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1. Introduction

In this paper, we study the Oseen equation in a two-dimensional exterior domain:

∂t u−1u+α∂1u+∇ pu = 0,
∫
�4

pu dx = 0, t > 0, x ∈ �,

div u = 0, t > 0, x ∈ �,

u|∂� = 0, t > 0,

u|t=0 = P� f, x ∈ �.

(1.1)

Here, the fluid domain � is assumed to be an unbounded domain in R2 with a smooth

and compact boundary, u = u(t, x) = (u1(t, x), u2(t, x)) and pu = pu(t, x), x = (x1, x2),

are respectively the unknown velocity field and the pressure field of the fluid, f =
( f1(x), f2(x)) is a given vector field, and P� is the Helmholtz–Leray projection to

the space of solenoidal vector fields, which is defined precisely later. The complement

of the domain � represents the obstacle and is normalized in the following sense:

diam (R2
\�) = 1 and the origin of the coordinates is located interior to R2

\�.

The set �4 is defined as �4 = �∩ {|x | 6 4}. The number α is a positive constant,

which represents a background constant flow in x1 direction. Physically, it also represents

a translation speed of the obstacle. We use the standard notation for derivatives: ∂t =
∂
∂t ,

∂ j =
∂
∂x j

, 1 =
∑2

j=1 ∂
2
j , and div u =

∑2
j=1 ∂ j u j .
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System (1.1) is a fundamental linearized problem when one considers the flow around

a rigid body translating with a constant speed. In this paper, we are interested in a

global-in-time estimate for solutions to (1.1) when α is small.

To state the results, let us first introduce the basic function spaces used in this paper.

We denote by Lq(�), 1 6 q 6∞, the usual Lebesgue space of all measurable functions

whose Lq norm, ‖ f ‖Lq = (
∫
�
| f |q dx)

1
q for q <∞ and ‖ f ‖L∞ = ess.supx∈�| f (x)| for

q = ∞, is finite. The class of smooth and compactly supported functions in � is denoted

by C∞0 (�) and the class of test functions for solenoidal vector fields in � is defined by

C∞0,σ (�) = { f ∈ C∞0 (�)
2
| div f = 0 in �}. The space of all Lq solenoidal vector fields in

� is denoted by Lq
σ (�), which is characterized for 1 < q <∞ as Lq

σ (�) = C∞0,σ (�)
‖ f ‖Lq

=

{ f ∈ Lq(�)2 | div f = 0 in �, f · n = 0 on ∂�}. Here, n = n(x) is the exterior unit normal

vector at x ∈ ∂�. The Lq Sobolev space of order k in � is denoted by W k,q(�), and

we also introduce the space W 1,q
0 (�) = C∞0 (�)

‖ f ‖W 1,q
. As is well known, for q ∈ (1,∞),

the space Lq(�)2 is written as the direct sum Lq(�) = Lq
σ (�)⊕Gq(�), where Gq(�) =

{∇ p ∈ Lq(�)2 | p ∈ Lq
loc(�)}. Then the Helmholtz projection P� : Lq(�)2 → Lq

σ (�) is

well defined, which is an orthogonal projection when q = 2; see [17] or [18] for details. For

simplicity, the Helmholtz projection in R2 is denoted by P instead of PR2 . For q ∈ (1,∞),
the second order elliptic operators Aα,� in Lq(�) is defined by

DLq (Aα,�) = W 2,q(�)∩W 1,q
0 (�), Aα,� f = −1 f +α∂1 f, f ∈ DLq (Aα,�).

Then the Oseen operators Aα,� in Lq
σ (�) is defined by

DLq (Aα,�) = W 2,q(�)2 ∩W 1,q
0 (�)2 ∩ Lq

σ (�),

Aα,� f = P�Aα,� f.

To simplify the notations, the counterparts of these operators in Lq(R2)2 or Lq
σ (R2) are

written as Aα or Aα instead of Aα,R2 or Aα,R2 .

When α = 0, the operator A� = A0,� is called the Stokes operator, and it is well known

that, for 1 < q <∞, −A� generates a bounded C0-analytic semigroup in Lq
σ (�); cf. [5].

The reader is also referred to [2], [3], and [1] for a recent progress in the L∞ theory of

the Stokes semigroup in an exterior domain. The global Lq -Lr estimate of the Stokes

semigroup {e−tA�}t>0 has been a fundamental tool in this research field, and it is known

that

‖e−tA� f ‖Lq (�) 6
Cq,r

t
1
r −

1
q

‖ f ‖Lr (�), t > 0, f ∈ Lr
σ (�) (1.2)

holds for 1 < r 6 q <∞ or 1 < r < q = ∞. Indeed, the case 1 < r 6 q <∞ is proved

by P. Maremonti and V. Solonnikov [16] and W. Dan and Y. Shibata [6], while the case

1 < r < q = ∞ is proved by W. Dan and Y. Shibata [7].

When α 6= 0, the difficulty arises in obtaining the global estimate due to the parabolic

distribution of the spectrum σ(−Aα,�) ⊂ {λ ∈ C | |=(λ)|2 6 −α2
<(λ)} and also due to a

two-dimensionality. Since the term αP�∂1 f is of lower order, it is not difficult to show

that the perturbed operator −Aα,� also generates a C0-analytic semigroup in Lq
σ (�). So

the difficulty lies in the estimate for large time. In fact, it is very recent that the following
Lq -Lr estimates are established for e−tAα,� in a pioneering work by T. Hishida [12].
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Theorem 1.1 [12]. Let 1 < r 6 q <∞. Fix M > 0 and let α ∈ [0,M]. Then we have for

any f ∈ Lr
σ (�),

‖e−tAα,� f ‖Lq (�) 6
Cq,r

ακ t
1
r −

1
q

‖ f ‖Lr (�), t > 0. (1.3)

Here the constant C depends only on M, q, r , and �, while κ > 1 depends only on q
and r .

Our interest here is the singularity O(α−κ) in (1.3) for small α > 0. This singularity

does not appear for a higher-dimensional case. Indeed, for n-dimensional exterior problem

with n > 3, it is known that

‖e−tA� f ‖Lq (�) 6
Cq,r

t
n
2 (

1
r −

1
q )
‖ f ‖Lr (�), t > 0, f ∈ Lr

σ (�) (1.4)

holds for 1 < r 6 q <∞. Estimate (1.4) is proved by T. Kobayashi and Y. Shibata [14]

when n = 3 and by Y. Enomoto and Y. Shibata [8, 9] when n > 4. The key difference

between the cases n = 2 and n > 3 is that when n = 2 the Oseen term α∂1 leads to

a drastic change of the decay structure for the kernel of the resolvent operator. For

example, this is directly seen for the kernel of A−1
α and A−1; the kernel of A−1 contains

a logarithmic growth term log |x |, while the kernel of A−1
α decays at spatial infinity in

the slow variable αx that is a key in [10, 11] for the existence of physically reasonable

solutions in a two-dimensional exterior domain. This drastic difference of the structure in

small resolvent parameters λ shows that the analysis of (1.1) for t � 1 exhibits a nature

of the singular perturbation when α→ 0. Note that the limit λ→ 0 is also considered as

a singular limit from the resolvent to the endpoint of the continuous spectrum and, thus,

the real difficulty lies in the joint limit α, λ→ 0 (in particular, λ = iµ with µ ∈ R→ 0,

as explained below). As a summary, the difficulties in analyzing (1.1) for large time are

listed as follows.

(0) (Exterior domain) the presence of the nontrivial compact boundary,

(i) (Two-dimensionality) the possible logarithmic singularity of the resolvent near the

origin, which is also related to the estimate ‖e−tAα f ‖L∞(R2) 6 Ct−1
‖ f ‖L1(R2) that is not

integrable over (1,∞),
(ii) (Time dependence with large time) the parabolic distribution of the spectrum

σ(−Aα,�) ⊂ {λ ∈ C | |=(λ)|2 6 −α2
<(λ)},

(iii) (Singular perturbation) the nature of the singular perturbation in the joint limit

α→ 0 and λ = iµ→ 0 for the resolvent problem.

As for (0), we note that, in the whole space case, it is straightforward from the

explicit formula that ‖e−tAα f ‖Lq (R2) 6 Ct−
1
r +

1
q ‖ f ‖Lr (R2) holds for t > 0, f ∈ Lr

σ (R2),

and 1 6 r 6 q 6∞. The difficulties (0) and (i) are common with the analysis of the

Stokes semigroup (α = 0), while (ii) and (iii) are specific to the case α 6= 0. It should be

emphasized that, as stated in (ii), the difficulty is related to the time dependence and the

problem is more delicate than the steady case. Indeed, what is needed for the unsteady

case is the analysis of the behavior of (iµ+Aα,�)−1 when µ ∈ R→ 0, rather than the
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analysis of the fixed operator A−1
α,� (or the limit of (µ+Aα,�)−1 as µ ∈ R+→ 0) as in

the steady problem. Note that we should distinguish the behaviors of (µ+Aα,�)−1 and

(iµ+Aα,�)−1 when µ ∈ R+→ 0; for the former one, the distance from the continuous

spectrum is µ, while for the latter one, the distance from the continuous spectrum is

O(µ2) when α 6= 0 due to the parabolic distribution. Therefore, one is potentially faced

with a stronger singularity in the analysis of the unsteady problem for α 6= 0. Roughly

speaking, the difficulties (0), (i), and (ii) are overcome in [12], and the contribution of

this paper is to resolve (iii).

To obtain the Lq -Lr estimates of {e−tAα,�}t>0, the key step is to establish the local

energy decay estimate of e−tAα,�P� f , which is a “local–local” estimate in the sense

that we aim the estimate of e−tAα,�P� f near the boundary ∂� when f is compactly

supported. The local energy decay estimate is a common tool in the exterior problem; for

the Stokes semigroup, it was established by H. Iwashita [13] for the 3D case and by W.

Dan and Y. Shibata [6] for the 2D case, while for the Oseen semigroup, it was obtained

by T. Kobayashi and Y. Shibata [14] for the 3D case, by Y. Enomoto and Y. Shibata

[8] for the higher-dimensional case, and by T. Hishida [12] for the 2D case (but with a

singularity in small α in the 2D case). The first result of this paper is stated as follows,

which is a significant improvement of [12, Theorem 2.1].

Theorem 1.2 (Local energy decay estimate). Set �4 = �∩ {|x | 6 4} and let 1 < q <∞.

Then there exists a number δq ∈ (0, 1
2 ] such that the following statements hold for all

α ∈ (0, δq ]. Assume that f ∈ Lq(�)2 and supp f ⊂ {|x | 6 5}. Then for j = 0, 1, 2,

‖∇
j e−tAα,�P� f ‖Lq (�4) 6



C

t
j
2

‖ f ‖Lq (�), 0 < t 6 3,(
C

t |log t |2
+

Cα2

|log t |

)
‖ f ‖Lq (�), 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq (�), t > α−2,

(1.5)

and the associated pressure field p[P� f ](t) = pu(t),
∫
�4

p[P� f ](t) dx = 0, satisfies

‖p[P� f ](t)‖Lq (�4) 6



C

t
1
2 (1+

1
q )
‖ f ‖Lq (�), 0 < t 6 3,(

C
t |log t |2

+
Cα2

|log t |

)
‖ f ‖Lq (�), 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq (�), t > α−2,

(1.6)

Here, C depends only on q and �.

Remark 1.3. (i) The crucial point of Theorem 1.2 is that
∫
∞

1 ‖∇
j e−tAα,�P� f ‖Lq (�4) can

be bounded uniformly in small α. This L1 integrability in time is essential to obtain

the global Lq -Lr estimate for the exterior problem through a standard cut-off argument

connecting with the estimate of the Oseen semigroup in the whole space.
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(ii) The order O(α−2) is a natural time scale in this problem. Heuristically, the time before

O(α−2) is regarded as the Stokes scale, i.e., the transport term α∂1 is a perturbation, while

the time after O(α−2) is the Oseen scale, where the transport term plays a dominant role.

