"

¦r )
s

®& s

sλ

¦E
"

¦r

¦J

¦r
r dr1" 0. (61)

The inequality (60) then follows from (58).
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5.3. The basic phenomenology of the magnetic transition

We now express (56) in a form that allows better physical insight into the
change in the power balance involved in the transition. Combining (47) and
(54), one obtains

&
Vc

E
"
JdV¯®

dWθ

dt
®

c

8π&3

E
"
¡Aφ[dg. (62)

Substitution of (62) into (56) gives

dQ

dt
¯®&

3

q
h
[dg&

Vc

Ej dV&
Vc

p
A

dV®
dWθ

dt
®

c

8π&3

E
"
¡Aφ[dg. (63)

Noting that E
"
(s)¯ 0, one has

®&
3

E
"
¡Aφ[dg¯®EW

"
BW θ 3W ¯&

3W
E

"
¬Bθ[dg (64)

where
dg¯ e

r
d3, E

"
¯ eφE

"
, Bθ ¯ eθ Bθ.

Introducing (53) and (64) into (63), the final form of the power balance equation
in the confinement region is obtained:

dQ

dt
¯®&

3

q
h
[d3&

Vc

Ej dV®
1

4π&
Vc

Bθ

¦B
"
θ

¦t
dV


c

4π&3

E
"
¬Bθ[dg&

Vc

p
A

dV. (65)

Before discussing the consequences of this relation for thermal transport, some
observations on the electromagnetic aspects of the transition are in order.

Noting that B
"
θ ¯®¦A

"
}¦r is negative, the poloidal magnetic energy

decreases in the transition phase. This phase is characterized by a Poynting flux
of energy towards the sawtooth region and an inward shift of the surface
qW ¯ 1 (see (51)).

Now it is essential to note that the global current of the tokamak is kept
constant by an appropriate feedback of the external poloidal system. This has
the relevant consequence that the decrease of the current in the confinement
region must be associated with the formation of a sheet current at the edge,
induced by the feedback system in order to keep the global current constant.
Subsequently, the current density near the edge increases by resistive diffusion,
and contributes, together with other factors, to the formation of a temperature
pedestal.

At this point, our picture makes contact with those models that consider the
increase of the edge current density as one of the main factors responsible for
the excitation of the edge modes (i.e. the peeling modes) and for the complex
phenomenon of ELMs (Manickam 1992; Huysmans et al. 1992; Connor 1998;
Connor et al. 1998).

Although our thermodynamic theory is unable, by itself, to say something
about the detailed dynamics, we have nevertheless reached a point of view from
which, through the insight that the theory provides, a connection can be
established with definite dynamical processes.
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5.4. Effect of the magnetic transition on thermal transport

Let us now discuss the change in the transport properties of the plasma
generated by the transition. We consider the asymptotic situation when the
final magnetic state is reached and the electromagnetic quantities are time-
independent (e.g. E

"
£¦A

"
}¦t¯ 0). Taking into account the boundary condition

of the heat flux on the surface qW ¯ 1,

&
3W

q
h
[dg¯&

V
W
p
A

dV&
V
W
EjW dV, (66)

(65) becomes

dQ

dt
¯®&

3
s

q
h
[dg&

Vp

Ej dV&
Vp

p
A

dV, (67)

where, according to (57),

&
3
s

q
h
[dg¯®

1

µ#
&

3
s

[E¡( jφj
"
)®( jφj

"
)¡E][dg. (68)

Here 3
s
is the magnetic surface at r¯ s, and V

p
¯VW V

c
. From this relation, one

obtains the first-order change of the heat flux after the magnetic transition. In
the cylindrical approximation, one has (recalling that A

"
(s)¯ 0)

0&
3
s

q
h
[dg1

"

¯®
E

!

µ#

dj
"

ds
3

s
E®

c

4π

ν#(s)

µ#

E
!

dA
"

ds
3

s

¯®
c

4π

ν#(s)

µ#

E
!
rB

"
θ(s)r3s

! 0, (69)

which shows that the heat flux across the outer edge of the confinement region
decreases after the transition.

