
J. Fluid Mech. (2020), vol. 889, A25. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.92

889 A25-1

Oscillatory spontaneous dimpling in evaporating
curved thin films

Xingyi Shi1, Gerald G. Fuller1 and Eric S. G. Shaqfeh1,2,†
1Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA

2Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

(Received 10 September 2019; revised 24 December 2019; accepted 27 January 2020)

We examine the dynamics of a thin film composed of a non-evaporative silicone
oil (high surface tension) with trace amounts of an evaporative silicone oil (low
surface tension) over an air bubble. An evaporating thin liquid film is formed atop
a capillary-pinned air bubble by squeezing then holding the bubble against the
air–silicone oil interface. Despite the simplicity of the system, complex oscillatory
dynamical behaviour has been observed. Through interferometric experiments and
numerical simulations, we show that as the bubble is moved towards the opposite
interface, a dimple forms and during the subsequent holding period the dimple
spontaneously oscillates. The evaporation-driven solutal–thermal Marangoni flow
thickens the film and capillarity subsequently discharges the dimple. Solutal and
thermal Marangoni flows both contribute to film thickening and as the local
concentration of the non-evaporative species increases, the strength of the Marangoni
flows increases. The oscillation frequency and waveform depend on initial composition
and the maximum dimple volume. We suggest that these oscillatory solutions and
the associated mechanism are a partial explanation for the film stabilization in
multicomponent oils, reported experimentally in a recent publication (Chandran Suja
et al., Proc. Natl Acad. Sci., vol. 115, 2018, pp. 7919–7924).

Key words: Marangoni convection, thin films

1. Introduction
Marangoni flows are surface tension gradient-driven flows, commonly observed in

thin liquid films where interfacial heat and mass transfer alter the spatiotemporal
surface tension profile. We encounter such flows on a daily basis. When we blink,
a micrometre-thick tear film forms, ensuring vision clarity and safeguarding the
health of the ocular surface (Bron et al. 2004; Yañez-Soto et al. 2014). Unevenness
in a paint drying process can cause wrinkles on an initially flat film (Overdiep
1986; Yiantsios et al. 2015). Tears of wine formed along an inclined glass wall
result from a combination of mass and energy transfer across the liquid–air interface
(Fournier & Cazabat 1992; Venerus & Simavilla 2015). Lubricant foaming can lead
to poor machine performance and unsafe operations (Chandran Suja et al. 2018).
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A fundamental understanding of the physical forces that affect thin-film stability is
crucial in monitoring and controlling the behaviour of these systems.

Studying thin films at a single interface level helps us focus on the essential
physical effects that dictate the interfacial dynamics. A popular class of experimental
techniques relies on examining the interferograms of thin films formed by forcing
interfaces together. The simplest contraption has a capillary submerged in a bulk
fluid. To start an experiment, a bubble is generated and released from the capillary.
Buoyancy brings the bubble to the air–liquid interface, entrapping a thin layer of
liquid atop the bubble. A camera that levitates directly above the bubble records
the interference patterns formed by the thin liquid film (Allan, Charles & Mason
1961; Kočárková, Rouyer & Pigeonneau 2013). Another way of forming thin films
is through the Sheludko cell, where a cylindrical wall supports two interfaces that
are brought to close contact through withdrawing the liquid via a side channel
(Joye, Hirasaki & Miller 1992). A recent improvement on the original design has
multiple liquid suction points that allow for a more axisymmetric liquid exchange
(Cascao Pereira et al. 2001). A third method involves bringing two coaxial capillaries
that support two droplets and/or bubbles towards each other, forming a thin-film
layer in the middle (Klaseboer et al. 2000). Regardless of how the thin films are
generated, their dynamical profiles can have shapes that range from pimples to
dimples, to wimples, depending on the balance between capillarity, gravity, van
der Waals interactions, surface tension gradients and hydrodynamic pressure (Chan,
Klaseboer & Manica 2011).

With the right balance of physical forces, the dynamics of even the most
compositionally simple thin films can become quite complex. There exists a class
of oscillatory interfacial systems, where Marangoni flows are balanced by other flow
driving forces leading to oscillations in experimentally observable quantities such as
the surface tension and/or the film thickness. Examples of such systems include the
pulsating motion of a surfactant-enriched droplet in a bath of immiscible fluid (Stocker
& Bush 2007; Chen et al. 2017), the oscillatory surface tension of an air–bulk fluid
interface induced by a diffusing immersed surfactant droplet (Kovalchuk et al. 1999;
Kovalchuk & Vollhardt 2002, 2008) and concentration field oscillations resulting from
a diffusion-established composition gradient over a curved surface (Schwarzenberger
et al. 2015).

In the 1990s, a spontaneous cyclic dimpling system was observed in a series of
interferometric experiments (Velev, Gurkov & Borwankar 1993). That study examined
the spontaneous oscillations formed when a water-soluble surfactant (Tween 20 or
Tween 80) transported itself from water into xylene. The aqueous surfactant solution
was initially sandwiched between two oil phases. When the surfactant diffused from
the water layer into xylene, its distribution across the interface became non-uniform
such that the Marangoni flow drew liquid into the centre region, forming a dimple.
Once the dimple grew large enough, it discharged and the aqueous film thickness
became homogeneous near the centre of the film. The system then started another
round of diffusion-triggered dimple formation and discharge. A lubrication model
of the system was subsequently developed to examine the growth of the dimple
by solving for the film shape under the influences of capillarity, van der Waals
interactions and out-flux of surfactants from the thin-film layer (Danov et al. 1997).
With the help of parameter fitting of the diffusive flux, the model captured the
evolution of the film thickness during a single growth cycle. Because the model
did not capture the discharge of the dimple, it could not be used to explain the
mechanism behind the spontaneous cyclic dimpling and the factors that affect the
oscillation frequency.
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In the present study, we provide an in-depth examination of a simple oscillatory
thin-film system through a combination of experiments and simulations to elucidate
the physical mechanisms behind the film oscillations observed by Chandran Suja et al.
(2018). In this system, an air bubble pinned by a capillary is submerged in a bath of
binary silicone oil composed of a bulk non-evaporative silicone oil with trace amounts
of an evaporative silicone oil. The trace amount of the evaporative species ensures that
the mixture surface tension is the only physical property that is significantly altered,
whereas other physical properties such as density and viscosity remain close to the
values of the bulk component. In this binary liquid mixture, the evaporative silicone
oil has a lower surface tension than the non-evaporative silicone oil. Initially, the
capillary moves towards the free interface, then it is held fixed. As the bubble is
then pushed towards the free interface, a non-uniform thin liquid film is entrapped
atop the bubble. Because of the spatial variation in film thickness, evaporation of
the dilute species establishes a surface tension gradient that is dependent on both the
composition and the temperature across the film. The surface tension gradient then
drives the Marangoni flow that increases the capillary pressure inside the thin film.
When the capillary pressure is sufficiently high, capillary discharge ensues, the film
thickness becomes nearly homogeneous near the apex and the system begins another
round of oscillation.

The paper is structured as follows. In § 2, we give a brief overview of the
experimental set-up and procedures. Section 3 introduces the lubrication scaling, the
key parameters and the lubrication model that describe the binary evaporative system,
followed by a brief description of the numerical methods. Section 4 presents the
simulation results. First we compare the simulation results to the experimental data,
next we explain the mechanisms behind the oscillations, followed by a comparison of
the relative contribution of solutal and thermal Marangoni flows. Finally we present
a short discussion on how film composition affects the oscillation frequencies.