By taking the formal limit α→ 0 in (1.5), we obtain the estimate ‖∇ j e−tA�P� f ‖Lq (�4) 6
C

t |log t |2 ‖ f ‖Lq (�) for t > 2, which is exactly the local energy decay estimate obtained by

W. Dan and Y. Shibata [6] for the Stokes semigroup.

As an important application of Theorem 1.2, we obtain the Lq -Lr estimate of the Oseen

semigroup e−tAα,� with a uniform bound for small α > 0 as follows.

Theorem 1.4. Let 1 < r 6 q <∞ and let α ∈ (0,min{δr , δq}]. Then it follows that for any

f ∈ Lr
σ (�),

‖e−tAα,� f ‖Lq (�) 6 Cq,r t−
1
r +

1
q ‖ f ‖Lr (�), t > 0. (1.7)

If 1 < r 6 q < 2, then

‖∇e−tAα,� f ‖Lq (�) 6 Cq,r t−
1
2−

1
r +

1
q ‖ f ‖Lr (�), t > 0. (1.8)

Here Cq,r is a constant depending only on q, r , and �.

The proof of the local energy estimate in Theorem 1.2 proceeds along the line in [12].

The main object is the resolvent problem{
λv−1v+α∂1v+∇q = f, div v = 0, x ∈ �,

v|∂� = 0,
(1.9)

where f ∈ Lq(�)2 with supp f ⊂ {|x | 6 5} and λ ∈ C is a resolvent parameter. The force f
is not needed to be solenoidal. It is known that (1.9) is uniquely solvable in Lq for λ ∈ {z ∈
C | |=(z)|2 > −α2

<(z)} (cf. [12]). We set Σ 3π
4
= {z ∈ C \ {0} | |arg (z)| 6 3π

4 }, and let us

denote by χB the characteristic function of the set B. The solution of (1.9) is constructed

by gluing the solution to the whole space problem and the solution in the bounded

domain. To this end, we also introduce the bounded domain D = �∩ {|x | < 5}, and let

Aα,D and PD, respectively, be the Oseen operator and the Helmholtz projection in the Lq

space over the domain D. Note that since D is bounded, Aα,D has a spectral gap uniformly

in small α. Roughly speaking, we will show that there exists δq > 0 such that if λ ∈ Σ 3π
4

with |λ| 6 δq and |=(λ)|2 > −α2
<(λ) and if 0 < α 6 δq , then χ�4(λ+Aα,�)−1P� f has

the expansion of the form

χ�4(λ+Aα,�)−1P� f

= χ�4A
−1
α,DPD

(
V0 f +

1
log(4λ+α2)

(
W1,1 f + d(α, λ)W1,2 f

))
+Qα(λ) f, (1.10)

where V0, W1,1, W1,2 are bounded operators on Lq
[5](�)

2
= { f ∈ Lq(�)2 | supp f ⊂ {|x | 6

5}} and are independent of α and λ, while Qα(λ) f is a remainder satisfying the estimate

‖Qα(λ) f ‖Lq (�4) 6
C

|log (4λ+α2)|2
‖ f ‖Lq

[5](�)
,
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and d(α, λ) is a complex number defined as

d(α, λ) =
∫ 1

0

α2s
4λ+α2s

ds.

Moreover, the right-hand side of (1.10) is shown to provide the analytic extension about

λ to the sector Σ 3π
4

near the origin. Expansion (1.10) is a new and key achievement of

this paper and describes the behavior of the localized resolvent when λ and α are small. It

should be emphasized that, in the level of “local–local” estimate, expansion (1.10) solves

not only the difficulty (iii) but also the difficulty (ii) through the analytic extension to

the sector. The semigroup estimate in Theorem 1.2 is obtained by using the Dunford

formula χ�4e−tAα,�P� f = 1
2π t

∫
0

etλχ�4(λ+Aα,�)−1P� f dλ with a suitably chosen curve

0 and by applying the Cauchy theorem in the complex analysis.

The argument to show Theorem 1.4 from Theorem 1.2 is rather standard, which is

based on a cut-off argument using the Bogovskii operator to recover the divergence-free

condition. Another important application of Theorem 1.2 is given in the paper [15], where

the asymptotic stability of the physically reasonable solution is proved when α is small

enough. This is the first stability result of the stationary solutions constructed by R.

Finn and D. R. Smith [11] in two dimensions, which has remained open for a long time

since their famous work in the 1960s.

This paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.2 and

is the core of this paper. In § 2.1, we study the resolvent kernel for the Oseen operator in

R2 and give the expansion for small λ and α. In § 2.2, we state the estimate of the Oseen

operator in the bounded domain D, which is more or less standard. In §§ 2.3 and 2.4, we

establish the expansion (1.10) by using the argument of [12] and [6], and Theorem 1.2 is

proved. Theorem 1.4 is shown in § 3. Some estimates used in the proof are collected in

the appendix for the reader’s convenience.

2. Local energy estimate

In this section, we prove Theorem 1.2.

2.1. Expansion of resolvent kernel in R2

We denote by Eαλ (x) the function given as

Eαλ (x) =
∫
∞

0
e−λt8(t, x −αte1) dt, <(λ) > 0. (2.1)

Here, 8(t, x) is the kernel of the Stokes semigroup in R2, and it is given in terms of the

Fourier transform:

8(t, x) = F−1
[

e−t |ξ |2
(
I−

ξ ⊗ ξ

|ξ |2

)]
(x).

Here, I is the 2× 2 identity matrix and ξ ⊗ ξ = (ξiξ j )16i, j62. By [12, equation (4.6)], the

following representation of Eαλ is obtained in terms of the modified Bessel functions: with
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the notation z(s, x) =
√

s(λ+ (α2 )
2s) |x |, we have

Eαλ (x) =
5∑

j=1

Eαλ, j (x) =
I

2π
e
α
2 x1 K0

(√
λ+

(
α

2

)2

|x |
)

−
I

4π

∫ 1

0
e
α
2 x1s K0(z(s, x)) ds

+
x ⊗ x

4π |x |2

∫ 1

0
e
α
2 x1s z(s, x)K1(z(s, x)) ds

+
(−α2 )

(
x ⊗ e1+ e1⊗ x

)
4π

∫ 1

0
se

α
2 x1s K0(z(s, x)) ds

+
(α2 )

2
|x |2e1⊗ e1

4π

∫ 1

0

s2e
α
2 x1s

z(s, x)
K1(z(s, x)) ds. (2.2)

Here, K0(z) and K1(z) are modified Bessel functions of the second kind of orders 0 and

1, respectively (cf. [12, equation (4.7)]), which have series representations as follows. Let

ψ(k), k = 1, 2, . . . , be such that

ψ(k) = −γ −
1
k
+ k

∞∑
l=1

1
l(l + k)

, γ : Euler′s constant.

In particular, ψ(1) = −γ . Then,

K0(z) = −
(

log
z
2

) ∞∑
k=0

1
(k!)2

(
z
2

)2k

+

∞∑
k=0

ψ(k+ 1)
(k!)2

(
z
2

)2k

= − log
z
2
− γ + O

((
z
2

)2

log
z
2

)
for small |z|, (2.3)

K1(z) =
1
z
+

∞∑
k=0

1
k!(k+ 1)!

(
z
2

)2k+1(
log

z
2
−

1
2
ψ(k+ 1)−

1
2
ψ(k+ 2)

)
=

1
z
+ O

(
z
2

log
z
2

)
for small |z|. (2.4)

In particular, the right-hand side of (2.2) makes sense for x 6= 0 and either =(λ) 6= 0
or <(λ) > 0, and for each fixed x 6= 0, it is an analytic extension of (2.1) about λ to

C \ {<(λ) 6 0}. We are interested in the case |x | 6 10 and |λ+ α2

4 | is small enough, which

is the regime studied in the latter section. For θ ∈ (π/2, π), let Σθ be the sector in C
with angle θ defined as

Σθ = {z ∈ C \ {0} | |arg z| 6 θ}. (2.5)

Then, by using the expansion e
α
2 x1s
=
∑
∞

k=0
1
k! (

α
2 x1s)k if necessary, we have the following

expansion for each Eαλ, j :

Eαλ,1(x) =
1

2π

(
−

1
2

log
(
λ+

α2

4

)
− log |x | + log 2− γ

)
I+ Ẽαλ,1(x),
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Eαλ,2(x) =
1

4π

(∫ 1

0
log(z(s, x)) ds− log 2+ γ

)
I+ Ẽαλ,2(x),

Eαλ,3(x) =
x ⊗ x

4π |x |2
+ Ẽαλ,3(x),

Eαλ,4(x) =

(
−
α
2

)
(x ⊗ e1+ e1⊗ x)

4π

∫ 1

0
s(− log(z(s, x))+ log 2− γ ) ds+ Ẽαλ,4(x),

Eαλ,5(x) =

(
α
2

)2e1⊗ e1

4π

∫ 1

0

s

λ+ α2

4 s
ds+ Ẽαλ,5(x).

Here, each Ẽαλ, j (x) is a remainder whose leading part (worst term) is given by the sum of

“a product of e
α
2 x1 − 1 (or e

α
2 x1s
− 1) and the leading term of the modified Bessel function

K j ” and “a constant multiple of the second leading term of K j ”. In particular, they

satisfy when |x | 6 10 and |λ+ α2

4 | 6
1
2 with λ ∈ Σ3π/4,

|Ẽαλ, j (x)| + |∇ Ẽαλ, j (x)| 6 C(|λ| +α2)
1
2 |log (4λ+α2)|(|log|x || + 1),

|∂λ Ẽαλ, j (x)| + |∇∂λ Ẽαλ, j (x)| 6
C

(|λ| +α2)
1
2
(|log|x || + 1),

|∂2
λ Ẽαλ, j (x)| + |∇∂

2
λ Ẽαλ, j (x)| 6

C

(|λ| +α2)
3
2
(|log|x || + 1).

(2.6)

Indeed, (2.6) follows from the bound

1
C
(|λ| +α2s) 6 |4λ+α2s| 6 C(|λ| +α2s) for λ ∈ Σ 3π

4
, s ∈ (0, 1], (2.7)

with C independent of α, λ, and s. Estimate (2.7) is proved as follows: if <(λ) > 0, then

|4λ+α2
| > 4|λ|, while if <(λ) < 0 and λ ∈ Σ 3π

4
, then |4λ+α2

| > 4|=(λ)| > |λ|, which

implies |4λ+α2
| > |λ| for λ ∈ Σ 3π

4
. On the other hand, if |λ| > 8−1α2s and λ ∈ Σ 3π

4
,

then we have |4λ+α2
| > |λ| > 8−1α2s, while if |λ| 6 8−1α2s, then |4λ+α2s| > 2−1α2s,

which gives |4λ+α2
| > 8−1α2s. Combining these, we obtain the lower bound in (2.7),

and the upper bound in (2.7) is trivial from the triangle inequality. We note that the

leading term of Eαλ,4(x) also satisfies the same estimate as (2.6), and, thus, Eαλ,4(x) is also

regarded as a remainder. As for the first term in the leading term of Eαλ,2, we have

1
4π

∫ 1

0
log(z(s, x)) ds =

1
8π

∫ 1

0
log s ds+

1
8π

∫ 1

0
log

(
λ+

α2

4
s
)

ds+
1

4π
log |x |

= −
1

8π
+

1
8π

log
(
λ+

α2

4

)
−

1
8π

∫ 1

0

α2s
4λ+α2s

ds+
1

4π
log |x |.

