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SUMMARY
This paper studies the problem of optimizing the kinematic structure of an eight degree-of-freedom
upper-limb rehabilitation exoskeleton. The objective of optimization is achieving minimum volume
and maximum dexterity in the workspace of daily activities specified by a set of upper-arm configu-
rations. To formulate the problem, a new index is proposed for effective characterization of kinematic
dexterity for wearable robots. Additionally, a set of constraints are defined to ensure that the opti-
mal design can cover the desired workspace of the exoskeleton, while singular configurations and
physical interferences are avoided. The formulated multi-objective optimization problem is solved
using an evolutionary algorithm (Non-dominated Sorting Genetic Algorithm II) and the weighted
sum approach. Among the resulted optimal points, the point with least sensitivity with respect to the
variations of design variables is chosen as the final design.

KEYWORDS: Exoskeletons; Design optimization; Kinematic design; Kinematic dexterity;
Workspace maximization.

1. Introduction
Producing repeatable and precisely controllable motions are key attributes of robotic systems, making
them advantageous for rehabilitation purposes.1–3 Capabilities of exoskeletons in providing con-
trolled support for individual joints of the limb make them more desirable than other robotic-based
rehabilitation candidates.4 Despite their advantages over other robot-based solutions, kinematic
design of exoskeletons is very challenging.5–7 This is mainly due to the complexities involved in
developing a mechanical structure that can comply with the natural motion of the human body2, 6 and
the very large range of motion required in certain joints such as shoulder.5, 6

Kinematics of a robotic system directly affects its functional capabilities, and therefore, an opti-
mally designed kinematic structure is essential for achieving a good performance. Considering
the large number of variables involved in the kinematic design and their complex and intercon-
nected effects on the behavior of the system, employing a systematic optimization technique can
be helpful in achieving a well-performing system. This has motivated many research studies to
focus on the kinematic optimization problem. Achieving enhanced dexterity,8–11 expanding reach-
able workspace,9, 10, 12 and minimizing system size13, 14 have been some of the optimization goals
studied in the literature. Kinematic optimization of robotic systems is not a trivial task. First, there
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is no uniformly accepted index for quantifying the kinematic performance. While manipulability
and condition number of the Jacobian matrix are the two extensively used dexterity measures in
the literature,8–10 various other Jacobian-based indices such as global conditioning number,11, 15, 16

relative manipulability,17–19 and measure of isotropy18, 20, 21 are also used by researchers. Second,
since Jacobian-based indices require configuration data associated with the points of interest in the
robot’s workspace, inverse kinematics is an inseparable step in the kinematic optimization. However,
it is well known that solving the inverse kinematics problem is computationally challenging.22

Additionally, nonuniqueness and nonexistence23, 24 of solutions add to the complexity of solving
the inverse kinematics.

In addition to the significance of formulating the optimization problem appropriately, the choice
of optimization technique is also equally important. For kinematic optimization problems, non-
gradient-based techniques have been commonly used due to their capability in searching for the
global minimum in complex problems with the prevalence of local minima. Zhang and Nelson have
used Genetic Algorithm (GA) to design a spherical serial mechanism with maximum workspace
and manipulability and minimum size.25 Similarly, Zhang and Gao have conducted a multi-objective
optimization using particle swarm algorithm to search for the optimal dexterous stiffness and reach-
able workspace in a bioinspired parallel manipulator.26 Similar efforts have been made to optimize
orthotic devices to maximize manipulator dexterity5, 27, 28 and achieve the required workspace while
preserving compactness.29–31 In addition to the common challenges associated with the problem for-
mulation and solving kinematic optimization, optimizing exoskeletons require imposing additional
constraints to consider the possibility of physical interference between the device and the body.32–34

Integrating the possibility of physical collision in the analysis is not a trivial task, since it requires
careful consideration of the positioning of the human body relative to the device. Lo and Xie have
used GA to optimize the design of a 4R-mechanism shoulder exoskeleton to maximize the achievable
shoulder workspace and Jacobian condition number. The constrained optimization is formulated by
defining a forbidden region for the structure when inverse kinematics has no solution, or the structure
approaches singular configurations, or physical interference could occur.35 Similarly, an optimiza-
tion problem to minimize the global conditioning number of a parallel ankle rehabilitation robot is
formulated and solved in Ref. [36] using a variation of GA.