2. Experimental methods and materials
2.1. Apparatus and experimental procedure

All experiments were conducted using a custom-built dynamic fluid-film interferometer
(DFI). The assembly of the DFI is described in Frostad et al. (2016). We give a brief
description of the apparatus and modifications made to the equipment. Figure 1
shows a schematic of the DFI. A chamber 2 cm wide by 2.3 cm long by 1.8 cm
deep is mounted on a platform that is connected to a motorized actuator (Newport
TRA12PPD). Two of the chamber sidewalls are made of glass for the visualization
of the needle, the bubble and the position of the liquid–air interface. The bubble is
supported by a 16-gauge capillary with an inner diameter of 1.2 mm. The capillary
is connected to a 100 µl syringe (Hamilton 1710CX) that is controlled by a syringe
pump (Harvard Apparatus Pump 11 Elite HA1100W). A control valve is added
between the capillary and the syringe pump to reduce the dead volume and to
minimize dead volume fluctuations due to air compressibility.

At the start of a set of experiments, the chamber is mounted onto the platform with
the top of the capillary positioned at the centre of the chamber. An amount of 4 ml
of silicone oil is then added to the chamber to submerge the capillary. The top of
the chamber is then covered with a glass slide to prevent evaporation and the light
source (CCS Inc. LAV-80SW2) is turned on. The system is allowed to equilibrate for
an hour. During this time, the chamber and the liquid are warmed due to the top
light and the temperature of the chamber and the liquid equilibrates to 25 ◦C. A side
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Top camera

Side camera

Light source

Silicone oil chamber

Stationary needle connects to
valve and syringe

Motor stage moves
chamber and liquid

Convection cover

Air
bubble

FIGURE 1. Schematic of the dynamic fluid-film interferometer (DFI).

convection glass wall (5 cm tall) is mounted to the motor platform. The convection
wall is added to reduce ambient disturbances on the sides; however, there are still gaps
to allow evaporation to take place.

After the temperature has stabilized, a bubble is generated by pumping out 4 µl of
air. The bubble radius typically ranges from 0.8 to 1 mm and due to the small radii,
the initial bubble shapes are near-spherical. Once the bubble is formed, the control
valve is closed. Using videos captured by the side camera (ThorLabs DCU223C),
the motor stage is positioned to achieve a small initial clearance between the top of
the bubble and the free liquid–air interface. The initial clearance in the experiments
ranges between 5 % and 15 % of the bubble radius. In post-processing, the initial
clearance and the bubble radius are determined by analysing the captured video from
the side camera. Variations in the initial positioning of the bubble are accounted for
by conducting simulations with average values of the bubble radius and the initial
clearance.

Once in position, the system is allowed to equilibrate for another minute. At the
start of an experiment, the top glass slide is removed and the motor stage is set
to move downward at a speed of 0.075 mm s−1 for three seconds, after which the
stage is held fixed. During this step, the two interfaces move towards each other
and at the final motor position, the top of the bubble penetrates the initially flat free
liquid–air interface. The top camera (Imaging Development Systems UI-3080CP) starts
recording when the motor starts to move. When the liquid film sandwiched between
the air–liquid interfaces is less than 5 µm in thickness, the interference pattern can be
observed through the top camera and its thickness analysed. Image analysis procedures
and example interference patterns can be found in Frostad et al. (2016).

2.2. Silicone oil samples
Silicone oils (polydimethylsiloxane, ShinEtsu DM-Fluid) at three different kinematic
viscosities were used in this study: 1, 20 and 5000 cSt. The high-viscosity silicone
oil was used for model validation and the other two oils were blended to study the
solutal–thermal Marangoni flows in a binary mixture of 0.1 vol% of the 1 cSt silicone
oil with 99.9 vol% of the 20 cSt silicone oil.
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ν ρ τ ∗ λ Cp n MW
cSt kg m−3 mN m−1 W m−1 K−1 J g−1 K−1 g mol−1

1 818 16.9 0.10 2.0 1.382 236.53
20 950 20.6 0.15 1.6 1.400 2000
5000 975 21.3 0.16 1.5 1.403 N/A

TABLE 1. Selected material properties of the silicone oils used. Values for kinematic
viscosity ν, density ρ, surface tension τ ∗, thermal conductivity λ, heat capacity Cp,
refractive index n and molecular weight MW are provided by the manufacturer (at 25 ◦C).

Table 1 shows the material properties of the silicone oils reported by the
manufacturer. Kinematic viscosity (ν), density (ρ), surface tension (τ ∗), thermal
conductivity (λ) and heat capacity (Cp) are used for non-dimensionalization and
scaling. The refractive index (n) is used for analysing the interference patterns. For the
binary mixture interference pattern, the refractive index of 20 cSt silicone oil is used
because the mixture is predominantly made up of this material. The binary diffusivity
(D) of 1 cSt silicone oil in 20 cSt silicone oil is estimated to be 0.0012 mm2 s−1

(Walls, Meiburg & Fuller 2018). The heat of vaporization (1hev) of 1 cSt silicone oil
is 36.9 kJ mol−1 (Chickos & Acree Jr 2003). Thermal dependence of surface tension
for the 20 cSt silicone oil is estimated to be ∂τ ∗/∂T =−0.08 mN m−1 K−1 (Lechner,
Wohlfarth & Wohlfarth 2015).

The evaporation rate of the 1 cSt silicone oil is determined by recording the
mass loss of silicone oil over time on a scale with a configuration that closely
matches that in the experiments. The net volume flux per unit area for the 1 cSt
silicone oil is determined to be 0.075 µm s−1. It is assumed that in a binary mixture,
the evaporation rate of the mixture is linearly dependent on the mole fraction of
evaporative species. Because φ represents the volume fraction of the 1 cSt silicone oil
in the mixture, a unit conversion between the mole-fraction-based evaporation rate and
the volume-fraction-based evaporation was conducted. By accounting for the molecular
weight ratio and the density ratio of the two silicone oils, the volume-fraction-based
evaporation rate for the 1 cSt silicone oil is determined to be E∗= 0.546 µm s−1. The
20 cSt silicone oil evaporates on a time scale that is much longer than the duration
of an experiment and it is assumed that the 20 cSt silicone oil is non-evaporative.

3. Theoretical model
We consider a pinned air bubble approaching a free liquid–air interface that is

initially flat. The pinned bubble has a radius of a, an apex clearance of b and a
pinning angle of θb (figure 2). It is assumed that ε ≡ b/a � 1. The liquid phase
consists of a binary mixture of silicone oils. The minor component is the evaporative
species (represented by subscript e) and its volume fraction φ � 1. The major
component is the non-evaporative species (represented by subscript ne). The liquid
mixture density, viscosity, thermal diffusivity and heat capacity are approximated
by the corresponding properties of the non-evaporative species (i.e. ρmix ≈ ρne ≡ ρ,
µmix≈µne≡µ, κmix≈ κne≡ κ and Cp,mix≈Cp,ne≡Cp). The binary diffusivity is denoted
by D. The dimensional interfacial tension τ ∗ is assumed to be linearly dependent on
composition and temperature T:

τ ∗ = τne|T=Tref + (τe − τne)|T=Trefφ +
∂τne

∂T

∣∣∣∣
T=Tref

(T − Tref ). (3.1)
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Needle
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FIGURE 2. Schematic of a pinned bubble approaching a silicone oil and air interface.

The reference temperature, Tref , is the same as the ambient temperature and the initial
temperature of the system. We also assume that except for surface tension all other
material properties have negligible dependence on temperature. To entrain a liquid
film atop the bubble, the liquid chamber moves downward at a constant speed of
U during 0 < t∗ < t∗stop = d/U, where d is the distance the motor moves and the
asterisk represents dimensional quantities. The relative position of the needle and the
motor stage remains fixed after t∗stop. Throughout this process, the evaporative species
evaporates through the top liquid–air interface at an evaporation rate of E∗.