The conservation of energy implies that the net heat absorbed or emitted per
unit time by the plasma is identified with the rate of change of the plasma
energy

3

2

d

dt&
Vp

nTdV¯
dQ

dt
. (70)

If the system is in thermal equilibrium before the transition, the rate of change
of the plasma energy after the transition is given by the first-order terms of the
power balance equation. We have

3

2

d

dt&
Vp

nTdV¯®0&
3
s

qh[dg1
"

&
Vp

Ej
"
dV

E®0&
3
s

q
h
[dg1

"

®
c

2
πR

!
E

!
s
dA

"

ds
, (71)

where j
"

has been expressed with (27).
The following inequality can be seen to hold using (35) :

ν#(s)

µ#

" 1
q
s

s
#

1

πcBE
!

[P
A
(s)®P

A
(sλ)]( 1. (72)
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The term involving the heat flux in (71) is then the leading term, and one has

3

2

d

dt&
Vp

nTdVE
c

4π

ν#(s)

µ#

E
!
rB

"
θ(s)rSs

"
R

!

s
q
s

rB
"
θ(s)r
B

[P
A
(s)®P

A
(sλ)]

¯
rB

"
θ(s)r

Bθ(s)
[P

A
(s)®P

A
(sλ)]. (73)

For the validity of the theory, B
"
θ should be at least one order of magnitude

lower than Bθ, but still the rate of change of the plasma energy, generated
purely by the electromagnetic transition, may be a practically significant
fraction of the deposited power.

Clearly the plasma is not in thermal equilibrium immediately after the
transition, although a magnetic equilibrium has been reached.

6. Transition thresholds

In this section, we shall extend the results obtained in a previous paper (Minardi
1997) on the power threshold by deriving the scaling of the average temperature
in the confinement region at the threshold point, the hysteresis of the inverse
transition and the upper density limit of the H state.

In order to proceed with our discussion, we recall, for the convenience of the
reader, the procedure followed in the 1997 paper for deriving the power
transition threshold.

6.1. Transformations leaving H invariant

The threshold is the bifurcation point H¯ 0 of the magnetic equilibrium. A
scaling law for the threshold values of physical quantities is a relation between
the quantities such that H is invariant when the values change consistently
with the relation.

The eigenvalue H is fixed by (29) with the boundary conditions (28), and is
then controlled by the function [sν(r)]# given by (35). Any relation that leaves
[sν(r)]# and the boundary conditions invariant is then a scaling law of the
threshold values because it leaves H¯ 0 invariant.

In order to simplify the discussion, we consider the physical case where the
auxiliary power largely exceeds the Ohmic power, p

A
(EjW . In this case, the

equation (13) for the initial magnetic equilibrium becomes

~# jφ ¯®
µ#p

A

E
!
jW

, (74)

whose solution is

jφ®j
s
¯

µ#

E
!

& s

r

dr

r &
r

!

p
A

r drCφ ln
r

s
, (75)

where Cφ is determined by the condition jφ(sλ)¯ jW :

Cφ ¯
jW

lnλ 01®
j
s

jW
®

µ#

E
!
jW &

s

sλ

dr

r &
r

!

p
A

r dr* . (76)

https://doi.org/10.1017/S0022377899007953 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377899007953


336 E. Minardi

Taking as before

jφ ¯
E

!

A(Z
eff

)
T$/#Cφ ln

r

s
, (77)

(74) reduces to the power balance equation with the thermal conductivity (16)
and T is expressed as follows:

E
!

A(Z
eff

)
T$/#¯ j

s


µ#

E
!

& s

r

dr

r &
r

!

p
A

r dr. (78)

From this, one derives the relations

0TWT
s

1$/#¯
jW

j
s

δ, (79a)

E
!

A(Z
eff

)
TW $/#¯ jW δ¯

cB

2πR
!