The goal of this paper is to optimize the kinematic design of CLEVERarm, an eight Degree-of-
Freedom (DoF) upper-limb rehabilitation exoskeleton, to achieve maximum dexterity and a compact
device. All the design variables in the problem of interest are located in the device shoulder.
Therefore, the objective of optimization is finding a compact shoulder design with maximum dex-
terity in the desired workspace defined as a set of upper-arm configurations associated with daily
activities. This can be mathematically formulated as a constrained multi-objective optimization prob-
lem, where the volume and dexterity constitute the 2×1 vector of cost functions. This paper proposes
a novel index, named adjusted condition number, to quantify kinematic dexterity. For evaluation of
the proposed dexterity cost in each iteration of the optimization, the inverse kinematics problem
is solved by a recently developed method named geometric equivalence for anthropomorphic arms
(GEAA). This method significantly reduces the computational load of the cost function evaluation
and eliminates the need for solving the set of coupled nonlinear equations arising in the solution of
inverse kinematics. Workspace requirements and device/body collision considerations, as well as the
conditions imposed by the geometry of the CLEVERarm links, define the constraints for the opti-
mization problem. The formulated multi-objective problem is solved in two phases. First, pareto front
is found using a variant of the Non-dominated Sorting Genetic Algorithm (NSGA-II). Alternatively,
weighted sum approach is used to identify a set of semi-optimal points (in the sense of pareto optimal-
ity). The scalar cost function formed by weighted sum method is optimized using a hybrid strategy
comprised of GAs followed by Sequential Quadratic Programming (SQP) for localized search. From
a practical point of view, dimensional tolerances and inaccuracies are unavoidable in manufacturing
process of robot body parts. In this paper, post-optimization sensitivity analysis is used to quantify
the effect of such dimensional discrepancies on the cost function. Among the set of points found by
solving the multi-objective optimization problem, the design with lowest sensitivity is chosen.

In summary, the main contributions of this paper can be summarized as follows: proposing a
novel index for quantifying kinematic dexterity, using a computationally efficient method for solv-
ing inverse kinematics problem, and using sensitivity analysis in choosing the final design. These
novel techniques have been utilized to achieve a dexterous and compact upper-limb exoskeleton.
This manuscript is organized as follows. Section 2 describes the kinematic design and specifications
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(a) (b)

Fig. 1. (a) Kinematic model of CLEVERarm, (b) design concept on human model.

of CLEVERarm, while the mathematical formulation of the optimization problem is outlined in
Section 3. The GEAA inverse kinematics technique along with the other methods used to solve the
optimization problem are briefly reviewed in Section 4. Finally, the optimization results are presented
in Section 5, and the main contributions of the paper are summarized in Section 6.

2. CLEVERarm
CLEVERarm is an eight DoF upper-limb rehabilitation exoskeleton supporting the motions of shoul-
der, elbow, and wrist.37 Figure 1(a) shows the kinematic model of CLEVERarm in a right-arm
configuration, while Fig. 1(b) demonstrates the system on a manikin. As shown in this figure, human
arm can be connected to the device in three interface points, two semi-circular cuffs to be strapped
around the upper-arm and wrist, and a handle to be gripped by the user.