By setting

Ẽαλ = Ẽαλ,1+ Ẽαλ,2+ Ẽαλ,3+ Eαλ,4+ Ẽαλ,1,

we finally obtain the following expansion of Eαλ :

Eαλ (x) = E0
0(x)+

(
−

1
8π

log
(
λ+

α2

4

))
I+ J(α, λ)+ Ẽαλ (x), (2.8)
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where

E0
0(x) =

(
−

1
4π

log |x |
)
I+

x ⊗ x
4π |x |2

,

J(α, λ) =
1

4π

(
log 2− γ −

1
2
−

d(α, λ)
2

)
I+

d(α, λ)
4π

e1⊗ e1,

(2.9)

with

d(α, λ) =
∫ 1

0

α2s
4λ+α2s

ds. (2.10)

Note that in virtue of (2.7), we have for λ ∈ Σ 3π
4

and α > 0,

|d(α, λ)| 6 C min
{

1,
α2

|λ|

}
,

|∂λd(α, λ)| 6
C

|λ|
1
2 (|λ| +α2)

1
2
,

|∂2
λd(α, λ)| 6

C
|λ|(|λ| +α2)

.

(2.11)

Here, C is independent of λ and α; see Appendix A. The matrix E0
0(x) is nothing but

the Stokes fundamental solution, and the remainder Ẽαλ satisfies from (2.6),

|Ẽαλ (x)| + |∇ Ẽαλ (x)| 6 C(|λ| +α2)
1
2 |log (4λ+α2)| (log |x | + 1),

|∂λ Ẽαλ (x)| + |∇∂λ Ẽαλ (x)| 6
C

(|λ| +α2)
1
2
(log |x | + 1),

|∂2
λ Ẽαλ (x)| + |∇∂

2
λ Ẽαλ (x)| 6

C

(|λ| +α2)
3
2
(log |x | + 1),

(2.12)

if |x | 6 10 and |4λ+α2
| 6 1

2 with λ ∈ Σ3π/4. The expansion (2.8) is an improvement

of [12, equation (4.19)], and the key difference is that we allow a dependence on λ in

the leading term, i.e., the term log(λ+ α2

4 ) and d(α, λ). The advantage of this additional

dependence is that the key estimates are derived for the wider regime of λ than in

[12, Theorem 6.1] and is taken uniformly in small α, by virtue of the estimate for the

remainder Ẽαλ as in (2.12). It is important that d(α, λ) is uniformly bounded as stated in

(2.11). The next proposition gives the estimate for (λ+Aα)−1P f when f is compactly

supported.

Proposition 2.1. Let |4λ+α2
| 6 1

2 and λ ∈ Σ 3π
4

. Assume that f ∈ Lq(R2)2, 1 < q <∞,

and supp f ⊂ {|x | 6 5}. Then for |x | 6 5, we have

(λ+Aα)−1P f (x) = Eαλ ∗ f (x)

= E0
0 ∗ f (x)+

(
−

1
8π

log
(
λ+

α2

4

)
+ J(α, λ)

)∫
R2

f dx

+ Ẽαλ ∗ f (x) (2.13)
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with J(α, λ) defined as (2.9), and

‖Ẽαλ ∗ f ‖W 1,∞({|x |65}) 6 C(|λ| +α2)
1
2 |log (4λ+α2)|‖ f ‖Lq ,

‖∂λ Ẽαλ ∗ f ‖W 1,∞({|x |65}) 6
C

(|λ| +α2)
1
2
‖ f ‖Lq ,

‖∂2
λ Ẽαλ ∗ f ‖W 1,∞({|x |65}) 6

C

(|λ| +α2)
3
2
‖ f ‖Lq .

(2.14)

Here, C > 0 depends only on q.

Proof. The expansion (2.13) follows from (2.8), while (2.14) is a consequence of (2.12)

and the Young inequality for convolution. The proof is complete.

2.2. Resolvent estimate for interior problem

Set D = �∩ B5(0), which is a bounded domain in R2 with a smooth boundary. In this

section, we consider the interior problem
λu D −1u D +α∂1u D +∇ pD = f, x ∈ D,

div u D = 0, x ∈ D,

u D = 0, x ∈ ∂D.

(2.15)

Let us denote by Aα,D the operator Aα,Du = PD(−1u+α∂1u), which is realized in Lq
σ (D)

and PD : Lq(D)2 → Lq
σ (D), 1 < q <∞, is the Helmholtz projection.

Proposition 2.2. Let 1 < q <∞. There exists αq > 0 such that the following statement

holds for all 0 6 α 6 αq . The set Σ 3π
4

belongs to the resolvent set of −Aα,D in Lq
σ (D),

and

‖∂
j
λ (λ+Aα,D)−1PD f ‖W 2,q (D) 6 C‖ f ‖Lq (D), f ∈ Lq(D)2, λ ∈ Σ 3π

4
, j = 0, 1.

(2.16)

Moreover, the solution u D[λ] f = (λ+Aα,D)−1PD f satisfies

‖u D[λ] f −A−1
D PD f ‖W 2,q (D) 6 C(|λ| +α)‖ f ‖Lq (D). (2.17)

Here, AD = −PD1 is the Stokes operator in Lq
σ (D). The associated pressure pD[λ] f with∫

D pD[λ] f dx = 0 also satisfies the decomposition as in (2.17), i.e.,

‖∇ pD[λ] f −QD( f +1A−1
D PD f )‖Lq (D) 6 C(|λ| +α)‖ f ‖Lq (D). (2.18)

Here, QD = I −PD. Moreover, pD[λ] f is analytic with respect to λ in the topology of

Lq(D) and

‖∂
j
λ pD[λ] f ‖Lq (D) 6 C‖ f ‖Lq (D), j = 0, 1, 2. (2.19)

In the above estimates, the constant C is independent of α ∈ [0, αq ] and λ ∈ Σ 3π
4

.
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Proof. It is well known that, since D is bounded, the resolvent set of −AD in Lq
σ (D)

contains the set {λ ∈ C | <(λ) > −λ0} ∪Σ 3π
4

for some λ0 > 0, and

‖(λ+AD)
−1 f ‖Lq (D) 6

C
|λ| + 1

‖ f ‖Lq (D),

‖(λ+AD)
−1 f ‖W 2,q (D) 6 C‖ f ‖Lq (D),

for all f ∈ Lq
σ (D) and λ ∈ {λ ∈ C | <(λ) > −λ0} ∪Σ 3π

4
. Then we have

‖(λ+AD)
−1PD∂1 f ‖W 2,q (D) 6 C‖∂1 f ‖Lq (D)

for f ∈ DLq (AD) and λ ∈ {λ ∈ C | <(λ) > −λ0} ∪Σ 3π
4

. These estimates imply that, for

a sufficiently small α > 0, the resolvent operators of −Aα,D in Lq
σ (D) are constructed

around those of −AD. In particular, if α > 0 is sufficiently small, then the set {λ ∈ C |
<(λ) > −λ0} ∪Σ 3π

4
is contained in the resolvent set of −Aα,D in Lq

σ (D), and we have for

such λ and f ∈ Lq(D)2,

‖(λ+Aα,D)−1PD f ‖Lq (D) 6
C
|λ| + 1

‖ f ‖Lq (D),

‖(λ+Aα,D)−1PD f ‖W 2,q (D) 6 C‖ f ‖Lq (D).

Hence, (2.16) holds. Estimate (2.17) follows from the formula

(λ+Aα,D)−1PD f = A−1
D PD f − λA−1

D (λ+Aα,D)−1PD f

−αA−1
D PD∂1(λ+Aα,D)−1PD f.

These perturbation arguments are quite standard, and the details are omitted here.

Finally, the estimate and the decomposition of the pressure terms are the consequence

of those of the velocity field. The proof is complete.

2.3. Resolvent analysis and local energy decay

The aim of this subsection is to improve Hishida’s result in [12] and to establish the

local energy estimate for {e−tAα,�}t>0 in two dimensions for small α > 0. To this end, we

consider the resolvent problem
λu+ Aαu+∇ pu = f, x ∈ �,

div u = 0, x ∈ �,

u = 0, x ∈ ∂�.

(2.20)

We assume that f ∈ Lq(�)2 satisfies supp f ⊂ {x ∈ R2
| |x | 6 5}. Let χ ∈ C∞0 (R

2) be a

cut-off function such that χ(x) = 1 for |x | 6 4 and χ(x) = 0 for |x | > 5. Set

Uα[λ] f = (1−χ)uR2 [λ] f +B[∇χ · uR2 [λ] f ] +χu D[λ] f −B[∇χ · u D[λ] f ], (2.21)

Pα[λ] f = (1−χ)pR2( f )+χ
(

pD[λ] f +
1
|D|

∫
D

pR2( f ) dx
)
. (2.22)
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Here, (uR2 [λ] f, pR2( f )) = ((λ+Aα)−1P f,−(−1R2)−1
∇ · f ) is the solution in the whole

space in Proposition 2.1 with f extended to R2 by zero, (u D[λ] f, pD[λ] f ) is the solution

to (2.15) with
∫

D pD[λ] f dx = 0 obtained in Proposition 2.2 with f restricted on D, and

B = B4 is the Bogovskii operator in the annulus D4 = {x ∈ R2
| 4 < |x | < 5}, i.e., B[g]

satisfies

divB[g] = g in D4, B[g] = 0 on ∂D4,

for a given function g ∈ C∞0 (D4) with
∫

D4
g dx = 0. As is well known (see, e.g., [4]), the

Bogovskii operator B is extended to a bounded operator from W k,q
0 (D4) to W k+1,q

0 (D4)
2

for any 1 < q <∞ and k = 0, 1, . . . , together with the estimate

‖∇
k+1B[g]‖Lq (D4) 6 Cq,k‖∇

k g‖Lq (D4), 1 < q <∞, k = 0, 1, . . . . (2.23)

By its definition, the couple (Uα[λ] f,∇Pα[λ] f ) satisfies

(λ+ Aα)Uα[λ] f +∇Pα[λ] f = (I+ Tα[λ]) f, divUα[λ] f = 0 (2.24)

in �, and Uα[λ] f = 0 on ∂�, where Tα[λ] f is given by

Tα[λ] f = (1χ)uR2 + 2∇χ · ∇uR2 −α(∂1χ)uR2 − (∇χ)pR2

+ (λ+ Aα)B[∇χ · uR2 ]

− (1χ)u D − 2∇χ · ∇u D +α(∂1χ)u D + (∇χ)

(
pD +

1
|D|

∫
D

pR2( f ) dx
)

− (λ+ Aα)B[∇χ · u D]. (2.25)

Here, we have used the abbreviated notations such as uR2 and u D instead of uR2 [λ] f and

u D[λ] f . Note that Tα[λ] f is supported in {x ∈ R2
| 4 6 |x | 6 5}. It is already shown by

[12, Lemma 6.2] that for all α > 0 and λ ∈ {z ∈ C | (=(z))2 > −α2
<(z)}, operator I+ Tα[λ]

is invertible in the Banach space

Lq
[5](�)

2
= { f ∈ Lq(�)2 | f = 0 a.e. |x | > 5}, 1 < q <∞. (2.26)

Hence, the couple

(u,∇ p) = (Uα[λ](I+ Tα[λ])−1 f,∇Pα[λ](I+ Tα[λ])−1 f )

gives the solution to (2.20) when f ∈ Lq
[5](�)

2, and Uα[λ](I+ Tα[λ])−1 f is analytic in

λ from its construction. What is important is then to know the concrete behavior of

(I+ Tα[λ])−1 f when |λ| +α is small so that the sharp dependence of its operator norm on

λ and α is derived. This is discussed in [12, Theorem 6.1], but the argument in [12] works

only for λ ∈ {z ∈ C | |=(z)|2 > −α2
<(z)} with |λ| 6 δα2 for some small δ independent of

α, resulting in the appearance of the singularity in α−1 in the final estimate that we have

to remove in this paper. The key is to use the expansion of the resolvent kernel in R2

shown in Proposition 2.1. A careful analysis below enables us to obtain the expansion of

(I+ Tα[λ])−1 in the regime {λ ∈ Σ 3π
4
| |λ| 6 cq} for some small cq > 0 but independent of

small α.