An axisymmetric cylindrical coordinate system (r∗, z∗) is adopted, where r∗

represents the distance away from the centreline and z∗ is the axial distance from
the initially flat top interface. The positions of the top and the bottom liquid–air
interfaces are represented by z∗ = h∗1(t

∗, r∗) and z∗ = h∗2(t
∗, r∗), respectively. Note that

initially h∗2 is negative due to the location of the origin. The total film thickness h∗ is
the difference between the two interfaces, i.e. h∗ = h∗1 − h∗2. Other relevant quantities
are the pressure, P∗, the depth-averaged radial velocity, 〈v〉∗ ≡ (1/h∗)

∫ h∗1
h∗2
v∗r dz∗, and

gravitational acceleration, g= 9.8 m s−2.

3.1. Lubrication scaling and governing equations

The small initial clearance atop the bubble allows the lubrication approximation
to hold for the problem of interest (ε � 1). The lubrication length scales in the
vertical and radial directions are b and

√
ab, respectively. The velocity in the

vertical direction (v∗z ) is scaled by the motor speed U and according to the mass
conservation equation, the velocity in the radial direction (v∗r ) is scaled by U/

√
ε.

Time is non-dimensionalized by b/U. The pressure scale is (1/ε2)(µU/a). The
temperature deviation from the reference temperature is non-dimensionalized by
(ρe/ρne)(1hev/Cp).

Based on these scalings, the dimensionless governing equation for the total film
thickness h(t, r) is

∂h
∂t
+

1
r
∂

∂r
(rh 〈v〉)=−Evφ, (3.2)
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where Ev = E∗/U is the evaporation number. The leading-order dimensionless solute
species conservation equation and the energy conservation equation are

∂φ

∂t
+ 〈v〉

∂φ

∂r
−

1
Pe

1
h
∂h
∂r
∂φ

∂r
−

1
Pe

1
r
∂

∂r

(
r
∂φ

∂r

)
=−

Ev

h
φ(1− φ) (3.3)

and

∂Θ

∂t
+ 〈v〉

∂Θ

∂r
−

1
PeT

1
h
∂h
∂r
∂Θ

∂r
−

1
PeT

1
r
∂

∂r

(
r
∂Θ

∂r

)
=−

Ev

h
φ, (3.4)

where φ(t, r) is the volume fraction of the evaporative species and Θ(t, r) is the
non-dimensionalized temperature deviation from Tref . The mass and thermal Péclet
numbers reflect the relative rates of convection to mass and thermal diffusion. They
are defined as Pe= aU/D and PeT = aU/κ .

The interface deformations are introduced as

h̄1 = h1 + Evφ0t (3.5)

and

h̄2 = h2 + 1+
r2

2
−Ht, where H =

{
1 (t< tstop)

0 (t > tstop),
(3.6)

and the modified pressure P̄ = P+ (Bo/Ca)z, where the capillary number is Ca =
(1/ε2)(µU/τne) and the Bond number is Bo = ρgab/τne. The normal stress balances
at O(1) and O(ε) on the two deformed surfaces h̄1 and h̄2 are

1
r
∂

∂r

(
r
∂ h̄1

∂r

)
+CaP̄ + 2εCa

1
r
∂

∂r
(r 〈v〉)=Boh̄1 (3.7)

and

1
r
∂

∂r

(
r
∂ h̄2

∂r

)
−CaP̄ − 2εCa

1
r
∂

∂r
(r 〈v〉)= 0. (3.8)

The gravity term is included at the top surface such that in the far field gravity ensures
h̄1 approaches zero. The lower surface is affected by the pinning of the needle and its
far-field shape is matched to that of a pinned bubble in static fluid (see appendix A
for details).

Finally to close the set of equations, we introduce the dimensionless surface tension,
which is scaled by τne:

τ = 1− εCa(Maφ +MaTΘ), (3.9)

where the solutal and thermal Marangoni numbers are Ma =−(ε/µU)(τe− τne)|T=Tref

and MaT =−(ε/µU)∂τne/∂Θ|T=Tref . The negative signs in the definitions of the two
Marangoni numbers are used to make the values of the appropriate material constants
positive. For silicone oils, the more evaporative species has a lower surface tension
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and, as temperature increases, the surface tension of the silicone oil mixture decreases.
The combined tangential stress balance at O(1) and O(ε) is

1
2
∂P̄

∂r
= −

Ma

h
∂φ

∂r
−

MaT

h
∂Θ

∂r

+ ε
∂

∂r

(
1
r
∂

∂r
(r〈v〉)

)
+
ε

h
∂h
∂r

(
1
r
∂

∂r
(r 〈v〉)+

∂〈v〉

∂r

)
. (3.10)

In this problem, we need to consider the combined effect of the O(1) and the
O(ε) terms to account for the solutions obtained both in the presence and in the
absence of the Marangoni flow. Specifically, when there are no Marangoni effects and
evaporation present, the pressure scales as 1/ε(µU/a). In the normal stress balance,
the pressure for a clean bubble is balanced by the viscous stress associated with the
velocity field. Thus, effectively variables h̄1, h̄2, P̄ and 〈v〉 are composites of their
O(1) and O(ε) values, i.e. ψ = ψ (0)

+ εψ (1), where ψ stands for the four variables
of interest. Variables φ and Θ are solved to O(1). More details can be found in
appendix A.

The initial and boundary conditions associated with (3.2), (3.3), (3.4), (3.7), (3.8)
and (3.10) are

at t= 0 : h̄1 = 0, h̄2 = 0, φ = φ0, Θ = 0, P̄ = 0, 〈v〉 = 0; (3.11a−f )

at r= 0 :
∂ h̄1

∂r
= 0,

∂ h̄2

∂r
= 0,

∂φ

∂r
= 0,

∂Θ

∂r
= 0,

∂P̄

∂r
= 0, 〈v〉 = 0; (3.12a−f )

and

as r→∞: h̄1→ 0,
∂ h̄2

∂r
=

h̄2

r
(

log[r] + 1−
1

cos[θb]
− log[2 tan[θb/2]]

) ,
φ→ φ0, Θ→ 0, P̄→ 0 and

1
r
∂

∂r
(r 〈v〉)→ 0. (3.13a−f )

The far-field boundary condition on the lower surface h2 is derived by matching the
shape function in the lubrication region to the bulk region static shape of a pinned
bubble (Yiantsios & Davis 1990). Details regarding the derivation of the governing
equations and the associated boundary conditions can be found in appendix A.

In the set of six equations, there are ten non-dimensional parameters, summarized in
table 2. The capillary number is the ratio of viscous to capillary forces; it reflects the
deformability of the interface. The Bond number is the square of the gravity to radial
characteristic length scales; it reflects the strength of gravity. The Péclet number
compares convection to mass diffusion and the thermal Péclet number compares
convection to thermal diffusivity. The solutal Marangoni number is the ratio of
surface tension difference to the viscous forces; it reflects the maximum scale of
surface tension gradient that can be generated with a given liquid pair. The thermal
Marangoni number is the ratio of the thermal dependence of the non-evaporative
species to the viscous forces. Because only 1 and 20 cSt silicone oils were used
in the binary system, the physical properties are fixed. When probing the parameter
space, the experimentally controlled values of a, b, d and φ0 are varied. All the
parameters are simultaneously varied when b or a is varied, since ε = b/a.
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Thin-film parameter ε b/a 0.05–0.15
Motor stop time tstop d/b 1.4–3
Evaporative species initial volume fraction φ0 0.001–0.006
Evaporation number Ev E∗/U 0.00728

Capillary number Ca
1
ε2

µU
τne

0.001–0.01

Bond number Bo ρgab/τne 0.01–0.1
Péclet number Pe aU/D 100
Thermal Péclet number PeT aU/κ 1

Solutal Marangoni number Ma −
ε

µU
(τe − τne)

∣∣∣∣
T=Tref

100

Thermal Marangoni number MaT −
ε

µU
∂τne

∂Θ

∣∣∣∣
T=Tref

100

TABLE 2. Non-dimensional parameters used. In the definition of tstop, the quantity d stands
for the dimensional distance that the motor moves. The last column of the table lists the
value range or the order of magnitude of the parameters that are reported in this study for
a liquid mixture of 1 cSt (dilute) and 20 cSt silicone oils.