δ. (79b)

Here T
s
¯T(s) and δ, given by the equality

δ¯
j
s

jW


µ#

E
!
jW &

s

sλ

dr

r &
r

!

p
A

r dr, (80)

is a measure of the deviation from Ohmic relaxation on the surface qW ¯ 1.
Recalling (75), (sν)# takes the form

(sν)#¯
I
s
q
s

I(x) 9
2

lnλ 0js
jW
®11µ#P

A
(1)

cBE
!
π

G(x): , (81)

where

G(x)¯
1

P
A
(1) 9PA

(x)&"

λ

dx

x
P
A
(x): , (82)

I(x)¯ 2πs# jW 0λ#

2
&x

λ

jφ

jW
x dx1 . (83)

Here x¯ r}s, P
A
(x) is the total auxiliary power injected in the region r% xs,

I(x) is the toroidal current flowing in this region, I
s
¯ I(x¯ 1) and q

s
¯

cs#B}2R
!
I
s
.

Inspection of (81) shows that (νs)# is invariant when P
A
, B, E

!
, I and s change

in such a way as to leave invariant q
s
and the combination

µ#P
A

cBE
!

¯C
!
, (84)

where C
!
is a dimensionless constant that corresponds to the bifurcation point

H¯ 0 for assigned values of q
s
, λ and j

s
}jW , compatible with the initial

equilibrium (in the 1997 paper, we considered an example with C
!
¯ 5.786,

µs¯ 0.45 and j
s
}jW ¯ 0.18).

The quantities in (84) are not independent. Indeed, on one hand, one has the
condition (79b), which relates E

!
, B and T for fixed j

s
}jW , where, at the threshold

point, δ takes the form

δ¯
j
s

jW


C
!

2π&
"

λ

dx

x

P
A
(x)

P
A
(1)

(85)
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(δ is of order unity). On the other hand, we have to take into account the
condition imposed on T by the energy balance. Applying the procedure of the
1997 paper, taking into account the conditions above, (84) can be converted
into the following relation:

µ%P&
A

τ$
L

B%RA#(Z
eff

)a'n$

¯ c%C
m

δ(#m+")/("+m), (86)

where m("
#
%m% 3) is the exponent of the power dependence Tm of the thermal

conductivity on the temperature, τ
L

is the energy confinement time of the L
state, n is the average plasma density, a is the minor radius and C

m
is given by

C
m

¯ [C&+#m

!
π%m+" 3$m("

%
)$]"/("+m).

6.2. Similarity transformations and transition thresholds

Let us express the confinement time of the L state with the empirical scaling
law conventionally known as ITER89-P (Yushmanov et al. 1990):

τ
L
¯ 0.048A!.&

i
I!.)&R".#a!.$n!."

#!
B!.#P−!.&

A
, (87)

where A
i
is the mass number, and I is expressed in MA, R and a in m, the average

plasma density n
#!

in 10−#! m−$, B in T, P
A

in MW and τ
L

in s. Introducing (87)
into (86), one obtains

P
A

¯P
#!

n!.((
#!

B!.*(, (88)

where P
#!

can be written in the following two forms:

P
#!

¯ 3.62¬10−$
a".%'Z!.&(

eff

µ"."%A!.%$
i

I!.($R!.(%
C!.#)&

m
δ#(#m−")/((m+") (89a)

¯ 0.27
a".%'Z!.&(

eff

(µs)"."%A!.%$
i

I!."'
s

R!."(
0qsB1

!.&(

C!.#)&
m

δ#(#m−")/((m+"). (89b)

Here q
s
¯ 5Bs#}I

s
R in the engineering units used above. The first form (89a)

(where µ is measured in cm−") shows that P
#!

is independent of B and n. The
scaling of P

A
with respect to these quantities is then entirely contained in (88)

and is consistent with observations (Takizuka et al. 1997; Ryter et al. 1996).
The second form (89b) shows that P

#!
depends very slowly on the current I

provided that I can be practically identified with I
s

and the change of the
current I

s
U I

s«
is associated:

(i) with a shift of the invariant value q
s
of the safety factor from the surface

r¯ s to the surface r¯ s« related to s by s#}I
s
¯ s«#}I

s«
; and

(ii) with a change of µ such that µs is fixed.