The next proposition is the core of this subsection. Let αq > 0 be the number in

Proposition 2.2.
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Proposition 2.3. Let 1 < q <∞. There exists cq ∈ (0, αq ] such that the following

statement holds. Set Ocq = {λ ∈ Σ 3π
4
| |λ| 6 cq}, where Σ 3π

4
is the sector with angle 3π

4

defined as (2.5). If λ ∈ Ocq and 0 < α 6 cq , then the map Tα[λ] : Lq
[5](�)

2
→ Lq

[5](�)
2 is

well defined and bounded, and I+ Tα[λ] is invertible and satisfies

sup
λ∈Ocq ,0<α6cq

‖(I+ Tα[λ])−1 f ‖Lq
[5](�)

6 C‖ f ‖Lq
[5](�)

, (2.27)

and ∣∣∣∣ ∫
�

(I+ Tα[λ])−1 f dx
∣∣∣∣ 6 C
|log (4λ+α2)|

‖ f ‖Lq
[5](�)

(2.28)

for all λ ∈ Ocq and 0 < α 6 cq . Moreover, Tα[λ] and (I+ Tα[λ])−1 are analytic with

respect to λ ∈ Ocq in the topology of L(Lq
[5](�)

2), and the following expansion holds:

(I+ Tα[λ])−1
= 2−1

0 +W0+
1

log(4λ+α2)

(
W1,1+ d(α, λ)W1,2

)
+W2(α, λ), (2.29)

where 20 is an invertible operator in Lq
[5](�)

2, W0, W1,1, and W1,2 are bounded and finite

rank operators in Lq
[5](�)

2, and

(i) 20, W0, W1,1, W1,2 are independent of α and λ,

(ii) W2(α, λ) satisfies

‖W2(α, λ)‖L(Lq
[5](�))

6
C

|log (4λ+α2)|2
,

‖∂λW2(α, λ)‖L(Lq
[5](�))

6
C

|log (4λ+α2)|2|λ|
1
2 (|λ| +α2)

1
2
,

‖∂2
λW2(α, λ)‖L(Lq

[5](�))
6

C
|log (4λ+α2)|2|λ|(|λ+α2)

.

(2.30)

Here, the above constants C depend only on q and �.

Proof. We first recall the definition of Tα[λ] in (2.25), where uR2 = uR2 [λ] f = (λ+
Aα)−1P f , pR2 = −∇ · (−1R2)−1 f , u D = u D[λ] f = (λ+Aα,D)−1PD f , and pD = pD[λ] f
is such that

∫
D pD dx = 0 and ∇ pD[λ] f = QD( f +1u D[λ] f −α∂1u D[λ] f ). Set

u(0)R2 = E0
0 ∗ f, u(0)D = A−1

D PD f,

and let p(0)D be the pressure field such that
∫

D p(0)D dx = 0 and

∇ p(0)D = QD( f +1A−1
D PD f ).

Then, uR2 [λ] f is decomposed as in Proposition 2.1, and u D[λ] f and pD[λ] f are

decomposed as u D[λ] f = u(0)D + (u D[λ] f − u(0)D ) and pD[λ] f = p(0)D + (pD[λ] f − p(0)D ).

Thus, Tα[λ] f is decomposed as

Tα[λ] f = T0[0] f + Yα[λ] f + Zα[λ] f, (2.31)
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where

T0[0] f = (1χ)u(0)R2 + 2∇χ · ∇u(0)R2 − (∇χ)pR2 +1B[∇χ · u(0)R2 ]

− (1χ)u(0)D − 2∇χ · ∇u(0)D + (∇χ)

(
p(0)D +

1
|D|

∫
D

pR2 dx
)

−1B[∇χ · u(0)D ], (2.32)

Yα[λ] f = (1χ)

(
−

1
8π

log
(
λ+

α2

4

)
I+ J(α, λ)

)∫
�

f dx

−1B
[
∇χ ·

(
−

1
8π

log
(
λ+

α2

4

)
I+ J(α, λ)

)∫
�

f dx
]
, (2.33)

and Zα[λ] is a bounded linear operator in Lq
[5](�)

2 satisfying

‖Zα[λ] f ‖Lq
[5](�)

6 C(|λ| +α2)
1
2 |log (4λ+α2)|‖ f ‖Lq

[5](�)
,

‖∂λZα[λ] f ‖Lq
[5](�)

6
C

(|λ| +α2)
1
2
‖ f ‖Lq

[5](�)
,

‖∂2
λ Zα[λ] f ‖Lq

[5](�)
6

C

(|λ| +α2)
3
2
‖ f ‖Lq

[5](�)
,

(2.34)

as long as λ ∈ Σ 3π
4

and |4λ+α2
| 6 1

2 . Here, estimate (2.34) follows from (2.14), (2.17),

(2.18), and ‖∂λu D[λ] f ‖Lq (D)+‖∂λ pD[λ] f ‖Lq (D) 6 C‖ f ‖Lq (D) with C independent of λ ∈

Σ 3π
4

and small α. As in [12, equation (6.26)], we set

w j =
1

4π
((−1χ)e j +1B[∂ jχ ]), j = 1, 2, (2.35)

which are clearly independent of λ and α. Then the finite rank operator Yα[λ] is written

as

Yα[λ] f =
(

1
2

log
(
λ+

α2

4

)
+ γ +

1
2
+

d(α, λ)
2
− log 2− d(α, λ)

)
〈e1, f 〉L2(�)w1

+

(
1
2

log
(
λ+

α2

4

)
+ γ +

1
2
+

d(α, λ)
2
− log 2

)
〈e2, f 〉L2(�)w2

=

(
1
2

log(4λ+α2)+ γ +
1− d(α, λ)

2

)
〈e1, f 〉L2(�)w1

+

(
1
2

log(4λ+α2)+ γ +
1+ d(α, λ)

2

)
〈e2, f 〉L2(�)w2. (2.36)

As stated in [12, pp. 330], it is well known from [6, Lemmas 3.2–3.5] that T0[0] is a

compact operator from Lq
[5](�)

2, 1 < q <∞, into itself and I+ T0[0] is injective on the

subspace { f ∈ Lq
[5](�)

2
|
∫
�

f dx = 0} (for the reader’s convenience, the proof of this fact

is given in Appendix B), and the dimension of the kernel of I+ T0[0] is less than or equal
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to 2. Then the Fredholm theory implies that there exist m j ∈ Lq
[5](�)

2, j = 1, 2, such

that Lq
[5](�)

2
= Range (I+ T0[0])⊕Span {m1,m2}, and the operator

20 f = (I+ T0[0]) f +〈e1, f 〉L2(�)m1+〈e2, f 〉L2(�)m2 (2.37)

is bijective on Lq
[5](�)

2. If Ker (I+ T0[0]) 6 1, then m1 and/or m2 are taken as zero. Note

that m1 and m2 are independent of λ and α. From (2.31) and (2.37), we see

(I+ Tα[λ]) f = (I+ T0[0]) f + Yα[λ] f + Zα[λ] f

= 20 f + Ỹα[λ] f + Zα[λ] f (2.38)

where

Ỹα[λ] f = Yα[λ] f −〈e1, f 〉L2(�)m1−〈e2, f 〉L2(�)m2.

Our aim is to obtain the estimate of the inverse of I+ Tα[λ]. Since Zα[λ] is a small

perturbation when |λ| +α is small, we study the inverse of 20+ Ỹα[λ]. We observe that

Ỹα[λ] f =
∑
j=1,2

φ j 〈e j , f 〉L2(�)w j −
∑
j=1,2

〈e j , f 〉L2(�)m j , (2.39)

where

φ1 = φ1(α, λ) =
1
2

log(4λ+α2)+ γ +
1− d(α, λ)

2
,

φ2 = φ2(α, λ) =
1
2

log(4λ+α2)+ γ +
1+ d(α, λ)

2
.

(2.40)

Since 20 is invertible and independent of λ and α, we study the invertibility of I+
2−1

0 Ỹα[λ], where

2−1
0 Ỹα[λ]h =

∑
j=1,2

φ j 〈e j , h〉L2(�)2
−1
0 w j −

∑
j=1,2

〈e j , h〉L2(�)2
−1
0 m j . (2.41)

The key idea here is to determine, first, the quantity
∫
�

h dx for the solution h to the

problem (I+2−1
0 Ỹα[λ])h = f with a given f ∈ Lq

[5](�)
2. Once this is done, the solution

h is given by h = f −2−1
0 Ỹα[λ]h, for 2−1

0 Ỹα[λ]h is defined only in terms of
∫
�

h dx . To

determine
∫
�

h dx , we integrate the equation (I+2−1
0 Ỹα[λ])h = f over �, which yields

the linear algebraic equation for
∫
�

h dx of the form

M(α, λ)
∫
�

h dx =
∫
�

f dx,

where the 2× 2 matrix M(α, λ) is given by

M(α, λ)

=

(
1+φ1〈e1,2

−1
0 w1〉L2(�)−〈e1,m1〉L2(�) φ2〈e1,2

−1
0 w2〉L2(�)−〈e1,m2〉L2(�)

φ1〈e2,2
−1
0 w1〉L2(�)−〈e2,m1〉L2(�) 1+φ2〈e2,2

−1
0 w2〉L2(�)−〈e2,m2〉L2(�)

)
(2.42)

The direct computation shows

detM(α, λ) = φ1(α, λ)φ2(α, λ)C (0)
+φ1(α, λ)C

(1)
1 +φ2(α, λ)C

(1)
2 +C (2), (2.43)

https://doi.org/10.1017/S1474748019000355 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000355


874 Y. Maekawa

where

C (0)
:= det

(
〈e1,2

−1
0 w1〉L2(�) 〈e1,2

−1
0 w2〉L2(�)

〈e2,2
−1
0 w1〉L2(�) 〈e2,2

−1
0 w2〉L2(�)

)
, (2.44)

and C (1)
j and C (2) are constants independent of λ and α. By [12, equation (6.30)], that

is a key observation of [12], we already know that

C (0)
6= 0.

Hence, recalling that |d(α, λ)| 6 C by (2.11), we observe that

detM(α, λ) ∼ C (0)
(

1
2

log(4λ+α2)

)2

6= 0

if |λ| +α is small enough, and we have∫
�

h dx =M(α, λ)−1
∫
�

f dx . (2.45)

Then we conclude that I+2−1
0 Ỹα[λ] is invertible, and by using (2.41), we have

(I+2−1
0 Ỹα[λ])−1 f = f −2−1

0 Ỹα[λ]h

= f −
∑
j,k

b jk(α, λ)(φ j (α, λ)〈ek, f 〉L2(�)2
−1
0 w j −〈ek, f 〉L2(�)m j ).