3.2. Numerical methods

The six governing equations are numerically solved using the finite difference method.
To enhance numerical stability, equation (3.3) is converted into a natural log form
and the variable log[φ/φ0] is used instead of φ. The time evolution follows an
iterative Crank–Nicholson scheme with adaptive time stepping. At each time step,
the linearized set of equations is solved using the biconjugate gradient-stabilized
method via an external sparse matrix package (Guennebaud et al. 2010). Spatially,
all unknowns are solved on a smoothly stretched map that clusters 50 % of the
grid points over r ∈ [0, 1] and the remaining points over r ∈ (1, Rmax). Verification
simulations were completed and found to match the analytical solutions in the small
Ca limit following the procedures described in Rodríguez-Hakim et al. (2019).

Numerical validations are done by comparing experimental and simulation apex film
drainage rates of a 5000 cSt silicone oil in the absence of evaporation and Marangoni
flows (figure 3). The higher-viscosity oil was used to produce slower dynamics than
that of a 20 cSt silicone oil. In the absence of Marangoni driving forces, the apex
film thins at an exponential rate as dictated by the gravitational–viscous time scale
of ν/(a · g) reported by Debrégeas, De Gennes & Brochard-Wyart (1998). In the
small set of validation experiments done by the authors, only exponential drainage
rates were observed. It is possible that in another experimental parameter space there
may be algebraic drainage rates as predicted by Howell (1999). Simulations and
experiments show good agreement when the film thickness is above 100 nm. When
the film becomes thinner than 100 nm, molecular-level interactions, such as van der
Waals interactions, become non-negligible. In the experimental data, this phenomenon
is reflected in a change in the slope of the apex drainage data. However, in the
simulations, there is no distinct change in the slope because the model does not
account for these molecular-level interactions.
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FIGURE 3. Experimental (red circles) and numerical (black solid lines) apex film thickness
evolution for three experiments of 5000 cSt silicone oil in the absence of evaporation. The
motor speeds are at 0.01 and 0.05 mm s−1. In the simulations, it is assumed that there
is no evaporative mass loss or Marangoni flow, i.e. φ0 = Ev=Ma =MaT = 0.

4. Results and discussion
4.1. Oscillatory film thickness

Figure 4 shows data collected from four experiments of binary silicone oil mixtures
(1 cSt 0.1 vol%–20 cSt 99.9 vol%). Note that the experimentally measured film
profile can deviate from the axisymmetric state, so the apex film thickness is defined
as the maximum film thickness in the dimple region. During the initial second in the
experiments, the motor moves the lower surface towards the upper interface and the
film quickly thins due to the squeezing motion. The fast dynamics and the relatively
large thickness of the film make it difficult to determine the apex film thickness
through the interference patterns. For 1 s < t∗ < t∗stop = 3 s, the film thickens (see
dashed lines in figure 4a). After the motor stops, the film is allowed to evolve under
the effects of evaporation. Thereafter, the apex film thickness fluctuates between 0.5
and 2 µm for many minutes. Apex film thickness oscillations are observed and the
amplitudes of those oscillations vary between 0.2 and 1 µm. The time it takes for
one cycle of film thickness oscillation to occur in the experiment varies between
1 and 4 s. In the first 20 s of the experiments, the film stays nearly axisymmetric
(figure 4b(i–v)); at longer times, there is significant asymmetry in the film profile
(figure 4b(vi)).

Figure 5(a) shows the time evolution of apex film thickness, h(t, r= 0), from three
numerical simulations. The numerical simulations were performed at three initial
concentrations: φ0 = 0.001, 0.003 and 0.005. The three conditions were chosen to
examine the effect of initial concentration on the film thickness oscillation. The
initial clearance and bubble radius were chosen to match the corresponding average
values in the experiments. All material properties were matched to those of the
materials used in the experiments. The motor stop time in the experiments was
3 s, while in the simulations the motor stop time was 1.5 s. During the motor
movement period, the apex film thickness in the simulation grows apparently at three
times the rate observed in the experiments. It was necessary to shorten the motor
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FIGURE 4. Experimental film thickness evolution profiles. (a) Time evolution of the apex
film thickness from four binary silicone oil experiments (1 cSt 0.1 vol% and 20 cSt
99.9 vol%). The open symbols mark the experimental apex film thickness and the dashed
lines are there to guide the eye. The vertical dash-dot line represents the motor stop time
(t∗stop) for all four experiments shown. The six filled symbols in experiment 1 correspond to
(b) the six interference patterns at various time points. The diameter of each circular image
corresponds to 0.5 mm. Panels (i)–(v) show the growth and decay for one oscillation
cycle. Panel (vi) shows symmetry breaking at 20 s for that experiment; note the foot
that developed in the two o’clock position. The reference colour map for the interference
patterns is provided on the left-hand side of the plot.

stop time in the simulations to avoid further overshoot. This overshoot of the film
growth rate is a result of the global deformation of the bubble during approach,
which is not included in the theory. In developing the lubrication theory, the far-field
deformation of the lower surface is matched to the static shape of a pinned bubble.
Whereas in the experiments, as the bubble moves closer to the top interface, it is
flattened globally: evidence that the theory is under-accounting for the lower surface
deformation. After the motor stops, the film in the simulations quickly thins, followed
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FIGURE 5. Apex film thickness evolution profiles and their frequency spectra. (a) Time
evolution of the apex film thickness from numerical simulations conducted at initial
volume fractions of φ0 = 0.001, 0.003 and 0.005. The vertical dash-dot line represents
the motor stop time (t∗stop). Other non-dimensional parameters corresponding to the three
simulations are ε = 0.067, Ca = 0.0156, Bo = 0.0678, Ma = 173, MaT = 255, Pe =
94, PeT = 1.15, Ev = 0.00728, θb = 130◦. (b–d) Frequency spectra for selected apex film
thickness evolution profiles in figure 4(a) and panel (a). The amplitude of the signal is
normalized by the amplitude of the maximum signal.

by oscillations in the film thickness. For all three simulations, the average apex film
thickness is in the range of film thickness as observed across the four experiments.
At φ0 = 0.001, the apex film thickness shows clear periodic oscillations, with a
single dominant frequency of around 1 Hz (figure 5c). The simulation stops when
the minimum film thickness becomes nanoscopic. At φ0 = 0.003, the film oscillation
is first damped where the amplitude of the oscillation decreases from 1 µm to a
small value. At longer times, the film oscillation then becomes more pronounced,
with an oscillation amplitude growing again to 1 µm. The dominant frequency for
the apex film thickness oscillation is around 1.2 Hz (figure 5d). At φ0 = 0.005, the
simulated film thickness oscillates only once after t∗stop and the subsequent oscillations
are damped. No long-time oscillation was observed in this case.

The oscillation frequencies in the experiments and the simulations are clearly
different. In the experiments, the oscillations do not show a single dominant frequency
(figure 5b shows an example frequency spectrum). For the simulations with sustained
oscillations, there is clear periodicity in the oscillations (figure 5c,d). The difference

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.92


Oscillatory axisymmetric bubble 889 A25-13

may be caused by sources of noise in the experiments. For example, the disturbances
in the evaporation rate can impose temporally and spatially dependent fluctuations to
the film thickness. In addition, imperfect mixing in the binary silicone oil mixtures
can lead to spatial concentration inhomogeneities that can shift the oscillatory states
between the stable oscillatory state and the damped state. Despite the differences,
the model does provide a mechanism for the spontaneous oscillations and allows
for an estimate regarding the relative contributions from the solutal and the thermal
Marangoni flows. Furthermore, we are presenting a free, nonlinear oscillator with
physical relevance, and we will discuss how various experimental parameters may
affect the oscillation frequency.