This is a similarity transformation that leaves (81) and (84) (and then H)
invariant and which has a significant physical implication, as we shall see
presently. Indeed, the bifurcation condition (84) can be written in the form

(µs)#P
A

cE
!
s#B

¯
(µs)#π

q
s

P
A

PΩ

¯C
!
, (90)

where q
s
¯ cBs#}2I

s
R and PΩ ¯ 2πRE

!
I
s
is the Ohmic power. It follows from this

relation that the ratio P
A
}PΩ between the auxiliary power and the Ohmic power
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in the region q% q
s
(defined with the invariant value q

s
) remains constant at the

bifurcation point while the current is changing under the above transformation
that preserves the values of q

s
and µs. It must be noted that the electric field

E
!

is not invariant but depends on µ, as can be seen after elimination of TW $/#
from (79b) using the power balance equation (see (5.7) of the Minardi (1997),
where δ has been put equal to 1).

In accordance with the above considerations, a transformation in which both
B and I

s
change should be performed in two steps. First, B is changed keeping

I
s

and µ fixed while s is changed in such a way that Bs# remains constant,
namely the invariant value q

s
is shifted from s to s«¯ s(B}B«)"/#. In this first

step, the first form (89a) of P
#!

must be applied. Secondly, B, s#}I
s
and µs are

kept fixed and I
s
is changed using the second form (89b).

The preceding considerations entail natural implications on the behaviour of
the temperature at the threshold point. First we observe that the threshold
value of TW }T

s
, given by (79a) where δ is given by (85), is anchored only to the

ratio jW}j
s

between the boundary values of the current density (the power
deposition profile involved in (85) is smoothed out by a double integration).
This fact may be related to the stiffness of the T profile observed in the H state
(Gruber et al. 1997).

The scaling and the value of the average temperature at the threshold point
can be estimated by substituting the threshold value of the power into the
expression for the confinement time

τ
L
¯

3nTV

2P
A

, (91)

where V¯ 2πa#R and τ
L

is given by (87). Here we assume, among other things,
that the profiles do not change when n and T vary, otherwise τ

L
would depend

on the form factors. This profile resiliency is validated implicitly by the very
existence of substantially universal scaling laws that involve only global or
averaged quantities.

The following expressions are obtained from (91) for a given machine, i.e. for
fixed values of R and a. For transformations of B with fixed I,

T
ev

¯ 6¬10−$n−!.&#
#!

B!.'*I!.%*R−!."(a−!.*(Z!.#)
eff

A!.#*
i

C!."%
m

δ(#m−")/((m+")µ−!.&( (92)

(with µ in cm−"). For transformations of I with fixed B,

T
ev

¯ 53n−!.&#
#!

B!.'*I!.((R!."#a−!.*(Z!.#)
eff

A!.#*
i

C!."%
m

δ(#m−")/((m+") 0qsB1
!.#)

(µs)−!.&(.

(93)

The average density n
#!

can be expressed in terms of the edge density
n
ea

through the relation n
#!

£n!.%)
ea

B!.!& (Righi et al. 1998). One gets
T£n−!.#&

ea
B!.''I!.((, which should be compared with the observations in Asdex-U

(T£n−!.$!
ea

B!.)!I!.&! ; Ryter et al. 1998).Note that these observations concern the
values of the temperature at the top of the pedestal rather than the average
temperature. However, the two values should be related, in view of the stiffness
of the temperature profile.

It is worth stressing the fact that the scaling laws derived above are a
consequence of the confinement time combined with the bifurcation condition
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(86) (or (84)). Thus, given the bifurcation condition, a theory that explains the
confinement time is also an explanation of the temperature and power
thresholds, and vice versa.

6.3. Hysteresis and upper density limit

According to the bifurcation condition (86), the threshold power decreases when
the confinement time increases at constant density. Let us indicate with
subscripts L and H the quantities in the L and H states respectively. One has
from (86)

P
AH

P
AL

¯ 0τLn
H

τ
H

n
L

1$/&. (94)

In the H state, the confinement time is larger, τ
H

" τ
L
, and since the density is

the same immediately after the transition, the power threshold in the H state,
P
AH

, is lower than that in the L state, P
AL

. However, the density n
H

increases
in the H state, and so does P

AH
. The critical density value n

Hc
above which the

H state reverses to the L state is reached when P
AH

¯P
AL

:

n
Hc

¯n
L

τ
H

τ
L

. (95)

An estimate of n
Hc

can be obtained from the known empirical scalings of τ
H
.