Kinematic compatibility between an orthotic device and the human body is necessary to ensure
that the natural motion of the body is not restricted and the interaction is comfortable. This can be
achieved by considering adequate DoF to allow replicating human movements as close as possi-
ble.38 Designing a mechanism that matches the kinematics of the body and supports the complex
motions of the shoulder joint has been the main emphases in the kinematic design of CLEVERarm.
Three revolute joints denoted by joints 3, 4, and 5 in Fig. 1(a) are used in the kinematic structure of
CLEVERarm to model the spherical shoulder joint. This group of joints is connected to the device
base through one revolute and one prismatic joint which support the motion of human inner shoulder
(joints 1 and 2). According to the literature, the glenohumeral (GH) center’s movement is coupled
to the elevation of the arm.39–41 This movement is modeled in Refs. [40, 42] with two rotations (ϕed

and ϕpr) and one translation (�dSG) of the vector connecting GH to a fixed frame (dSG), where the
rotations represent the elevation/depression and pronation/supination of this vector on the frontal and
transverse plane of the body, respectively. Equation (1) represents the model mathematically where
γ denotes the elevation of the arm, and d0 is the length of the vector connecting GH center to origin
when γ = 0.42 The value of d0 in this model can be updated for different individuals based on their
measured body sizes. Figure 2 shows the inner shoulder and the parameters used in the inner shoulder
model.

ϕed = 1.49 × 10−9γ 5−4.28×10−7γ 4 + 1.44 × 10−5γ 3 + 5.2×10−3γ 2−0.1357γ+ 0.7078 (1)

ϕpr = 1.82γ 3−8.073γ 2−3.99γ

dSG − d0 = (−1.6×10−5γ 2+3×10−4γ
)

d0

Using this model, joints 1 and 2 position the point of intersection of the three shoulder joint axes
on the body frontal plane such that the exoskeleton shoulder center matches with the human GH joint
center. This allows better alignment for shoulder joint center compared to the self-aligning or linkage-
based mechanisms.43, 44 In addition to the shoulder girdle motion and GH rotations in CLEVERarm,
flexion and extension of the elbow joint are realized by a one DoF revolute joint denoted by joint
6 in Fig. 1(a), whereas the curved rail connected to the forearm and the revolute joint hinged to the
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Fig. 2. Inner shoulder schematics.

Table I. Design variable bounds.

v1 v2 v3 v4 v5 v6

Lower bound 0 0.1 m 0.1 m 10◦ 10◦ 0
Upper bound 45◦ 0.3 m 0.3 m 150◦ 150◦ 90◦

carrier of the curved rail support the wrist pronation and flexion, respectively. The described wrist
degrees-of-freedom are denoted by joints 7 and 8 in Fig. 1(a).

3. Optimization Problem Formulation
To maximize the usability of the device in multiple settings such as clinics and home and to improve
portability, a compact device is desired.45 On the other hand, due to the close interaction of the
exoskeleton with the human body and its expected functionality of closely mimicking human upper-
limb, designing a dexterous exoskeleton is required. Therefore, the goal of this paper is to optimize
the kinematic design of CLEVERarm to achieve minimized volume and maximized dexterity in
the desired workspace of the robot. As it will be discussed in the following section, all the design
variables are gathered in the device shoulder. Resultantly, the optimization problem is focused on
improving the kinematic indices of the shoulder design. This section provides a detailed discussion
on the mathematical formulation of the optimization problem.

3.1. Design variables
There can be numerous design variations for the chosen model of the spherical serial linkage in
CLEVERarm shoulder. These variations can be parameterized and utilized as design variables in the
optimization problem. As the first step, Denavit Hartenberg’s (DH) convention is used to model the
kinematics of the system. The design variables used for the formulation of optimization problem can
be represented in terms of the DH variables. Figure 3 shows the assignment of DH coordinate frames
and the definition of design variables based on the DH model of CLEVERarm.

Figure 3 shows the design variables on the full kinematic chain of CLEVERarm. While nine
coordinate frames are needed to model the full kinematics of CLEVERarm, only the first six are
used in the formulation of optimization problem, since all the design variables are located in the
device shoulder. The (XE, YE, ZE) coordinate system attached to the upper-arm is considered to be
the last coordinate frame in the optimization problem and is referenced as the “end-effector frame”
throughout the paper.