4.2. Oscillation mechanism
We introduce the modified surface tension (τ̄ ) to explain the mechanism behind the
spontaneous oscillations:

τ̄ ≡ τ − τ(t= 0)=−εCa(Ma(φ − φ0)+MaTΘ). (4.1)

Throughout the process, the species with the lower surface tension evaporates across
the top interface and φ and Θ decrease due to the coupled mass and heat transfer
process. Thus, surface tension in the thin film will increase as a result of evaporation,
i.e. τ̄ > 0. The rate at which τ̄ increases will vary across the film based on the relative
rates of change in φ and Θ , which are coupled to film thickness and curvature.

Figure 6 shows simulation results for the first cycle of film thickness oscillation, the
associated changes in τ̄ and the pressure gradients, for the φ0= 0.001 case presented
in figure 5(a). Before tstop, the bubble moves towards the initially flat top interface,
squeezing liquid away from the centreline into the bulk region, thereby creating a film
whose thickness varies in the radial direction. The evaporative species volume fraction
depletes faster in regions where the film is thinner; consequently, a surface tension
gradient is established.

During 0< t< 1, the minimum film thickness is at r= 0, where the surface tension
is largest. The established surface tension gradient draws liquid from the bulk towards
the centreline, generating a Marangoni flow (1 < t < 1.61). Due to the inflow, the
film thickness becomes non-monotonic in the radial direction, forming the so-called
spontaneous dimple. The formation of the dimple leads to a change in the capillary
pressure and the capillary pressure gradient:

∂P̄Ca

∂r
=−

1
4
∂

∂r

(
1
r
∂

∂r

(
r
∂h
∂r

))
. (4.2)

Here (∂P̄Ca/∂r) is the dominant contributing term to the dynamic pressure gradient
and its value is predominantly positive due to the gradient in the curvature. Balancing
the capillary pressure gradient is the depth-averaged surface tension gradient (equation
(3.10)):

1
ε

1
h
∂τ̄

∂r
=−

Ca

h

(
Ma

∂φ

∂r
+MaT

∂Θ

∂r

)
. (4.3)

From the radial distribution of the surface tension plot, it is evident that the surface
tension gradient is predominantly negative. The difference between the two gradients
will give a clear indication as to which is the key mechanism that is driving the
flow (figure 6j–l). As the lower surface is forced towards the top surface, the surface

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.92


889 A25-14 X. Shi, G. G. Fuller and E. S. G. Shaqfeh

0.30

h 1
, h

2 0.25

0.20

0.15

1.00
1.20
1.61

1.00
1.20
1.61

1.00
1.20
1.61

1.63
1.70
1.86

1.63
1.70
1.86

1.63
1.70
1.86

1.90
1.94
1.96

1.90
1.94
1.96

1.90
1.94
1.96

100

10-1

10-2

10-3

10-4

0.20

0.15

0.10

0.05

0

10

5

0

-5 0 0.2 0.4 0.6 0.8 1.0
r

0 0.2 0.4 0.6 0.8 1.0
r

0 0.2 0.4 0.6 0.8 1.0
r

1.61 1.86 1.96

h

Time

Time Time

Time

Time

Time

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(k) (l)( j)

FIGURE 6. Time evolution of interface positions (a–c), film thickness (d–f ), surface
tension (g–i), and difference between capillary and Marangoni pressure gradients ( j–l)
for a simulation that corresponds to ε = 0.067, Ca = 0.0156, Bo = 0.0678, Ma = 173,
MaT = 255, Pe= 94, PeT = 1.15, Ev= 0.00728, φ0= 0.001 and tstop= 1.5 (corresponding
to the φ0= 0.001 case in figure 5a). The legend represents non-dimensional time and the
grey arrows indicate increasing time. Panel (a,d,g,j) shows the dimple formation while
the needle is moving upward. Panel (b,e,h,k) shows the first capillary discharge after the
needle has stopped moving. Panel (c,f,i,l) shows the first film regeneration associated with
the Marangoni flows.

tension gradient dominates over the capillary pressure gradient, indicated by the
positive radial distribution of the pressure gradient difference.

Eventually the capillary pressure gradient becomes large enough to overcome
the Marangoni forces and to dispel liquid from the centreline region into the bulk
(1.61 < t < 1.86, figure 6k, t = 1.70). Because the film near the centreline is thin
and the bubble small, gravitational drainage contributes very little as compared to
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FIGURE 7. Radial profiles of surface tension gradient and its components at t= tstop for
the three simulations shown in figure 5(a).

the capillary discharge. After the discharge, the film near the centreline becomes
flat and the capillary pressure gradient is again overcome by the surface tension
gradient and the difference between the gradients again become positive. Furthermore,
the discharge process also re-establishes the surface tension gradient because the
centreline region again has the thinnest film and thus the fastest change in φ and Θ
– creating a high surface tension again near r= 0.

Finally, with the new surface tension gradient, the combined solutal and thermal
Marangoni flow will again draw liquid from the bulk (where surface tension is
lower than that in the centreline region) into the centreline, thereby reducing the
surface tension gradient, increasing the capillary pressure gradient and providing the
conditions for another fluid discharge and subsequent inflow.

4.3. Relative contributions of solutal and thermal Marangoni flows
In this section, we examine the relative contributions of the solutal and thermal
Marangoni flows by comparing the relative contributions of the concentration gradient
and the temperature gradient to the overall surface tension gradient:

∂τ̄

∂r
=−εCa

(
Ma

∂φ

∂r
+MaT

∂Θ

∂r

)
. (4.4)

Shown in figure 7 are radial profiles of surface tension gradients at t = tstop for
three different initial concentrations that correspond to the simulations presented in
figure 5(a). The motion of the motor rising is the initial transient behaviour that starts
the subsequent oscillations. The time at which the motor stops is the starting point of
the subsequent long-term behaviour, and thus we can gain insights about the system
by examining the dynamic variables at tstop.

At φ0 = 0.001, the maximum values for solutal and thermal gradients are similar
in magnitude, signifying a near-equal contribution from the two sources. The two
gradients have different radial shapes: the concentration gradient has a broad peak
whereas the thermal gradient grows and decays more sharply. Thus, in this case, the
presence of the thermal Marangoni flow significantly modifies the curvature of the
film. At φ0 = 0.003, the maximum magnitude of the concentration gradient is greater
than that of the thermal gradient. The maxima of the two gradients occur near r= 0.4
and the thermal gradient at that point contributes to one-third of the overall surface
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FIGURE 8. Phase portraits of the dimple volume (V) for the three simulations shown in
figure 5(a). The colour represents non-dimensional time, as indicated by the colour bars.

tension gradient. At φ0 = 0.005, solutal Marangoni flow contributes roughly three-
quarters of the overall Marangoni flow at the maxima. In the latter two cases, the
presence of the thermal Marangoni flow serves to enhance the overall Marangoni flow,
but it does not significantly affect the curvature of the film, as the radial profiles of
the gradients are similar in shape. Comparing results across the three concentrations,
the thermal Marangoni flow is not affected by the change in the initial concentration,
whereas the solutal Marangoni flow scales with the initial concentration. As a result,
the overall surface tension gradient increases as the initial concentration increases and
the oscillator becomes more damped as the initial concentration increases.

4.4. Damped oscillators
We examine the nature of these oscillations by looking at the phase portraits of the
dimple volume, whose motion describes the composite effect of the Marangoni flows,
capillarity, gravity and evaporation. The dimple volume is defined as

V = 2π

∫ R

0
hr dr, (4.5)

where R is the radial position of the minimum film thickness. For the three simulations
presented in figure 5(a), we plot the dimple volume against its rate of change in time
(figure 8). The colour represents non-dimensional time. At φ0 = 0.001, as the motor
moves upward, a dimple forms and by t= tstop the dimple volume reaches a maximum
of 0.003, after which the dimple continues to oscillate at a near-constant amplitude
and frequency – evidenced by the constant trajectory on the phase portrait. At
φ0 = 0.003, the oscillator first enters an attractor region (around t= 5) then traverses
to a repeller region (t > 10) where the oscillation amplitude grows and then enters
a stable orbit. At φ0 = 0.005, the dimple grows and only oscillates a few times
before entering a damped, dynamic steady state where draining due to capillarity and
gravity is balancing the regenerative Marangoni flow. Across the three simulations, the
maximum dimple volume increases with concentration, because the dimple-generating
Marangoni flow strengthens with initial concentration (figure 7).