The above considerations are consistent with the general belief that
confinement plays a role in the phenomenology of the H state. At this point, we
are confronted with the conventional view that the L–H transition is related to
some important change in the transport properties at the edge. An adaptation
process of the thermal transport at the edge is undoubtedly necessary for
sustaining the increasing temperature of the H state in the confinement region.
But the process seems a consequence of the evolution in this region imposed by
the transition to a higher-entropy state, rather than the cause of it. Of course,
it may happen that the conditions at the outer boundary of the confinement
region are unable to sustain the transition in the interior. The determination of
the edge conditions compatible with the transition is still an open problem, but
much experimental and theoretical progress has been made in this field.

7. Conclusions

Among the infinite number of possible magnetic configurations of a tokamak,
considered as an open system in equilibrium with external energy interactions,
the configurations that can be preferentially realized are associated with a
stationary magnetic entropy, a concept that measures the probability of the
magnetic configurations.

When a bifurcation between magnetic states arises, the branch spontaneously
accessible to the plasma is associated with a transition toward a higher
magnetic entropy.

The thermodynamic relations between the entropy produced in the
transition, the heat transport and the plasma energy allow the formulation of
a quantitative scheme in which the most typical aspects of the phenomenology
of the L–H transition and the relevant properties of the H state can be
considered from a unitary point of view.
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The H state, in comparison with the L state, has a higher entropy and a lower
poloidal magnetic energy in the confinement region. In a constant-current
tokamak regime, the magnetic transition in the interior involves an increase in
the current density at the edge. After the transition, the state is in magnetic
equilibrium but not in thermal equilibrium, and the plasma energy content
increases according to an explicitly given relation. The transition thresholds,
the hysteresis and the upper density limit are essentially determined by the
confinement time through the bifurcation condition.

The general quantitative relations that we have derived in the framework of
thermodynamics are independent of specific dynamical assumptions on the
mechanism underlying the transport properties of the L and H states and the
occurrence of the transition. However, while a detailed dynamical description
is beyond the scope of thermodynamics, a general scheme of the transition
process has been provided in which a dynamical approach should be inscribed.
In this scheme, the processes at the edge cannot be considered independently
from those in the confinement region, which enact the transition, but rather
they should be interpreted as the reaction of the edge to these processes,
directed to the preservation of the higher-entropy magnetic configuration
formed in the interior.

Appendix. Entropy production in an Ohmic tokamak

We consider a plasma in contact with a very thin conducting shell of effective
radius r

s
. In the expression (2) for the magnetic entropy, the integration domain

Ω includes the shell. The current density j¯ j
p
j

s
is formed by a stationary

current density j
p

in the plasma volume V
p

and by a time-dependent current j
s

localized in the shell, which simulates the current in the primary of the Ohmic
transformer. The time-dependent magnetic field B

e
created by j

s
outside the

shell induces an electric field E inside the plasma. E vanishes in the conducting
shell, while E1 0 with ¡¬E¯ 0 in the plasma. The surface of radius r

s
is then

a surface of discontinuity for E and ¦B
e
}¦t. The time derivative of the shell

current satisfies the relation

4π

c

¦j
s

¦t
¯ δ(r®r

s
)e

n
¬

¦B
e

¦t
, (A 1)

where e
n

is the surface unit vector directed outwards. Then the time derivative
of S, (2), is given by the expression

dS

dt
¯

2π

(µc)# τ 0&Ω

2j
p
[
¦j

s

¦t
dV®

µ#c

4π &Ω

j
p
[
¦A

s

¦t
dV®

µ#c

4π &Ω

¦j
s

¦t
[A

p
dV1

¯
2π

(µc)# τ 9
c

2π&3

j
p
[dg¬

¦B
e

¦t


(µc)#

4π &
Vp

j
p
[E dV

®0µc

4π1
#&

3

dg¬
¦B

e

¦t
[A

p: ,

(A 2)

where A
p

and A
s
are the vector potentials related to j

p
and j

s
,

E¯®
1

c

¦A
s

¦t
, dg¯ e

n
d3, dV¯ dr d3.
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The volume integral is extended to the plasma volume V
p
, excluding the shell

because E vanishes there (a quadratic term in j
s
, which involves the square of

a delta function, can be shown to vanish when calculated properly with the
theory of distributions).