Design variables outlined in Fig. 3 cannot have arbitrary values and are bounded. While bounds on
the value of v2 and v3 are imposed by manufacturing constraints, geometric considerations necessitate
other bounds as well. For example, it is clearly visible in Fig. 3 that the value of v6 cannot exceed
90◦ since the center of exoskeleton shoulder (point of intersection of the three axes of rotation for the
shoulder joints) would not coincide with the GH joint center of the person wearing it. By considering
the geometric aspects of the design and expected functionalities from the system, a set of bounds on
the designed variables are identified as shown in Table I.
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Fig. 3. Kinematic model of CLEVERarm and the defined design variables.

Fig. 4. Angles determining orientation of the upper-arm.

Table II. Shoulder ADL range of motion.

Horizontal abduction/
adduction (η◦) Flexion/extension (γ ◦) Internal/external rotation (ζ ◦)

Lower bound 0 0 0
Upper bound 135 110 110

3.2. Desired system workspace
CLEVERarm is intended to provide automated therapy for patients suffering from neurological dis-
orders such as stroke, by providing training for Activities of Daily Living (ADL) such as reaching,
self-feeding, bathing, combing, etc. Therefore, the robot should be able to cover the workspace
required for these ADL motions. A set of upper-arm configurations associated with the aforemen-
tioned motions are considered as the desired workspace for CLEVERarm. Motions of the shoulder
are categorized as horizontal abduction/adduction, flexion/extension, and internal/external rotation
of the upper-arm, and are denoted by three shoulder angles of azimuth (η), elevation (γ ), and torsion
(ζ ), respectively. These shoulder angles, depicted in Fig. 4, can uniquely specify the orientation of
the upper-arm.

Based on the Range of Motion (RoM) data for healthy subjects and the RoM required for ADL
reported in the literature,5 the values shown in Table II are chosen as the desired workspace for
shoulder motions.

Due to the high computation cost of calculating inverse kinematics, considering a continuous
desired workspace is not practical. Resultantly, a discrete subset of upper-arm configurations for
ADL is selected as the desired workspace. This subset is created by partitioning the range of motion
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Fig. 5. Geometrical relations for collision prevention between the exoskeleton and the subject’s head.

of each DoF of the shoulder in Table II into five equally spaced intervals. The resulting 125 points
are assumed to be representatives of the continuous workspace of ADL.5

3.3. Constraints
Singularity is a kinematic phenomenon where any infinitesimal motion of the end-effector translates
to very large angular velocities in the joint level. Therefore, it is important to avoid singular configu-
rations by placing them outside the desired workspace of the robotic system during the design phase.
CLEVERarm does not have any isolated singular configurations within its workspace.37 However,
there are two gimbal lock configurations in the shoulder linkage (i.e., θ4= 0◦ and θ4= 180◦) which
limit the achievable horizontal abduction and adduction of the upper-arm. By inspecting the geome-
try of the system, it can be shown that the maximum and minimum achievable horizontal abduction
and adduction are related to the design variables as shown in Eq. (2).

v1 + v4 + v5 + v6 − π

2
= maximum horizontal abduction/adduction

v1 − v4 + v5 + v6 − π

2
= minimum horizontal abduction/adduction (2)

Using the values in Table II, two inequality constraints can be acquired to ensure that the two
gimbal lock configurations occur outside the desired workspace:

v1+v4+v5+v6 ≥ 225◦

v1−v4+v5+v6 ≤ 90◦ (3)

The last set of constraints are meant to avoid physical interference between the device and the
patient body. Considering the geometry of the system, a collision between the exoskeleton and the
user’s head can occur during the maximal horizontal abduction where the shoulder links are folded
on each other as shown in Fig. 5. To reduce the possibility of such collisions, a safe distance between
the device and the head should be preserved at all times. The geometrical relationships between the
design variables and the point of the device closest to the body are illustrated in Fig. 5. Through
trigonometric calculations, it can be shown that the clearance distance is v2cos (v4 − v1) .