(2.46)

Here, (b jk(α, λ))16 j,k62 =M(α, λ)−1. In particular, the exact computation of M(α, λ)−1

shows

(I+2−1
0 Ỹα[λ])−1

= I+ W̃0+
1

log(4λ+α2)
(W̃1,1+ d(α, λ)W̃1,2)+ W̃2(α, λ), (2.47)

where each W̃ j is finite rank and W̃0, W̃1, j are independent of λ and α, and for λ ∈ Ocq
and 0 < α 6 cq ,

‖W̃2(α, λ) f ‖Lq
[5](�)

6
C

|log (4λ+α2)|2

∣∣∣∣ ∫
�

f dx
∣∣∣∣,

‖∂λW̃2(α, λ) f ‖Lq
[5](�)

6
C

|log (4λ+α2)|2

(
1

|4λ+α2||log (4λ+α2)|
+ |∂λd(α, λ)|

)∣∣∣∣ ∫
�

f dx
∣∣∣∣

6
C

|log (4λ+α2)|2|λ|
1
2 (|λ| +α2)

1
2

∣∣∣∣ ∫
�

f dx
∣∣∣∣,

‖∂2
λW̃2(α, λ) f ‖Lq

[5](�)

6
C

|log (4λ+α2)|2

(
1

|4λ+α2|2|log (4λ+α2)|
+ |∂λd(α, λ)|2+ |∂2

λd(α, λ)|
)∣∣∣∣ ∫

�

f dx
∣∣∣∣

6
C

|log (4λ+α2)|2|λ|(|λ| +α2)

∣∣∣∣ ∫
�

f dx
∣∣∣∣.

(2.48)
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Here, we have used (2.11). We also have from (2.45),

sup
λ∈Ocq ,0<α6cq

∣∣∣∣ ∫
�

(I+2−1
0 Ỹα[λ])−1 f dx

∣∣∣∣ 6 C
|log (4λ+α2)|

∣∣∣∣ ∫
�

f dx
∣∣∣∣ (2.49)

for all f ∈ Lq
[5](�)

2. From (2.47), if we set W0 = W̃02
−1
0 , W1, j = W̃1, j2

−1
0 , and

W2,1(α, λ) = W̃2(α, λ)2
−1
0 , then we have(

20+ Ỹα[λ]
)−1
= (I+2−1

0 Ỹα[λ])−12−1
0

= 2−1
0 +W0+

1
log(4λ+α2)

(W1,1+ d(α, λ)W1,2)+W2,1(α, λ).
(2.50)

In particular, ‖(20+ Ỹα[λ])−1
‖L(Lq

[5](�))
is uniformly bounded in λ ∈ Σ 3π

4
when |4λ+α2

|

is small enough. Next we recall that Zα[λ] is regarded as a small perturbation as in (2.34),

and, hence, the Neumann series argument implies

(I+ Tα[λ])−1
= (I+ (20+ Ỹα[λ])−1 Zα[λ])−1(20+ Ỹα[λ])−1

= (20+ Ỹα[λ])−1
+W2,2(α, λ), (2.51)

where

W2,2(α, λ) =

∞∑
k=1

(−1)k((20+ Ỹα[λ])−1 Zα[λ])k(20+ Ỹα[λ])−1

= −(20+ Ỹα[λ])−1 Zα[λ](I+ Tα[λ])−1.

Thus, (2.50) with (2.34) and (2.48) implies

‖W2,2(α, λ) f ‖Lq
[5](�)

6 C(|λ| +α2)
1
2 ‖ f ‖Lq

[5](�)
,

‖∂λW2,2(α, λ) f ‖Lq
[5](�)

6
C

|λ|
1
2
‖ f ‖Lq

[5](�)
,

‖∂2
λW2,2(α, λ) f ‖Lq

[5](�)
6

C

|λ|(λ| +α2)
1
2
‖ f ‖Lq

[5](�)
,

(2.52)

and (2.49) combined with (20+ Ỹα[λ])−1
= (I+2−1

0 Ỹα[λ])−12−1
0 yields

sup
λ∈Ocq ,0<α6cq

∣∣∣∣ ∫
�

(I+ Tα[λ])−1 f dx
∣∣∣∣ 6 C
|log (4λ+α2)|

‖ f ‖Lq
[5](�)

. (2.53)

By setting W2(α, λ) = W2,1(α, λ)+W2,2(α, λ), we obtain the expansion (2.29) of (I+
Tα[λ])−1 from (2.51) and (2.50). Estimate (2.30) for W2(α, λ) follows from (2.48) and

(2.52). The proof is complete.

Proposition 2.4. Set �4 = �∩ {|x | 6 4}. Let 1 < q <∞. Let λ ∈ Ocq and let α ∈ (0, cq ].

Then for f ∈ Lq
[5](�)

2 and x ∈ �4,

(Uα[λ](I+ Tα[λ])−1 f )(x) = (A−1
α,DPD(I+ Tα[λ])−1 f )(x)+ (R(u)α [λ] f )(x), (2.54)
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where R(u)α [λ] f is analytic in λ ∈ Ocq with value in Lq
[5](�)

2 and

‖R(u)α [λ] f ‖W 2,q (�4)
6 C |λ|‖ f ‖Lq

[5](�)
. (2.55)

Here, C depends only on q and �.

Proof. From the definition of Uα[λ] in (2.21), we see that for any h ∈ Lq
[5](�)

2,

Uα[λ]h = u D[λ]h for x ∈ �4,

where u D[λ]h = (λ+ Aα,D)−1PDh is the solution to (2.15) with f replaced by h. Then

(2.54) follows by setting R(u)α [λ] f = ((λ+ Aα,D)−1
− A−1

α,D)PD(I+ Tα[λ])−1 f , and (2.55) is

a consequence of (2.16) with the resolvent identity and (2.27). The proof is complete.

It is well known that the set C \ {λ 6 0} is the resolvent set of the Stokes operator −A�
in Lq

σ (�). In particular, we have

|λ|‖(λ+A�)−1 f ‖Lq (�)+
|λ|

1+ |λ|
‖(λ+A�)−1 f ‖W 2,q (�) 6 C‖ f ‖Lq (�),

f ∈ Lq
σ (�), λ ∈ Σ 4π

5
.

(2.56)

Then the standard perturbation theory of sectorial operators yields the following lemma

for the resolvent of Aα,� away from the origin.

Lemma 2.5. Let 1 < q <∞. Let cq > 0 be the number in Proposition 2.3. Then there

exists α̃q > 0 such that if 0 < α 6 α̃q , then Σ 3
4π
∩ {λ ∈ C | |λ| > cq

4 } is included in the

resolvent set of −Aα,� in Lq
σ (�) and satisfies

|λ|‖(λ+Aα,�)−1 f ‖Lq (�)+
|λ|

1+ |λ|
‖(λ+Aα,�)−1 f ‖W 2,q (�) 6 C‖ f ‖Lq (�), (2.57)

for all f ∈ Lq
σ (�) and λ ∈ Σ 3

4π
∩ {λ ∈ C | |λ| > cq

4 }.

The proof of this lemma is standard since αP�∂1 is regarded as a small perturbation

to A� when α is small enough. So we omit the proof of Lemma 2.5. The next proposition

is our key local energy estimate in large time.

Proposition 2.6. Set �4 = �∩ {|x | 6 4}. Let 1 < q <∞. If 0 < α 6 min{cq , , α̃q}, then

the following estimate holds for all f ∈ Lq
[5](�)

2:

‖e−tAα,�P� f ‖W 2,q (�4)
6


(

C
t |log t |2

+
Cα2

|log t |

)
‖ f ‖Lq

[5](�)
, 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq
[5](�)

, t > α−2.

(2.58)

Here, C depends only on q and �.

Proof. It suffices to consider the case t > 4 max{1, c−1
q }. Since −Aα,� is sectorial in Lq

σ (�)

and generates a C0-analytic semigroup in Lq
σ (�), Lemma 2.5 leads to the representation

of e−tAα,�P� f such as

e−tAα,�P� f =
1

2π i

∫
0 1

t

etλ(λ+Aα,�)−1P� f dλ. (2.59)
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Here, for a fixed number ι > 0, the curve 0ι = 0±,ι+00,ι in C is taken as

0±,ι =

{
λ+ ι | arg (λ) = ±

3
4
π, |λ| >

cq

2

}
,

00,ι =

{
λ+ ι | |arg (λ)| 6

3π
4
, |λ| =

cq

2

}
,

and is oriented counter-clockwise. On the curve 0
±, 1

t
, we simply apply the uniform bound

stated in Lemma 2.5 such as ‖(λ+Aα,�)−1P� f ‖W 2,q (�4)
6 C‖ f ‖Lq

[5](�)
for λ with arg(λ) =

±
3π
4 and |λ| >

cq
2 , which yields enough temporal decay such that

∥∥∥∥ 1
2π i

∫
0
±. 1t

etλ(λ+Aα,�)−1P� f dλ
∥∥∥∥

W 2,q (�4)

6 C
∫
0
±, 1

t

|etλ
||dλ|‖ f ‖Lq

[5](�)

6
C
t

e−
cq
4 t
‖ f ‖Lq

[5](�)
. (2.60)

Note that C depends only on q and �. The estimate on the curve 00,ι needs a detailed

computation. Let us recall that

(λ+Aα,�)−1P� f = Uα[λ](I+ Tα[λ])−1 f. (2.61)

Hence, we have from Proposition 2.4, for |x | 6 4,

1
2π i

∫
0

0, 1
t

etλ(λ+Aα,�)−1P� f dλ =
1

2π i

∫
0

0, 1
t

etλA−1
α,DPD(I+ Tα[λ])−1 f dλ

+
1

2π i

∫
0

0, 1
t

etλR(u)α [λ](I+ Tα[λ])−1 f dλ

= I (t) f + I I (t) f.

(2.62)

(i) Estimate of I (t) f : Let us recall that (I+ Tα[λ])−1 f is analytic in λ ∈ Ocq with value

in Lq
[5](�)

2, and, thus, the Cauchy theorem implies

I (t) f =
1

2π i

∫
l
0, 1

t

etλA−1
α,DPD(I+ Tα[λ])−1 f dλ,

where l0, 1
t
= l
+, 1

t
+ l
−, 1

t
with l

±, 1
t
= {

1
t + r(− 1

√
2
± i 1
√

2
) | 0 6 r 6

cq
2 } and with the

orientation going from z− := 1
t +

cq
2 (−

1
√

2
− i 1
√

2
) to z+ := 1

t +
cq
2 (−

1
√

2
+ i 1
√

2
). Then the

expansion of (I+ Tα[λ])−1 yields
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I (t) f

= A−1
α,DPD

{
1

2π i

∫
l
0, 1

t

etλ dλ(2−1
0 +W0) f +

1
2π i

∫
l
0, 1

t

etλ 1
log(4λ+α2)

dλW1,1 f

+
1

2π i

∫
l
0, 1

t

etλ d(α, λ)
log(4λ+α2)

dλW1,2 f +
1

2π i

∫
l
0, 1

t

etλW2(α, λ) f dλ
}

=

4∑
j=1

I j (t) f.

For I1(t) f , the Cauchy theorem gives | 1
2π i

∫
l
0, 1

t

etλ dλ| 6 Ce−
cq
4 t , and, thus,

‖I1(t) f ‖W 2,q (�4)
6 Ce−

cq
4 t
‖ f ‖Lq

[5](�)
. (2.63)

Here, C depends only on q and �. To estimate I2(t) f and I3(t) f , we consider a given

analytic function h(α, λ) and then the integration by part yields

1
2π i

∫
l0,ι

etλh(α, λ) dλ =
1

2π i t
(et z+h(α, z+)− et z−h(α, z−))

−
1

2π i t2 (e
t z+∂λh(α, z+)− et z−∂λh(α, z−))

+
1

2π i t2

∫
l
0, 1

t

etλ∂2
λh(α, λ) dλ. (2.64)

For I2(t) f , we take h(α, λ) = 1
log(4λ+α2)

. Then, since z± = 1
t +

cq
2 (−

1
√

2
± i 1
√

2
), the first

four terms in the right-hand side of (2.64) are estimated from above by Ct−1e−
cq
4 t . Set

z1 = −
1
√

2
+ i 1
√

2
. As for the last term, we have from (2.7) and by the symmetry of l0, 1

t
about the real axis,∣∣∣∣ 1

2π i t2

∫
l
0, 1

t

etλ∂2
λ

1
log(4λ+α2)

dλ
∣∣∣∣

6
C
t2

∫
l
0, 1

t

|etλ
|

|4λ+α2|2|log (4λ+α2)|2
|dλ|

6
C
t2

∫ cq
2

0

1

(| 1t + r z1| +α2)2(log (| 1t + r z1| +α2))2
dr

6
C
t2

(∫ 1
4t

0
+

∫ cq
2

1
4t

)

6
C
t2

(
1

( 1
t +α

2)2(log ( 1
t +α

2))2

1
4t
+

∫ cq
2

1
4t

1
(r +α2)2(log (r +α2))2

dr
)

6
C
t2

1

( 1
t +α

2)(log ( 1
t +α

2))2
.
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The last quantity is bounded from above by C
t |log t |2 if t 6 α−2 and by C

t2α2|logα|2 if t > α−2.