The surface 3 must be thought as infinitesimally close to the outer side of the
discontinuity surface 3

s
with radius r

s
. The electric field E vanishes on 3 (since

3 is inside the conducting shell) but not on 3
s
, and jumps to zero across 3

s
in

the direction dg. Thus we can write

&
3

(E¬B
p
)[dg¯&

3
s

(E¬B
p
)[dg&

3

O(E¬B
p
)P[dg

¯ 0, (A 3a)

&
3

O(E¬B
p
)P[dg¯®&

3

B
p
[dg¬OEP

¯®&
3

(¡¬A
p
)[dg¬OEP, (A 3b)

where O P denotes the jump; OEP¯®E.
Let us consider an infinitesimal volume element ∆τ with vanishing thickness

and bases of area d3 situated at opposite sides of the discontinuity surface
3

s
and parallel to it. Applying the general coordinate-free definition of the curl,

one has at the discontinuity surface

1

c

¦B
e

¦t
¯®¡¬E

¯®
1

∆τ,3τ

dg¬E

¯®
1

∆τ
dg¬OEP, (A 4)

where 3τ is the surface of the volume element ∆τ.
The magnetic field B

p
created by the current in the plasma does not penetrate

into the conducting shell. Then A
p

jumps to zero across 3
s
, and we have

¡¬A
p
¯

1

∆τ,3τ

dg¬A
p

¯
1

∆τ
dg¬OA

p
P

¯®
1

∆τ
dg¬A

p
. (A 5)

Combining (A 4) and (A 5), (A 3) becomes

&
3

s

(E¬B
p
)[dg®

1

c &3

A
p
[dg¬

¦B
e

¦t
. (A 6)
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Noting that (recalling that ¡¬E¯ 0 in V
p
)

&
3

s

(E¬B
p
)[dg¯®

4π

c &
Vp

E[j
p
dV, (A 7)

we obtain from (A 6)

1

c &3

A
p
[dg¬

¦B
e

¦t
¯®

4π

c &
Vp

E[j
p
dV. (A 8)

Furthermore, we want to show that

1

c &3

j
p
[dg¬

¦B
e

¦t
¯&

Vp

E[~# j
p
dV. (A 9)

We start from the relation

&
Vp

E[~# j
p
dV¯®&

Vp

E[¡¬¡¬j
p
dV

¯&
3
s

(E¬¡¬j
p
)[dg,

(A 10)

and observe that, similarly to (A 3), one can write

&
3

(E¬¡¬j
p
)[dg¯&

3
s

(E¬¡¬j
p
)[dg&

3

OE¬¡¬j
p
P[dg

¯ 0, (A 11a)

&
3

OE¬¡¬j
p
P[dg¯&

3

(¡¬j
p
)[dg¬OEP (A 11b)

But j
p

jumps to zero on crossing 3
s
in the direction of dg :

¡¬j
p
¯

1

∆τ,3τ

dg¬j
p

¯
1

∆τ
dg¬Oj

p
P

¯®
1

∆τ
dg¬j

p
.

(A 12)

Combining (A 10)–(A 12) and (A 4), one obtains the desired relation (A 9):

&
Vp

E[~# j
p
dV¯&

3
s

(E¬¡¬j
p
)[dg

¯®&
3

(¡¬j
p
)[dg¬OEP

¯
1

c &3

j
p
[dg¬

¦B
e

¦t
.

(A 13)
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Finally, inserting (A 8) and (A 9) into (A 2), we recover the relation (6) of the
text:

dS

dt
¯

1

τ &
Vp

E

µ#

(~# j
p
µ# j

p
) dV. (A 14)
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