4.5. Oscillation frequency
In the experiments, it is relatively easy to vary φ0 and tstop. In this section, we look
at how these two parameters affect the behaviour of the oscillator. The nonlinear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.92


Oscillatory axisymmetric bubble 889 A25-17

nature of the governing equations makes it prohibitive to derive specific frequency
scalings with respect to the parameter space. In this section, we focus on how the
experimentally adjustable parameters affect the behaviour of the oscillator through
the aid of numerical simulations (figure 9). With the previous set of simulations, it is
clear that as φ0 increases, there is an increase in the Marangoni driving force and the
system is damped more quickly. The simulations presented in this section all have
sustained oscillations, which means that parameters such as the bubble radius and
the initial apex clearance have been tuned to avoid cases where the system exhibits
a dynamic steady state due to Marangoni damping.

When φ0 is the only parameter that is varied, the amplitude of the dimple volume
oscillation is nearly constant (figure 9a). At lower concentrations (φ0 = 0.003–0.005),
the dominant frequency increases with concentration and the waveform of the dimple
volume does not change significantly. The waveform changes shape when φ0 increases
from 0.005 to 0.006. This change may be caused by a shift in the balance between
the two contributing Marangoni flows for this specific set of simulation parameters.
Figure 9(c) shows the period associated with the dominant frequency when each of
the four simulations has reached steady oscillation, i.e. when the effect of the initial
motor movement has worn off. As φ0 increases there is no clear trend in the period
of the dimple volume oscillation. The period for the dimple to regenerate and to
discharge can be further split into the Marangoni regeneration segment (from valley to
peak, 1/fMa) and the capillary discharge segment (from peak to valley, 1/fCa). As the
initial concentration increases, the time it takes for the dimple to regenerate decreases,
because the overall Marangoni flow strength scales with φ0. On the other hand, 1/fCa
shows no clear relation to φ0.

When tstop is the only increasing parameter, the amplitude of the oscillations
increases because the duration of the motor movement is longer (figure 9b). When
the motor is moving, Marangoni flows dominate and capillarity is not strong enough to
discharge any liquid. This behaviour is reflected in the increase in apex film thickness
during 1< t < tstop and it is seen in both the simulations and the experiments. Thus,
a longer time period for the initial inward flow will lead to a larger initial dimple
and an increase in oscillation amplitude. The dominant frequency decreases with
increasing tstop value, because a larger dimple volume takes longer to discharge. This
trend is also reflected in the regeneration and discharge time scales (figure 9d). As
the motor stop time increases, both processes take longer to complete, leading to the
overall increase in the dominant period.

5. Conclusion

In this study, we present a spontaneously oscillatory thin-film system composed of
a binary mixture of silicone oils with different surface tension and evaporation rates.
Through the numerical solution of an axisymmetric lubrication model, we showed the
mechanism behind the oscillatory behaviour. Evaporation of the lower-surface-tension
component over an air bubble surface creates a surface tension gradient across the
thin film. The ensuing Marangoni flow draws lower-surface-tension fluids to the
centreline and in the process creates a dimple and diminishes the surface tension
gradient. Eventually, capillary pressure overwhelms the Marangoni forces, since the
surface tension gradient is diminishing, leading to a capillary discharge and the
oscillation.

The set of nonlinear partial differential equations thus demonstrates an oscillatory
solution in the absence of an external oscillatory driving force. In the experiments
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FIGURE 9. (a,b) Time evolution of the dimple volumes (left-hand column) and their
frequency spectra (right-hand column) at different φ0 and tstop. The amplitude of the
Fourier signals are normalized by the amplitude of the maximum signal. The frequency is
non-dimensionalized by U/b. (c,d) Corresponding steady oscillation time scales associated
with the dominant frequency ( fD) and the time scales associated with Marangoni
regeneration (1/fMa) and capillary discharge (1/fCa). (a) Variation in φ0. All other
parameters are kept constant at ε= 0.15, Ca = 0.00307, Bo= 0.0434, Ma = 389, MaT =

573, Pe= 50, PeT = 0.612 and Ev= 0.00728. (b) Variation in tstop. All other parameters
are kept constant at ε = 0.067, Ca = 0.0156, Bo = 0.0678, Ma = 173, MaT = 255,
Pe = 93.8, PeT = 1.15 and Ev = 0.00728. (c) Time scales for steady oscillations shown
in (a). (d) Time scales for steady oscillations shown in (b).
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and the simulations, the amplitudes of the apex film thickness oscillations are
similar; however, the frequencies do not agree. The disagreement may be caused
by disturbances and symmetry breaking, as witnessed in the experiments. By probing
a small parameter space, we found that the nonlinear oscillator is more prone to be
damped with increasing solvent concentration, because the Marangoni flow grows
stronger with increasing solvent concentration. We also find that the oscillation
frequency is dependent on the motor stop time, which sets the amplitude of the
dimple volume for subsequent oscillations. As a natural step forward, we are building
a two-dimensional model to capture the non-axisymmetric effects that are observed
in the experiments.
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Appendix A
A.1. Derivation of the governing equations

Define the shape functions for the top and the bottom interfaces to be f1= z− h1 and
f2 = z − h2. Let the surface normal vectors point from the gas phase into the liquid
phase. Then the unit normals and their components on the two surfaces are

n1 =−
∇f1

||∇f1||
, n1r =+

1
S1

∂h1

∂r
, n1z =−

1
S1
, S1 =

√
1+

(
∂h1

∂r

)2

; (A 1a−d)

n2 =+
∇f2

||∇f2||
, n2r =−

1
S2

∂h2

∂r
, n2z =+

1
S2
, S2 =

√
1+

(
∂h2

∂r

)2

. (A 2a−d)

Based on the proposed scaling, we have the following set of non-dimensional
equations. Mass and momentum balances in the Stokes regime are

∂vz

∂z
+

1
r
∂

∂r
(rvr)= 0, (A 3)

∂P
∂z
= ε

∂2vz

∂z2
+ ε2 1

r
∂

∂r

(
r
∂vz

∂r

)
−

Bo

Ca
, (A 4)

∂P
∂r
=
∂2vr

∂z2
+ ε

∂

∂r

(
1
r
∂

∂r
(rvr)

)
; (A 5)

and the associated kinematic boundary conditions are

∂h1

∂t
− vz

∣∣
h1
+
∂h1

∂r
· vr

∣∣
h1
=−S1Evφ, (A 6)
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∂h2

∂t
− vz

∣∣
h2
+
∂h2

∂r
· vr

∣∣
h2
= 0. (A 7)

Normal stress balances on the two surfaces are

−P+ ε
2
S2

1

[
∂vz

∂z
−
∂h1

∂r

(
ε
∂vz

∂r
+
∂vr

∂z

)
+ ε

(
∂h1

∂r

)2
∂vr

∂r

]

=+ (1− εMaφ − εMaTΘ)

(
1
r
∂

∂r

(
r
S1

∂h1

∂r

))
, (A 8)

−P+ ε
2
S2

2

[
∂vz

∂z
−
∂h2

∂r

(
ε
∂vz

∂r
+
∂vr

∂z

)
+ ε

(
∂h2

∂r

)2
∂vr

∂r

]

=− (1− εMaφ − εMaTΘ)