Thus, we conclude that

‖I2(t) f ‖Lq (�4) 6


C

t |log t |2
‖ f ‖Lq

[5](�)
, 2 6 t 6 α−2,

C
t2α2|logα|2

‖ f ‖Lq
[5](�)

, t > α−2.

(2.65)

For I3(t) f , we take h(α, λ) = d(α,λ)
log(4λ+α2)

. We first consider the case t > α−2. Then, again

the first four terms in the right-hand side of (2.64) are bounded from above by Ct−1e−
cq
4 t .

To estimate the last term in (2.64), we observe from (2.7) and (2.11) that, for z1 =

−
1
√

2
+ i 1
√

2
,∣∣∣∣ 1
2π i t2

∫
l
0, 1

t

etλ∂2
λ

d(α, λ)
log(4λ+α2)

dλ
∣∣∣∣

6
C
t2

∫ cq
2

0

e
−

r
√

2
t

|log (| 1t + r z1| +α2)|| 1t + r z1|(|
1
t + r z1| +α2)

dr

6
C
t2

(∫ 1
4t

0
+

∫ cq
2

1
4t

)

6
C
t2

(
1

|log ( 1
t +α

2)|( 1
t +α

2)
+

∫ cq
2

1
4t

e
−

r
√

2
t

|log (r +α2)|r(r +α2)
dr
)
,

and since −τ log τ is increasing for τ ∈ (0, e−1
], the last integral in bounded from above

by C
|log ( 1

t +α
2)| 1t (

1
t +α

2)

∫ cq
2

1
4t

e
−

r
√

2
t
dr , that gives∣∣∣∣ 1

2π i t2

∫
l
0, 1

t

etλ∂2
λ

d(α, λ)
log(4λ+α2)

dλ
∣∣∣∣ 6 C

t2
1

|log ( 1
t +α

2)|( 1
t +α

2)

6
C

t2α2|logα|
if t > α−2.

When 2 6 t 6 α−2, by using |d(α, λ)| 6 C α2

|λ|
(see (2.11)), we compute directly as∣∣∣∣ 1

2π i

∫
l0,ι

etλ d(α, λ)
log(4λ+α2)

dλ
∣∣∣∣

6 Cα2
∫ cq

2

0

e
−

r
√

2
t

|
1
t + r z1||log (| 1t + r z1| +α2)|

dr

6 Cα2
(∫ 1

4t

0
+

∫ cq
2

1
4t

)

6 Cα2
(

1

|log ( 1
t +α

2)|
+

∫ cq
2

1
4t

e
−

r
√

2
t

(r +α2)|log (r +α2)|
dr
)

(since 2 6 t 6 α−2)

https://doi.org/10.1017/S1474748019000355 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000355


880 Y. Maekawa

6
Cα2

|log ( 1
t +α

2)|

6
Cα2

|log t |
.

Thus, we obtain

‖I3(t) f ‖W 2,q (�4)
6


Cα2

|log t |
‖ f ‖Lq

[5](�)
, 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq
[5](�)

, t > α−2.

(2.66)

The estimate of I4(t) f is similar to I3(t) f . Indeed, we take h(α, λ) = W2(α, λ) f in (2.64),

which gives

‖I4(t) f ‖W 2,q (�4)
6

C
t

e−
cq
4 t
‖ f ‖Lq

[5](�)
+

C
t2

∫
l
0, 1

t

|etλ
|‖∂2

λW2(α, λ) f ‖W 2,q (�4)
|dλ|,

and the last term is estimated from (2.30) as

C
t2

∫
l
0, 1

t

|etλ
|‖∂2

λW2(α, λ) f ‖W 2,q (�4)
|dλ|

6
C
t2

∫ cq
2

0

e
−

r
√

2
t

|log (| 1t + r z1| +α2)|2| 1t + r z1|(|
1
t + r z1| +α2)

dr ‖ f ‖Lq
[5](�)

6
C
t2

(∫ 1
4t

0
+

∫ cq
2

1
4t

)
‖ f ‖Lq

[5](�)

6
C
t2

(
1

|log ( 1
t +α

2)|2( 1
t +α

2)
+

∫ cq
2

1
4t

e
−

r
√

2
t

|log (r +α2)|2r(r +α2)
dr
)
‖ f ‖Lq

[5](�)

6
C
t2

1

|log ( 1
t +α

2)|2( 1
t +α

2)
‖ f ‖Lq

[5](�)
.

Thus, we see

‖I4(t) f ‖W 2,q (�4)
6


C

t |log t |2
‖ f ‖Lq

[5](�)
, 2 6 t 6 α−2,

C
t2α2|logα|2

‖ f ‖Lq
[5](�)

, t > α−2.

(2.67)

Collecting (2.63), (2.65), (2.66), and (2.67), we have

‖I (t) f ‖W 2,q (�4)
6


C

t |log t |2
+

Cα2

|log t |
, 2 6 t 6 α−2,

C
t2α2|logα|

, t > α−2.

(2.68)
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(ii) Estimate of I I (t) f : Again from the Cauchy theorem, we have

I I (t) f =
1

2π i

∫
l
0, 1

t

etλR(u)α [λ](I+ Tα[λ])−1 f dλ.

Then, from (2.55), for R(u)α [λ] and (2.27) for (I+ Tα[λ])−1, we have

‖I I (t) f ‖W 2,q (�4)
6 C

∫
l
0, 1

t

|etλ
||λ||dλ|‖ f ‖Lq

[5](�)

6 C
∫ cq

2

0
e
−

r
√

2
t
∣∣∣∣1t + r z1

∣∣∣∣ dr ‖ f ‖Lq
[5](�)

6
C
t2 ‖ f ‖Lq

[5](�)
. (2.69)

Hence, (2.58) follows from (2.60), (2.68), and (2.69). The proof is complete.

We have the similar local energy decay estimate for the associated pressure field to

e−tAα,�P� f , which is denoted by p[P� f ](t) and satisfies
∫
�∩{|x |64} p[P� f ](t) dx = 0 and

∇ p[P� f ](t) = −Q�Aαe−tAα,�P� f .

Proposition 2.7. Set �4 = �∩ {|x | 6 4}. Let 1 < q <∞. If 0 < α 6 min{cq , , α̃q}, then

the following estimate holds for all f ∈ Lq
[5](�)

2:

‖p[P� f ](t)‖Lq (�4) 6


(

C
t |log t |2

+
Cα2

|log t |

)
‖ f ‖Lq

[5](�)
, 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq
[5](�)

, t > α−2.

(2.70)

Here, C depends only on q and �.

Proof. The result essentially follows from Proposition 2.6. Indeed, for u(t) = e−tAα,�P� f ,

the equality ∂t u+ Aαu+∇ p[P� f ] = 0 implies that from
∫
�4

p[P� f ](t) dx = 0 and the

Poincaré inequality,

‖p[P� f ](t)‖Lq (�4) 6 C‖∇ p[P� f ](t)‖Lq (�4)

6 C(‖∂t u(t)‖Lq (�4)+‖Aαu(t)‖Lq (�4))

6 C(‖∂t u(t)‖Lq (�4)+‖u(t)‖W 2,q (�4)
).

The term ‖u(t)‖W 2,q (�4)
is already estimated in Proposition 2.6, and since

∂t u(t) =
1

2π i

∫
0ι

etλλ(λ+Aα,�)−1P� f dλ, ι =
1
t

the proof of Proposition 2.6 is directly applied for the estimate of ∂t u(t) (and provides

the better estimate than u(t) itself, as expected). The details are omitted here. The proof

is complete.

Finally, we give the short-time estimate of the pressure p[P� f ](t) with∫
�4

p[P� f ](t) dx = 0, where f does not need to be compactly supported.
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Proposition 2.8. Set �4 = �∩ {|x | 6 4}. Let 1 < q <∞ and α ∈ (0, 1
2 ]. Then the

following estimate holds for all f ∈ Lq(�)2:

‖p[P� f ](t)‖Lq (�4) 6
C

t
1
2 (1+

1
q )
‖ f ‖Lq (�), 0 < t 6 3. (2.71)

Here, C depends only on q and �.

Proof. Since the Helmholtz projection is bounded in Lq(�)2, we may assume that

f = P� f , but by assuming that f ∈ Lq
σ (�) instead of f ∈ Lq(�)2. Let us introduce

smooth cut-off functions χl , where χl = 1 if |x | 6 l and χl = 0 if |x | > l + 1. Let Bl be

the Bogovskii operator in the annulus Dl = {l < |x | < l + 1}, i.e., Bl [g] satisfies

divBl [g] = g in Dl , Bl [g] = 0 on ∂Dl ,

for a given function g ∈ C∞0 (Dl) with
∫

Dl
g dx = 0. The Bogovskii operator Bl is extended

to a bounded operator from W k,q
0 (Dl) to W k+1,q

0 (Dl)
2 for any 1 < q <∞ and k = 0, 1, . . . ,

together with the estimate

‖∇
k+1Bl [g]‖Lq (Dl ) 6 Cq,k,l‖∇

k g‖Lq (Dl ), 1 < q <∞, k = 0, 1, . . . . (2.72)

We set fD = χ2 f −B2[∇χ2 · f ]. Note that supp fD ⊂ {|x | 6 3} and χ1 fD = χ1 f . Then we

set

u(1) = χ1e−tAα,D fD −B1[∇χ1 · e−tAα,D fD]

+ (1−χ1)e−tAα f +B1[∇χ1 · e−tAα f ]. (2.73)

Here, f is extended by zero to R2. Then, since

(1−χ1) f +B1[∇χ1 · f ] +χ1 fD −B1[∇χ1 · fD]

= (1−χ1) f +B1[∇χ1 · f ] +χ1 f −B1[∇χ1 · f ] = f,

we see that u(1) solves

∂t u(1)+ Aαu(1)+∇(χ1 pD) = R, t > 0, x ∈ �,

div u(1) = 0, t > 0, x ∈ �,

u(1)|∂� = 0, u(1)|t=0 = f.

Here, pD is the associated pressure of e−tAα,D fD satisfying
∫

D pD dx = 0, and R is given

by

R(t) = −(1χ1)u D(t)− 2∇χ1 · ∇u D(t)+α(∂1χ1)u D(t)

+ (∇χ1)pD(t)− (∂t + Aα)B1[∇χ1 · u D(t)]

+ (1χ1)uR2(t)+ 2∇χ1 · ∇uR2(t)−α(∂1χ1)uR2(t)+ (∂t + Aα)B1[∇χ1 · uR2(t)].
(2.74)

Here, u D(t) = e−tAα,D fD and uR2(t) = e−tAα f , and we note that the pressure associated

with e−tAα f is taken as zero. Then the original solution (u,∇ pu) is constructed in the
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form u = u(1)+ u(2) and pu = χ1 pD −
1
|�4|

∫
�4
χ1 pD dx + pu(2) , and, thus, (u(2), pu(2)) is

the solution to

∂t u(2)+ Aαu(2)+∇ pu(2) = −R, t > 0, x ∈ �,

div u(2) = 0, t > 0, x ∈ �,

u(2)|∂� = 0, u(2)|t=0 = 0,
∫
�4

pu(2) dx = 0.