This distance could also be considered as a cost to be maximized. However, from a practical
perspective, having a minimum clearance between the device and the body is sufficient for achieving
a safe interaction. Additionally, including a third cost function in the problem formulation will further
complicate the optimization problem and selection of the optimal solution among the pareto points.
Therefore, it is reasonable to consider a safe distance between the device and the body, and formulate
this constraint as an inequality constraint as follows:

v2cos (v4−v1) > 0.15 (4)

The safe distance of 0.15 meters is selected based on the average chest depth data of healthy
subjects in the 90 percentile of population plus a clearance gap of approximately 3 centimeters.46
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3.4. Optimization cost
Quantifying the kinematic dexterity of a robotic system is not a trivial task in general. According to
the literature, this measure can be quantified through various Jacobian-based indices such as manip-
ulability47 and condition number.15, 48 A high manipulability index is desirable since it shows the
capability of a robot’s end-effector in achieving higher velocity in more directions.15 However, in
some cases, the designer might not necessarily care about all the components of the end-effector
velocity, or no velocity could be generated in certain directions of the end-effector frame. For exam-
ple, in the case of upper-limb exoskeletons, no linear velocity can be achieved along the axis of
upper-arm since the shoulder is a spherical joint incapable of supporting radial velocities. Similarly,
the upper-arm link cannot acquire any angular velocities in the YE and ZE directions shown in Fig. 3.
Therefore, it is useful to generalize the kinematic dexterity concept to the cases where a subset of
end-effector velocities is considered. In other words, formulating the kinematic performance index
based on the desirable velocity directions could be a better representation of the dexterity of the
system. This is very important from the optimization perspective, since the defined index could be
specific to a particular application, and this would ensure that no trade-off is made for achieving a
subgoal that is not important to the designer.

Directions that are achievable by human arm can be identified more easily in the local coordinate
system of the end-effector. Therefore, a modified Jacobian operator is defined which can map the
space of the joint angular velocities to the space of the end-effector linear and angular velocities
expressed in the end-effector frame. Let Rb

E define the rotation matrix between the base and the end-
effector coordinate systems. Using this rotation matrix, the modified Jacobian matrix is defined as:

Jm=
[

RE
b Jv

RE
b Jω

]
(5)

To continue, a subset of the modified Jacobian matrix is selected by eliminating the rows correspond-
ing to the directions along which no velocity can be achieved (linear velocity in the XE direction, as
well as the angular velocity along the YE and ZE), all expressed in the end-effector frame:

Jm=E Jm (6)

where E is an algebraic operator defined as:

E= [
03×1 I3×3 03×2

]
(7)

This paper proposes a novel dexterity index, named adjusted condition number based on Jm. The
proposed index is defined as follows:

ηa(q)=
(
σmax

(
JmJ

T
m

)
/σmin

(
JmJ

T
m

))
(8)

As Eq. (8) shows explicitly, the adjusted condition number is a configuration-dependent index.
Therefore, to improve the kinematic performance over the entire desired workspace, the cumulative
effect of all the desired configurations needs to be considered. It is also important to note that the
E matrix defined in Eq. (7) is specific to the problem studied in this paper, that is, optimizing the
shoulder kinematic design for an upper-limb exoskeleton. For other problems, other choices of E
matrix might be desired.