(
1
r
∂

∂r

(
r
S2

∂h2

∂r

))
− 2; (A 9)

and tangential stress balances are

∂vr

∂z
+ ε

[
∂vz

∂r
+ 2

∂h1

∂r

(
∂vz

∂z
−
∂vr

∂r

)
−

(
∂h1

∂r

)2
∂vr

∂z

]
+O(ε2)

=

(
−Ma

∂φ

∂r
−MaT

∂Θ

∂r

)(
1+

ε

2

(
∂h1

∂r

)2

+O(ε2)

)
, (A 10)

∂vr

∂z
+ ε

[
∂vz

∂r
+ 2

∂h2

∂r

(
∂vz

∂z
−
∂vr

∂r

)
−

(
∂h2

∂r

)2
∂vr

∂z

]
+O(ε2)

=

(
+Ma

∂φ

∂r
+MaT

∂Θ

∂r

)(
1+

ε

2

(
∂h2

∂r

)2

+O(ε2)

)
. (A 11)

We assume that mass and energy losses only happen through the top interface
because the dead volume is small. As such, the mass balance for the solute species
and the associated boundary conditions are

∂φ

∂t
+ vr

∂φ

∂r
+ vz

∂φ

∂z
=

1
Pe

(
1
ε

∂2φ

∂z2
+

1
r
∂

∂r

(
r
∂φ

∂r

))
, (A 12)

1
Pe

1
S1

(
ε
∂h1

∂r
∂φ

∂r

∣∣∣∣
h1

−
∂φ

∂z

∣∣∣∣
h1

)
= εEvφ(1− φ)

∣∣∣∣
h1

, (A 13)

ε
∂h2

∂r
∂φ

∂r

∣∣∣∣
h2

=
∂φ

∂z

∣∣∣∣
h2

. (A 14)

The energy balance and heat flux conditions are

∂Θ

∂t
+ vr

∂Θ

∂r
+ vz

∂Θ

∂z
=

1
PeT

(
1
ε

∂2Θ

∂z2
+

1
r
∂

∂r

(
r
∂Θ

∂r

))
, (A 15)

1
PeT

1
S1

(
ε
∂h1

∂r
∂Θ

∂r

∣∣∣∣
h1

−
∂Θ

∂z

∣∣∣∣
h1

)
= εEvφ

∣∣∣∣
h1

, (A 16)
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ε
∂h2

∂r
∂Θ

∂r

∣∣∣∣
h2

=
∂Θ

∂z

∣∣∣∣
h2

. (A 17)

Now expand all variables in ε: ψ = ψ0
+ εψ (1)

+ ε2ψ2
+ · · · . Then extract the

O(1) and O(ε) equations from the above set of equations. At O(1), integrate the mass
conservation equation with respect to z and apply the kinematic boundary conditions
on the two surfaces to get

∂h(0)

∂t
+

1
r
∂

∂r

(
rh(0) 〈v〉(0)

)
+ Evφ(0) = 0, (A 18)

where 〈v〉(0)≡ (1/h(0))
∫ h(0)1

h(0)2
v(0)r dz. A similar derivation process is applied to the species

and energy balance equations. Specifically, the O(1) governing equations and boundary
conditions for φ are

∂2φ(0)

∂z2
= 0 and

∂φ(0)

∂z

∣∣∣∣
h(0)1 ,h(0)2

= 0 (A 19a,b)

and it follows that
φ(0) = φ(0)(t, r). (A 20)

Integrate the O(ε) solute governing equation with respect to z and apply the above
conclusion to get

h(0)
∂φ(0)

∂t
+
∂φ(0)

∂r

∫ h(0)1

h(0)2

v(0)r dz−
h(0)

Pe

1
r
∂

∂r

(
r
∂φ(0)

∂r

)
=

1
Pe

(
∂φ(1)

∂z

∣∣∣∣
h(0)1

−
∂φ(1)

∂z

∣∣∣∣
h(0)2

)
.

(A 21)
The boundary conditions on the two surfaces yield the following relation:

∂φ(1)

∂z

∣∣∣∣
h(0)1

−
∂φ(1)

∂z

∣∣∣∣
h(0)2

=−PeEvφ(0)(1− φ(0))+
∂h(0)

∂r
∂φ(0)

∂r
. (A 22)

Combining the above two equations leads to the governing equation for φ(0):

∂φ(0)

∂t
+ 〈v〉(0)

∂φ(0)

∂r
−

1
Pe

1
r
∂

∂r

(
r
∂φ(0)

∂r

)
−

1
Pe

1
h(0)

∂h(0)

∂r
∂φ(0)

∂r
=−

Evφ(0)(1− φ(0))
h(0)

.

(A 23)
Taking advantage of the similarities between the mass transport equation and the
energy transport equation, we get

∂Θ (0)

∂t
+ 〈v〉(0)

∂Θ (0)

∂r
−

1
PeT

1
r
∂

∂r

(
r
∂Θ (0)

∂r

)
−

1
PeT

1
h(0)

∂h(0)

∂r
∂Θ (0)

∂r
=−

Evφ(0)

h(0)
. (A 24)

After rearranging the mass, species and energy balance equation, we are left with
the stress balances. From the z-direction momentum balance equation, we get

∂P(0)

∂z
=−

Bo

Ca
⇒ P(0) =−

Bo

Ca
z+P (0)(t, r). (A 25)

Apply the above relation to the normal stress balances on the top interface to get
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1
r
∂

∂r

(
r
∂h(0)1

∂r

)
−Boh(0)1 =BoEvφ0t−P (0). (A 26)

Finally for the tangential stress balances, on the two surfaces we have

∂v(0)r

∂z

∣∣∣∣
h(0)1

=

(
−Ma

∂φ(0)

∂r
−MaT

∂Θ (0)

∂r

) ∣∣∣∣
h(0)1

,

∂v(0)r

∂z

∣∣∣∣
h(0)2

=

(
+Ma

∂φ(0)

∂r
+MaT

∂Θ (0)

∂r

) ∣∣∣∣
h(0)2

.

 (A 27)

Integrate the r-direction momentum balance equation with respect to z, apply the two
tangential stress balances and realize that (∂P(0)/∂r)= (∂P (0)/∂r):

h(0)
∂P (0)

∂r
=−2

(
Ma

∂φ(0)

∂r
+MaT

∂Θ (0)

∂r

)
. (A 28)

To summarize, at O(1) we have the following set of governing equations:

∂h(0)

∂t
+

1
r
∂

∂r

(
rh(0) 〈v〉(0)

)
+ Evφ(0) = 0, (A 29)

∂φ(0)

∂t
+ 〈v〉(0)

∂φ(0)

∂r
−

1
Pe

1
h(0)

∂h(0)

∂r
∂φ(0)

∂r
−

1
Pe

1
r
∂

∂r

(
r
∂φ(0)

∂r

)
=−

Ev

h(0)
φ(0)(1− φ(0)), (A 30)

∂Θ (0)

∂t
+ 〈v〉(0)

∂Θ (0)

∂r
−

1
PeT

1
r
∂

∂r

(
r
∂Θ (0)

∂r

)
−

1
PeT

1
h(0)

∂h(0)

∂r
∂Θ (0)

∂r
=−

Evφ(0)

h(0)
, (A 31)

1
r
∂

∂r

(
r
∂h(0)1

∂r

)
−Boh(0)1 =BoEvφ0t−P (0), (A 32)

∂P (0)

∂r
=−

2Ma

h(0)
∂φ(0)

∂r
−

2MaT

h(0)
∂Θ (0)

∂r
. (A 33)

We include the O(ε) equations to regularize the governing equations in the absence
of Marangoni flows. In developing the O(ε) equations, we neglect terms that are of
the order of Maφ0 and MaT , leading to the following approximations:

v(0)r ≈ 〈v〉
(0) ,

∂v(0)r

∂z
≈ 0,

∂v(0)r

∂r
≈
∂〈v〉(0)