Then it is straightforward to see from
∫
�4

pu(2) dx = 0 that

‖pu(2)(t)‖Lq (�4) 6 C‖∇ pu(2)(t)‖W−1,q (�4)

= C‖− ∂t u(2)(t)− Aαu(2)(t)− R(t)‖W−1,q (�4)

6 C
(
‖∂t u(2)(t)‖Lq (�4)+‖u

(2)(t)‖W 1,q (�4)
+‖R(t)‖Lq (�4)

)
. (2.75)

Here, W−1,q(�4) is the dual space of W
1, q

q−1
0 (�4). The norm of u(2) is estimated from the

formula

u(2)(t) = −
∫ t

0
e−(t−s)Aα,�P�R(s) ds. (2.76)

We have from the local (in time) estimate of the Oseen semigroup,

‖u(2)(t)‖W 1,q (�4)
6 C

∫ t

0
(t − s)−

1
2 ‖R(s)‖Lq ds, (2.77)

while by decomposing
∫ t

0 =
∫ t

2
0 +

∫ t
t
2

and by using∫ t

t
2

e−(t−s)Aα,�P�R(s) ds =
∫ t

2

0
e−sAα,�P�R(t − s) ds,

we have

∂t u(2)(t) =
∫ t

2

0
Aα,�e−(t−s)Aα,�P�R(s) ds+

∫ t
2

0
e−sAα,�P�∂t R(t − s) ds. (2.78)

Thus, it follows that

‖∂t u(2)(t)‖Lq (�4) 6 C
∫ t

2

0
(t − s)−1

‖R(s)‖Lq ds+C
∫ t

2

0
‖∂t R(t − s)‖Lq ds. (2.79)

Therefore, it suffices to estimate ‖R(t)‖Lq and ‖∂t R(t)‖Lq . By the definition of R(t), we

have from (2.72),

‖R(t)‖Lq 6 C(‖u D(t)‖W 1,q (D1)
+‖pD(t)‖Lq (D1)+‖uR2(t)‖W 1,q (D1)

),

‖∂t R(t)‖Lq 6 C(‖∂t u D(t)‖W 1,q (D1)
+‖∂t pD(t)‖Lq (D1)+‖∂t uR2(t)‖W 1,q (D1)

).
(2.80)

Here, in the first inequality, we have used ∂tB1[∇χ · e−tAαh] = B1[∇χ · (1−α∂1)e−tAαh]
(since the pressure is zero) and ∂tB1[∇χ · e−tAα,D h] = B1[∇χ · ((1−α∂1)e−tAα,D h−
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∇ pD(t))], and since ∇χ = 0 on the boundary of the annulus |x | = 1, 2, one can apply the

boundedness of the Bogovskii operator in a negative order space (cf. [4]), i.e.,

‖B1[∇(∇χ · ∇e−tAαh)]‖Lq (D1) 6 C‖∇e−tAαh‖Lq (D1),

‖B1[∇(∇χ · ∇e−tAα,D h)]‖Lq (D1) 6 C‖∇e−tAα,D h‖Lq (D1),

‖B1[∇(pD(t)∇χ)]‖Lq (D1) 6 C‖pD(t)‖Lq (D1).

This argument yields the estimate of R(t) as above. The estimate of ∂t R(t) is shown in

the same manner. Then the standard estimate of the Oseen semigroups e−tAα,D and e−tAα

give for 0 < t 6 3,

‖R(t)‖Lq 6 C(t−
1
2 ‖ f ‖Lq +‖pD(t)‖Lq (D1)),

‖∂t R(t)‖Lq 6 C(t−
3
2 ‖ f ‖Lq +‖∂t pD(t)‖Lq (D1)).

As for the pressure pD(t), we have

‖∂
j

t pD(t)‖Lq (D) 6 Ct− j− 1
2 (1+

1
q )‖ fD‖Lq (D), 0 < t 6 3, j = 0, 1. (2.81)

The proof of (2.81) is postponed to Appendix C. Then we conclude from ‖ fD‖Lq (D) 6
C‖ f ‖Lq that

‖∂
j

t R(t)‖Lq 6 Ct− j− 1
2 (1+

1
q )‖ f ‖Lq , 0 < t 6 3, j = 0, 1, (2.82)

which gives from (2.77) and (2.79) that, for 0 < t 6 3,

‖u(2)(t)‖W 1,q (�4)
6 Ct−

1
2q ‖ f ‖Lq , ‖∂t u(2)(t)‖Lq (�4) 6 Ct−

1
2 (1+

1
q )‖ f ‖Lq . (2.83)

Thus, (2.75) yields

‖pu(2)(t)‖Lq (�4) 6 Ct−
1
2 (1+

1
q )‖ f ‖Lq , 0 < t 6 3. (2.84)

Then, since

‖p[P� f ](t)‖Lq (�4) = ‖pu(t)‖Lq (�4) 6 C(‖pD(t)‖Lq (�4)+‖pu(2)(t)‖Lq (�4)),

estimate (2.71) follows from (2.81) with ‖ fD‖Lq (D) 6 C‖ f ‖Lq and (2.84). The proof is

complete.

2.4. Proof of Theorem 1.2

It is standard that ‖∇ j e−tAα,�P� f ‖Lq 6 Ct−
j
2 ‖P� f ‖Lq 6 Ct−

j
2 ‖ f ‖Lq for 0 < t 6 3.

Then estimate (1.5) follows from Proposition 2.6 and estimate (1.6) follows from

Propositions 2.7 and 2.8. The proof is complete.

3. Lq-Lr estimate of Oseen semigroup

In this section, we apply the local energy decay estimate of Theorem 1.2 to the Lq -Lr

estimate of the Oseen semigroup, which proves Theorem 1.4. Let δq > 0 be the number

in Theorem 1.2.
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Proposition 3.1. Let 1 < r 6 q <∞ and let α ∈ (0, δq ]. Then for any f ∈ Lr
σ (�),

‖e−tAα,� f ‖W 1,q (�4)
6 C(1+ t)−

1
r

(
1+ t

t

) 1
2+

1
r −

1
q
‖ f ‖Lr , t > 0, (3.1)

‖p[P� f ](t)‖Lq (�4) 6 C(1+ t)−
1
r

(
1+ t

t

) 1
2 (1+

1
q )+

1
r −

1
q
‖ f ‖Lr , t > 0. (3.2)

Proof. We consider the case t > 2, and we may take the initial data as h = e−Aα,� f ∈
L∞(�)2 ∩ Lr

σ (�) instead of f ∈ Lr
σ (�). Let χ be a cut-off function χ ∈ C∞0 (R

2) such that

χ(x) = 1 for |x | 6 4 and χ(x) = 0 for |x | > 5. Set

v(t) = (1−χ)e−tAαh+B4[∇χ · e−tAαh].

Here, h is extended by zero to R2 and Bl is the Bogovskii operator in the annulus

Dl = {x ∈ R2
| l < |x | < l + 1}. Note that the pressure associated with e−tAαh is taken as

zero, and we have from the Young inequality for convolution,

‖e−tAαh‖W 1,∞ 6 C(1+ t)−
1
r ‖h‖W 1,∞∩Lr 6 C(1+ t)−

1
r ‖ f ‖Lr , t > 0. (3.3)

Note that (3.3) is valid for all α > 0 with a universal constant C . Then w = e−tAα,�h− v(t)
satisfies 

∂tw+ Aαw+∇ pw = −R̃, t > 0, x ∈ �,

divw = 0, t > 0, x ∈ �,

w = 0, t > 0, x ∈ ∂�,

w|t=0 = hloc, x ∈ �,

with pw(t) = p[P�h](t) (by the construction of v), hloc = χh−B4[∇χ · h], and

R̃(t) = (1χ)e−tAαh+ 2∇χ · ∇e−tAαh−α(∂1χ)e−tAαh+ (∂t + Aα)B4[∇χ · e−tAαh].

Then supp R(t) ⊂ {4 6 |x | 6 5} and we have from (2.72) and (3.3), and also by arguing

as in the derivation of (2.80) for the time derivative,

‖R̃(s)‖Lq 6 C‖e−sAαh‖W 1,∞ 6 C(1+ s)−
1
r ‖ f ‖Lr . (3.4)

We write w in the integral form as

w(t) = e−tAα,�hloc−

∫ t

0
e−(t−s)Aα,�P� R̃(s) ds

= w(1)(t)+w(2)(t).
(3.5)

Then the associated pressure pw is written in the form pw = pw(1) + pw(2) , where

pw(1)(t) = p[hloc](t), pw(2)(t) = −
∫ t

0
p[P� R̃(s)](t − s) ds (3.6)

by following the notation used in Theorem 1.2. Since e−tAα,�h = w(t) for |x | 6 4, it suffices

to estimate w(t). From the fact supp hloc, supp R̃(s) ⊂ {|x | 6 5}, Theorem 1.2 implies

‖e−tAα,�hloc‖W 1,q (�4)
6 Ct−1

‖hloc‖Lq 6 Ct−1
‖ f ‖Lr , (3.7)
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and ∥∥∥∥ ∫ t

0
e−(t−s)Aα,�P�R(s) ds

∥∥∥∥
W 1,q (�4)

6 C
∫ t

0

(
χt−s62

(t − s)
1
2
+

χ26t−s6α−2

(t − s)|log (t − s)|2

+
α2χ26t−s6α−2

|log (t − s)|
+

χt−s>α−2

(t − s)2α2|logα|

)
‖R̃(s)‖Lq ds. (3.8)

Thus, estimates (3.7), (3.8), and (3.4) give

‖e−tAα,�h‖W 1,q (�4)
= ‖w(t)‖W 1,q (�4)

6 Ct−
1
r ‖ f ‖Lr , t > 2.

This proves (3.1) for t > 2. As for the pressure term, we have from Theorem 1.2,

‖pw(1)(t)‖Lq (�4) 6 Ct−1
‖hloc‖Lq 6 Ct−1

‖ f ‖Lr , t > 2,

and

‖pw(2)(t)‖Lq (�4) 6 C
∫ t

0

(
χt−s62

(t − s)
1
2 (1+

1
q )
+

χ26t−s6α−2

(t − s)|log (t − s)|2

+
α2χ26t−s6α−2

|log (t − s)|
+

χt−s>α−2

(t − s)2α2|logα|

)
‖R̃(s)‖Lq ds.

Then, as in the proof of the velocity w(t) above, we can derive from (3.4) that

‖pw(t)‖Lq (�4) 6 ‖pw(1)(t)‖Lq (�4)+‖pw(2)(t)‖Lq (�4) 6 Ct−
1
r ‖ f ‖Lr , t > 2.

This proves (3.2) for t > 2. The estimate for 0 < t 6 2 is easy to verify. In particular,

(3.1) is standard and we omit the details. As for (3.2), from the semigroup property and

Proposition 2.8, we have

‖p[P� f ](t)‖Lq (�4) =

∥∥∥∥p[e−
t
2Aα,� f ]

(
t
2

)∥∥∥∥
Lq (�4)

6 Ct−
1
2 (1+

1
q )‖e−

t
2Aα,� f ‖Lq (�4)

6 Ct−
1
2 (1+

1
q )−

1
r +

1
q ‖ f ‖Lr , 0 < t 6 2.

Thus, (3.2) follows. The proof is complete.

We are now in a position to state our main estimate for the semigroup {e−tAα,�}t>0.

Theorem 1.4. It suffices to consider the case t > 2. Let f ∈ Lr
σ (�). We introduce a cut-off

function χ ∈ C∞0 (R
2) such that χ(x) = 1 for |x | 6 3 and χ(x) = 0 for |x | > 4. Set

w(t) = (1−χ)e−tAα,� f +B3[∇χ · e−tAα,� f ].