3.5. Mathematical problem statement
Based on the defined constraints and cost function, the multi-objective optimization problem is
formulated as follows:

min J (v, p)
s.t. g (v)≤ 0
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Fig. 6. A two-dimensional cross section of the space of feasible designs.

where

J =
[

J1

J2

]
=

[ − max
q

ηa (q, v)
2
3π

(
v3

2

(
1− cosv4

2

) +v3
3

(
1− cosv5

2

))
]

(9)

where q denotes the set of 125 exoskeleton configurations associated with the workspace of the
desired upper-arm directions, v is the vector of the design variables defined in Fig. 3, and the volume
cost function (J2) is defined as the total volume of the two sphere sectors created by two circular links.
The inequality and side constraints considered for the optimization problem are defined according to
Sections 3.1 and 3.2 as follows:

g (v)=

⎡
⎢⎢⎢⎣

− (v1+v4+v5+v6)+225

v1−v4+v5+v6−90

v2cos (v4−v1)−0.15

−v2+v3+0.03

⎤
⎥⎥⎥⎦ ≤ 0, ll (i) <vi<ul (i)

ll=
[

0 0.1 0.1 10 10 0
]′
, ul=

[
45 0.3 0.3 150 150 90

]′
(10)

where the fourth inequality constraint is a practical consideration to account for the thickness of the
circular links to enable folding of the two links on each other. It is important to note that the domain
of optimization described by Eq. (10) can contain infeasible design vectors for which the solution of
inverse kinematics problem does not exist for at least one member of q. However, it is not possible to
include this constraint explicitly in Eq. (10) since the set of feasible designs within the optimization
domain cannot be determined analytically. To address this issue, infeasible points for which inverse
kinematics has no solution are assigned a large cost value while solving the formulated optimization
problem. Figure 6 shows a two-dimensional cross section of the space of feasible designs where
variables four and six can acquire values within the range shown in Eq. (10) and the other four
variables are held fixed at (v1, v2, v3, v5)= (10, 0.2, 0.15, 100). In this figure, red and blue regions
show the feasible and infeasible design concepts, respectively.

It can be seen that the space of feasible designs is not convex and can shrink and expand in
different parts of the optimization domain. The irregular shape of this set adds to the complexity
of the optimization problem by making the analysis very sensitive to the starting point. Section 5
discusses the techniques used in this research to overcome this challenge.

4. Methods
This section reviews the methods used for solving the formulated optimization problem. A combina-
tion of different techniques from the literature is used to find the optimal solution with computational
efficiency.
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Fig. 7. Configuration space of the exoskeleton and the equivalent system related through transformation T.

4.1. Geometric equivalence for anthropomorphic arms
GEAA is a geometric method for constructing a direct mapping between the configuration spaces
of two kinematically equivalent systems. Finding such a transformation via GEAA requires solving
a set of algebraic equations and consequently is computationally efficient. This method can be very
useful for solving the inverse kinematics problem with low computational cost for geometrically
complex systems. This can be achieved by identifying a kinematically equivalent system for which
the inverse problem can be easily solved and mapping the solution to the configuration space of
the original system.46 The simplified system considered here for solving the inverse kinematics of
CLEVERarm is a stick figure arm model which is shown in Fig. 6, along with the kinematic model
of the exoskeleton, and the transformation in a conceptual level.49

Solving the inverse kinematics problem is trivial for the equivalent system due to its simple geom-
etry. On the contrary, the complexity of the forward kinematics equations for CLEVERarm makes
finding explicit inverse solutions almost impossible. The kinematic link between the two systems is
the direction of the upper-arm (i.e., ea is parallel with the direction of link 5, as shown in Fig. 7).
This kinematic constraint along with the geometry of the exoskeleton links can be used to identify
the loci of rotation axes for the exoskeleton joints, which can be used to infer the direction of rotation
axes (Zi). Configuration of the exoskeleton can be reconstructed by knowing the direction of rotation
axes following the DH convention. Let ea0 and n denote the direction of the upper-arm in the base
frame and the normal vector of the plane formed by the upper- and lower-arm, respectively. The axis
of rotation of joints four and five are the quantities needed for reconstructing the configuration of
the exoskeleton (i.e., pose needed in the optimization problem) and can be identified by solving the
following set of algebraic equations:⎧⎨

⎩
<z4, n > = 0

<z4, ea0 > = −sin v6

‖z4‖ = 1
,

⎧⎨
⎩
<z2, z3 > = cos v4

<z4, z3 > = cos v5

‖z3‖ = 1
(11)