∂r
, (A 34a−c)

1
r
∂

∂r

(
rv(0)r

)
=−

∂v(0)z

∂z
≈

1
r
∂

∂r

(
r 〈v〉(0)

)
,

∂v(0)z

∂r
≈−z

∂

∂r

(
1
r
∂

∂r
(r〈v〉(0))

)
. (A 35a,b)

After rearrangement, at O(ε):

∂h(1)

∂t
+

1
r
∂

∂r

(
rh(1) 〈v〉(0)

)
+

1
r
∂

∂r

(
rh(0) 〈v〉(1)

)
= 0, (A 36)
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−P(1)
∣∣∣∣

h(0)1

+Boh(1)1 − 2
1
r
∂

∂r

(
r 〈v〉(0)

) ∣∣∣∣
h(0)1

=+
1
r
∂

∂r

(
r
∂h(1)1

∂r

)
−

1
2

1
r
∂

∂r

r

(
∂h(0)1

∂r

)3
,

(A 37)

−P(1)
∣∣∣∣

h(0)2

− 2
1
r
∂

∂r

(
r 〈v〉(0)

) ∣∣∣∣
h(0)2

=−
1
r
∂

∂r

(
r
∂h(1)2

∂r

)
+

1
2

1
r
∂

∂r

r

(
∂h(0)2

∂r

)3
, (A 38)

1
2
∂P(1)

∂r
=
∂

∂r

(
1
r
∂

∂r
(r〈v〉(0))

)
+

1
h(0)

∂h(0)

∂r

(
1
r
∂

∂r

(
r 〈v〉(0)

)
+
∂〈v〉(0)

∂r

)
. (A 39)

To combine the equations, we introduce the following set of combined variables:
ĥ = h(0) + εh(1), ĥ1 = h(0)1 + εh(1)1 , ĥ2 = h(0)2 + εh(1)2 − (−1 − (r2/2) − (ε/8)r4

+ Ht),
ˆ〈v〉= 〈v〉(0)+ ε 〈v〉(1) and P̂=P (0)

+ εP(1). We further neglect terms that are of O(ε2),
O(εEv) and smaller. Finally we arrive at the following set of governing equations:

∂ ĥ
∂t
+

1
r
∂

∂r
(rĥ ˆ〈v〉)+ Evφ(0) = 0, (A 40)

∂φ(0)

∂t
+ ˆ〈v〉

∂φ(0)

∂r
−

1
Pe

1

ĥ

∂ ĥ
∂r
∂φ(0)

∂r
−

1
Pe

1
r
∂

∂r

(
r
∂φ(0)

∂r

)
=−

Ev

ĥ
φ(0)(1− φ(0)), (A 41)

∂Θ (0)

∂t
+ ˆ〈v〉

∂Θ (0)

∂r
−

1
PeT

1

ĥ

∂ ĥ
∂r
∂Θ (0)

∂r
−

1
PeT

1
r
∂

∂r

(
r
∂Θ (0)

∂r

)
=−

Evφ(0)

ĥ
, (A 42)

+
1
r
∂

∂r

(
r
∂ ĥ1

∂r

)
−Boĥ1 =−P̂− 2ε

1
r
∂

∂r
(r ˆ〈v〉)+BoEvφ0t, (A 43)

−
1
r
∂

∂r

(
r
∂ ĥ2

∂r

)
=−P̂− 2ε

1
r
∂

∂r
(r ˆ〈v〉), (A 44)

∂P̂
∂r
= −

2Ma

ĥ

∂φ(0)

∂r
−

2MaT

ĥ

∂Θ (0)

∂r
+ ε

∂

∂r

(
1
r
∂

∂r
(r ˆ〈v〉)

)
+

+
ε

ĥ

∂ ĥ
∂r

(
1
r
∂

∂r
(r ˆ〈v〉)+

∂ ˆ〈v〉

∂r

)
. (A 45)

A.2. Far-field boundary condition for the lower surface deformation
In deriving the far-field matching boundary condition for the lower surface deformation,
we make the following assumptions: (1) the shape of the lower surface approaches
the static shape of a pinned bubble in the far field; (2) the static shape of the bubble
and the pressure inside the bubble (pb) do not change throughout the process; and (3)
the effects of gravity are negligible on the lower surface. We first solve for the global
static shape of the bubble. In the absence of gravity and a flow field, the pressure
jump across the interface is balanced by the curvature. For convenience, we use the
spherical coordinate to solve for the shape, R(θ):

pb − p= 2=
1
R

(
3− cot[θ ](R′/R)√

1+ (R′/R)2
−

1+ R′′/R√
1+ (R′/R)2

3

)
. (A 46)
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Here, the shape of the bubble is non-dimensionalized by a and R′≡ dR/dθ . The shape
of the pinned bubble deviates from a perfect circle and its shape function can be
written in the following manner:

R= 1+ ε log[ε]R(1) +
N∑

i=2

ε i−1R(i). (A 47)

The solution R(0) = 1 exactly satisfies the above equation. For all subsequent
perturbations to the circular shape, we need to match the coefficients that are
associated with the homogeneous equations, because the particular solutions from
the two regions should cancel each other:

2R(i) + cot[θ ]R(i)
′

+ R(i)
′′

= 0. (A 48)

The boundary condition at the pinning point is R(i)(θb) = 0. The other boundary
condition can be obtained via matching. The above equation solves to

R(i) =C(i)

[
cos[θ ]
cos[θb]

m[θb] −m[θ ]
]
, (A 49)

where m[θ ] ≡ 1+ cos[θ ] log[tan[θ/2]]. Expand near θ→ 0 to match coefficient C(i) to
the thin-film solution. Notice that for small angles θ ≈ r∗/a≡ r̃.

R(i) ≈C(i)

(
−log[r̃] +

(
m[θb]

cos[θb]
− 1+ log[2]

))
. (A 50)

From the thin-film region we have the following far-field conditions obtained by
neglecting terms that are associated with fluid flow:

−
1
r
∂

∂r

(
r
∂h(0)2

∂r

)
= 2, (A 51)

−
1
r
∂

∂r

(
r
∂h(1)2

∂r

)
+

1
r
∂

∂r

 r
2

(
∂h(0)2

∂r

)3
= 0. (A 52)

The above equations solve to

h(0)2 =−
r2

2
+ A(0) log[r] + B(0), (A 53)

h(1)2 =−
r4

8
−

A(0)

4
1
r2
+

3
4

A(0)r2
+ A(1) log[r] + B(1). (A 54)

Match the terms to get

B(i) =−A(i)
(

m[θb]

cos[θb]
− 1+ log[2]

)
, (A 55)

where i = 0, 1. Linearly add the boundary conditions to get a composite boundary
condition for ĥ2:
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ĥ2 = h(0)2 + εh(1)2

= −

(
r2

2
+ ε

r4

8

)
+ ε

(
−

A(0)

4
1
r2
+

3
4

A(0)r2

)
+ Â

(
log[r] + 1−

1
cos[θb]

− log[2 tan[θb/2]]
)
. (A 56)

The terms contained in the first bracket correspond to terms in the Taylor series
expansion of the circle. The terms in the second bracket correspond to the particular
solution carried over from the previous order. We only need to match the coefficient
in the last bracketed terms that are associated with the homogeneous solution:

h̄2→ Â
(

log[r] + 1−
1

cos[θb]
− log[2 tan[θb/2]]

)
as r→∞. (A 57)

Numerically to implement this boundary condition, we eliminate Â by taking a
derivative of h̄2 with respect to r:

∂ h̄2

∂r
=

h̄2

r
(

log[r] + 1−
1

cos[θb]
− log[2 tan[θb/2]]

) . (A 58)

The boundary condition is applied at r = a/
√

ab = 1/
√
ε and the maximum domain

size is Rmax = 500.
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