Here, B3 is the Bogovskii operator in the annulus {x ∈ R2
| 3 < |x | < 4}. Then, w coincides

with e−tAα,� f for |x | > 4 and satisfies the integral equation in R2:

w(t) = e−tAα ((1−χ) f +B3[∇χ · f ])+
∫ t

0
e−(t−s)AαPR(s) ds

= w(1)(t)+w(2)(t), (3.9)
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where

R(t) = (1χ)e−tAα,� f + 2∇χ · ∇e−tAα,� f −α(∂1χ)e−tAα,� f

− (∇χ)p[P� f ](t)+ (∂t + Aα)B3[∇χ · e−tAα,� f ]. (3.10)

Here, p[P� f ](t) is the associated pressure for e−tAα,� f , i.e., the couple

(u(t), p[P� f ](t)) = (e−tAα,� f, p[P� f ](t)) satisfies (1.1). By Proposition 3.1, with q = r ,

and by also using the similar technique as in (2.80) for the time derivative in (3.10), the

term R is estimated as

‖R(t)‖Lr 6 C(‖e−tAα,� f ‖W 1,r (�4)
+‖p[P� f ](t)‖Lr (�4))

6 C(1+ t)−
1
r

(
1+ t

t

) 1
2 (1+

1
r )

‖ f ‖Lr , t > 0. (3.11)

Set h = (1−χ) f +B3[∇χ · f ]. It is straightforward to see that

‖w(1)(t)‖Lq 6 Ct−
1
r +

1
q ‖h‖Lr 6 Ct−

1
r +

1
q ‖ f ‖Lr , t > 0. (3.12)

Similarly, we have

‖∇w(1)(t)‖Lq 6 Ct−
1
2−

1
r +

1
q ‖ f ‖Lq , t > 0. (3.13)

Next, we estimate w(2). Since R(s) is supported in {3 6 |x | 6 4}, we have ‖R(s)‖L1 6
C‖R(s)‖Lr , and, thus, from (3.11),

‖w(2)(t)‖Lq 6 C
∫ t

0
(t − s)−1+ 1

q ‖R(s)‖L1 ds

6 C
∫ t

0
(t − s)−1+ 1

q (1+ s)−
1
r

(
1+ s

s

) 1
2 (1+

1
r )

ds ‖ f ‖Lr

6 Ct−
1
r +

1
q ‖ f ‖Lr , t > 2. (3.14)

Here, we have used 1 < r 6 q <∞. The derivative estimate of w(2) in Lq with 1 < q < 2
is shown similarly, for

‖∇w(2)(t)‖Lq 6 C
∫ t

0
(t − s)−

1
2−1+ 1

q ‖R(s)‖L1 ds

6 C
∫ t

0
(t − s)−

3
2+

1
q (1+ s)−

1
r

(
1+ s

s

) 1
2 (1+

1
r )

ds ‖ f ‖Lr

6 Ct−
1
2−

1
r +

1
q ‖ f ‖Lr , t > 2, 1 < r 6 q < 2. (3.15)

Hence, (3.12), (3.13), (3.14), and (3.15) together with the fact w(t) = e−tAα,� f for |x | > 4
show

‖e−tAα,� f ‖Lq (�∩{|x |>4}) 6 Ct−
1
r +

1
q ‖ f ‖Lr , t > 2, 1 < r 6 q <∞,

‖∇e−tAα,� f ‖Lq (�∩{|x |>4}) 6 Ct−
1
2−

1
r +

1
q ‖ f ‖Lr , t > 2, 1 < r 6 q < 2.

The estimate in �∩ {|x | 6 4} is already proved in Proposition 3.1. The proof

is complete.
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Appendix A. Estimate of d(α, λ)

Let α > 0 and λ ∈ Σ 3π
4

. Let us prove (2.11). In virtue of (2.7), we have

|d(α, λ)| 6 C
∫ 1

0

α2s
|λ| +α2s

ds 6 C min
{

1,
α2

|λ|

}
.

Similarly, it is straightforward to see

|∂λd(α, λ)| =
∣∣∣∣ ∫ 1

0

4α2s
(4λ+α2s)2

ds
∣∣∣∣ 6 C

∫ 1

0

α2s
(|λ| +α2s)2

ds

6
C

|λ|
1
2

∫ 1

0

α2s

(|λ| +α2s)
3
2

ds

6
C

|λ|
1
2 (|λ| +α2)

1
2
,

and

|∂2
λd(α, λ)| =

∣∣∣∣ ∫ 1

0

32α2s
(4λ+α2s)3

ds
∣∣∣∣ 6 C

∫ 1

0

α2s
(|λ| +α2s)3

ds

6 C
∫ 1

0

1
(|λ| +α2s)2

ds

6
C

|λ|(|λ| +α2)
.

The proof is complete.

Appendix B. Injectivity of I+ T0[0] in { f ∈ Lq
[5](�) |

∫
�

f dx = 0}

In this appendix, we give a brief sketch of the proof for the injectivity of I+ T0[0] in { f ∈
Lq
[5](�) |

∫
�

f dx = 0} for the reader’s convenience. Note that this is already proved in

[6]. Suppose that f ∈ Lq
[5](�),

∫
�

f dx = 0 satisfies (I+ T0[0]) f = 0. Then the definition

of T0[0] implies

−1U0[0] f +∇P0[0] f = (I+ T0[0]) f = 0, divU0[0] f = 0, x ∈ �

and U0[0] f = 0 on ∂�. Moreover, from the definition of U0[0], the vector field U0[0] f
is equal to E0

0 ∗ f for |x | > 5, and, thus, the condition
∫
�

f dx = 0 yields the decay

U0[0] f (x) = O(|x |−1) as |x | → ∞. On the other hand, we have P0[0] f (x) = −∇ ·
(−1R2)−1 f (x) = O(|x |−1) for |x | � 1. These decays ensure that

U0[0] f = 0 and P0[0] f = 0 in � (B. 1)
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by the injectivity of the Stokes operator in an exterior domain. Since U0[0] f = E0
0 ∗

f for |x | > 5, we obtain E0
0 ∗ f = 0 on |x | > 5. Therefore, (u(0)R2 , pR2) := (E0

0 ∗ f,−∇ ·
(−1R2)−1 f ) solves

−1u(0)R2 +∇ pR2 = f, div u(0)R2 = 0, |x | 6 5, u(0)R2 = 0, |x | = 5.

Next, the fact U0[0] f = u(0)D := A−1
D PD f for x ∈ �∩ {|x | 6 4} and (B. 1) imply u(0)D = 0

for |x | 6 4, and, similarly, by recalling (2.22), the associated pressure p(0)D ,
∫

D p(0)D dx = 0,

satisfies p(0)D +
1
|D|

∫
D pR2 dx = 0 for x ∈ �∩ {|x | 6 4}. Let ũ(0)D be the extension of u(0)D to

{|x | < 5} such that ũ(0)D = u(0)D in D and ũ(0)D = 0 on �c and, similarly, let p̃(0)D be the

extension of p(0)D to {|x | < 5} such that p̃(0)D = p(0)D in D and p̃(0)D = −
1
|D|

∫
D pR2 dx on �c.

Then we verify that (ũ(0)D , p̃(0)D ) solves

−1ũ(0)D +∇ p̃(0)D = f, div ũ(0)D = 0, |x | < 5, ũ(0)D = 0, |x | = 5.

Here, we have used the fact that u(0)D = 0 and p(0)D = −
1
|D|

∫
D pR2 dx in a neighborhood

of ∂�. By the uniqueness of the solution to the Stokes equations in the bounded domain

{|x | < 5}, we conclude that u(0)R2 = ũ(0)D and pR2 − p̃(0)D = Const. in {|x | < 5}. Integrating

over D, we see |D|Const. =
∫

D pR2 dx −
∫

D p̃(0)D dx =
∫

D pR2 dx and, thus, pR2 = p(0)D +
1
|D|

∫
D pR2 dx in �∩ {|x | 6 5}. From the definition of T0[0], these identities in {4 < |x | < 5}

yield that T0[0] f = 0. Hence, we have arrived at f = f + T0[0] f = (I+ T0[0]) f = 0. The

proof is complete.

Appendix C. Estimate of the pressure in a bounded domain: proof of (2.81)

We give the estimate of pD satisfying
∫

D pD dx = 0. Take arbitrary φ ∈ C∞0 (D) and set

φ̃ = φ− cφ , where the constant cφ is taken so that
∫

D φ̃ dx = 0. Let ωφ with
∫

D ωφ dx =
0 be the unique solution to the Neumann problem: 1ωφ = φ̃ in D and ∂nωφ = 0 on

∂D. It is classical that ‖ωφ‖
W

2, q
q−1 (D)

6 C‖φ̃‖
L

q
q−1 (D)

6 C‖φ‖
L

q
q−1 (D)

. Then the condition∫
D pD(t) dx = 0 and the integration by parts yield∫

D
pD(t)φ dx =

∫
D

pD(t)φ̃ dx =
∫

D
pD(t)1ωφ dx

= −

∫
D
∇ pD(t) · ∇ωφ dx . (C. 1)

By the equation of u D, we have ∇ pD = −∂t u D +1u D −α∂1u D, which implies from the

integration by parts and u D|∂D = 0,∫
D
∇ pD · ∇ωφ dx =

∫
D
(−∂t u D +1u D −α∂1u D) · ∇ωφ dx

= −

∫
D
∇
⊥rot u D · ∇ωφ dx +α

∫
D

u D · ∂1∇ωφ dx . (C. 2)
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Here, ∇⊥ = (∂2,−∂1) and rot u D = ∂1u D,2− ∂2u D,1. Then the integration by parts and

the trace theorem give, for q ′ = q
q−1 ,∣∣∣∣ ∫

D
∇
⊥rot u D · ∇ωφ dx

∣∣∣∣ = ∣∣∣∣ ∫
∂D

rot u D(n2∂1ωφ − n1∂2ωφ) d S
∣∣∣∣

6 ‖rot u D‖Lq (∂D)‖∇ωφ‖Lq′ (∂D)

6 C‖rot u D‖
1− 1

q
Lq (D)‖∇rot u D‖

1
q

W 1,q (D)‖∇ωφ‖
1− 1

q′

Lq′ (D)
‖∇ωφ‖

1
q′

W 1,q′ (D)

6 C‖rot u D‖
1− 1

q
Lq (D)‖∇rot u D‖

1
q

W 1,q (D)‖φ‖Lq′ (D).

The other term in the right-hand side of (C. 2) is estimated as∣∣∣∣α ∫
D

u D · ∂1∇ωφ dx
∣∣∣∣ 6 Cα‖u D‖Lq (D)‖∇

2ωφ‖
L

q
q−1 (D)

6 Cα‖u D‖Lq (D)‖φ‖
L

q
q−1 (D)

.

Collecting these, we have from (C. 1) and the duality argument,

‖pD(t)‖Lq (D) 6 C(‖rot u D‖
1− 1

q
Lq (D)‖∇rot u D‖

1
q

W 1,q (D)+α‖u D(t)‖Lq (D)). (C. 3)

Thus, we have arrived at

‖pD(t)‖Lq (D) 6 Ct−
1
2 (1+

1
q )‖ fD‖Lq (D), 0 < t 6 3. (C. 4)

Arguing exactly in the same manner, we can also show

‖∂t pD(t)‖Lq (D) 6 C(‖∂t rot u D‖
1− 1

q
Lq (D)‖∇∂t rot u D‖

1
q

W 1,q (D)+α‖∂t u D(t)‖Lq (D))

6 Ct−1− 1
2 (1+

1
q )‖ fD‖Lq (D), 0 < t 6 3. (C. 5)

The proof of (2.81) is complete.
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