4.2. Genetic algorithm
GA is a heuristic search technique used to solve complex and nonlinear problems. This method
uses probabilistic transition rules to guide the search for global minima. GA’s ability to search a
population of points in parallel makes the technique a computationally efficient method to find global
minimum and prevent getting trapped in local minima.50 However, it cannot guarantee convergence
to the global optimum. GA also enables optimizing systems with continuous as well as discrete, and
integer design variables.51

An individual design candidate in GA is represented with chromosomes, a fixed-length string
of genes. Each chromosome represents a solution, often using strings of ones and zeros. Applying
genetic operators including selection, crossover, insertion, and mutation evolves a generation and
generates a new generation of the population. A GA algorithm in general works as follows: First a
population is initialized and objective function is evaluated for the initial population. Then based on
the selection criteria, individuals are selected for mating. Typically, selection is the most important
and most computationally expensive step of a GA. Through the crossover operator, selected par-
ents mate and produce children. After mutating, based on the chosen insertion strategy, children are
inserted into the population. GA’s algorithm is an iteratively cyclic method which continues until
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Table III. Design of experiments.

Experiment no. Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 J1 J2

1 10 0.2 0.15 70 100 30 99.90 0.022
2 10 0.16 0.15 70 100 30 97.53 0.023
3 10 0.2 0.18 70 100 30 93.17 0.027
4 10 0.2 0.15 75 100 30 33.45 0.023
5 10 0.2 0.15 70 105 30 33.78 0.022
6 10 0.2 0.15 70 100 20 27.49 0.022

the stopping criteria is satisfied. Average performance of individuals in a population is expected
to increase, as good individuals are preserved and breed and less fit individuals die out. However,
performance of the algorithm and convergence rate highly depend on tuning of parameters such as
selection rate, insertion strategy, mutation rate, crossover fraction, and population size.

4.3. Sequential quadratic programming
SQP is one of the most effective methods for solving general constrained optimization problems.52, 53

This method is a gradient-based optimum search method which uses gradient information to update
the search direction. Similar to other gradient-based methods, SQP is fast; however, it is susceptible
to local optima.

The SQP optimization method iteratively approximates the nonlinear programming problem by a
quadratic programming subproblem at each iteration, where from the current point, a line direction
search is conducted to reach to a new point which reduces the cost function of the original nonlinear
optimization function. The achieved point is then used in the new iteration, and this process continues
until a termination criterion is satisfied. The challenge in this method is designing the quadratic
programming subproblem such that it yields a good step for the nonlinear optimization problem.

5. Results
Initial population for starting the optimization algorithms is selected among the optimal points found
through the Design of Experiments (DOEs) along with other random points. Details of the DOE are
provided below.

5.1. Design of experiments
DOE is used to better understand the effect of various design variables on the objective functions
and to identify good initial guesses for gradient-based and heuristic methods. Table III shows the
DOE using the parameter study method where each row shows one experiment which differs from
the baseline design, highlighted in blue, in only one variable. Discretization technique is used due
to the fact that design variables are continuous. While several levels for each variable were used to
study the behavior of the cost functions locally around the baseline design, only two levels for each
variable are shown in Table III for the sake of brevity.

5.2. Multi-objective optimization
The multi-objective optimization problem formulated in Section 3.5 is solved using NSGA-II to find
the pareto front. Additionally, weighted sum approach is used to calculate a set of semi-optimal
points. While solutions achieved from the weighted some approach might not be pareto in the sense
of the defined cost functions, they might have lower sensitivity, thus making them favorable. This is
important from a practical point of view, since manufacturing parts with the exact dimensions is not
guaranteed. Therefore, it is important to consider the sensitivity of the optimal points in addition to
their cost value.

The weighted sum cost function is defined as a convex linear combination of the two cost functions
as follows:

J = βW1J1+ (1−β)W2J2, βε(0, 1)

where W1 and W2 are weights used to ensure that the relative magnitude of the two cost functions
are close. Based on the absolute value of the cost function in the problem of interest, the following
weight values were chosen: W1 = 1 and W2 = 100. The scalar cost function is then optimized with a
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Table IV. GA tuning parameters.

Population Crossover Max
size fraction Elite count generations Initial penalty Function tolerance

300 0.65 0.05 × population size 50 100 10−8

Fig. 8. Pareto and semi-optimal points.

hybrid approach comprised of GA and SQP. The set of parameters presented in Table IV were used
for GA analysis.

An important observation about the GA is the convergence issues due to the occurrence of infea-
sible design vectors for which the inverse kinematics problem does not have a solution at least for
one of the desired orientations for the arm. To overcome this issue, a quarter of the initial population
for GA were chosen from the known feasible points (DOE) to ensure that the later generations could
benefit from the known feasible points in the initial population until better solutions are found. This
was significantly helpful in improving the convergence of GA.

For each value of β, GA optimization was repeated several times and the best solutions were
retained for finer local optimization using SQP algorithm. Optimality conditions were checked for
the output points of SQP to verify that they are indeed a minimum point. Additionally, to understand
whether the problem needs scaling, hessian of the cost function was evaluated using the central finite
difference approximation.

The pareto front for the multi-objective cost function was derived using MATLAB’s implemen-
tation of the NSGA-II. Pareto and the semi-optimal points found from the weighted sum approach
constitute the final set of points among which the optimal solution needs to be chosen. Figure 8
shows these points where red dots denote the pareto front and the blue dots represent a subset of
semi-optimal points.

Choosing a solution for a multi-objective optimization problem is often a subjective task. In this
study, sensitivity of the points with respect to the design variables is chosen as a factor to help in the
decision process. For this purpose, the normalized sensitivity Svi , defined below, is used to find the
sensitivity with respect to design variables:

Svi = v∗
i

J(v∗)
∇Ji

(
v∗)

The sum of the absolute values of sensitivity indices was calculated for the optimal and semi-
optimal points found through the optimization process. Table V shows the top three design concepts
and their corresponding sensitivities.

The highlighted design concept with the lowest cumulative sensitivity was chosen as the optimal
design concept. The achieved design is implemented in CAD environment and is verified to be con-
sistent with the natural motions of the human body, confirming that the formulation and final solution
of the optimization are consistent with the physics of the problem. Figures 9 and 10 show the CAD
model of the system before and after optimization for the same pose of the human arm. As it is
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Table V. Cumulative sensitivity of selected points.

x1 x2 x3 x4 x5 x6 Cumulative sensitivity

19.81 0.26 0.23 68.33 70.68 45.56 1.38
18.67 0.27 0.24 71.96 79.90 41.55 1.41
16.53 0.28 0.25 63.87 56.29 58.56 1.54

Fig. 9. Exoskeleton before (a) and after (b) optimization – front view.

Fig. 10. Exoskeleton before (a) and after (b) optimization – back view.

seen in the figure, since the kinematic parameters of the robot have changed, the optimized and the
original exoskeletons acquire different configurations for the same pose of the manikin.

This optimized design is currently used in the development of the second generation of Texas
A&M upper-limb exoskeleton, and the results will be published as soon as the development phase is
completed.

6. Conclusion
This paper presents the procedure of optimizing the kinematic design of CLEVERarm to achieve high
dexterity while preserving compactness. The problem is formulated as a constrained multi-objective
optimization using a novel dexterity index. The resulting multi-objective optimization problem is
solved using NSGA-II as well as the weighted sum approach. Considering the high computational
cost of this optimization problem, a novel method for solving inverse kinematics problem is used.
Finally, the optimal solution is chosen by studying the sensitivity of the achieved points with respect
to the changes in design variables. The optimization results found through the analysis in this paper
are used in the development of the second generation of Texas A&M upper-limb exoskeleton.
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