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1. Introduction

In this paper we will study the existence of solutions for the Sturm—Liouville problem of
discontinuous fractional-order differential equation

d

— (30D (W' (8) + 5D (u/(1))) = M (u(t))  almost every (a.e.) t € 0,7,

0, (1.1)

au(0) — b(30D; "u/ (0) + 31 D7"u/(0))
cu(T) +d(30D; %/ (T) + 3, D77/ (T)) =
where D, # and tD;5 are the left and right Riemann-Liouville fractional integrals of

order 0 < 3 < 1, respectively, a,c > 0, b,d > 0, f: R — R is an almost everywhere con-
tinuous function and A is a positive parameter. If § = 0, boundary-value problem (BVP)

* Corresponding author.

(© 2017 The Edinburgh Mathematical Society 1021

https://doi.org/10.1017/5001309151600050X Published online by Cambridge University Press


https://doi.org/10.1017/S001309151600050X

1022 Y. Tian and J. J. Nieto

(1.1) is the standard second-order differential equation with Sturm-Liouville boundary
condition

—u"(t) = Af(u(t)) ae.tel0,T],
au(0) —bu'(0) =0, cu(T)+ du'(T) =0.

In recent years, fractional differential equations have attracted much attention since
they have proved to be very valuable tools in the modelling of many phenomena in
various fields of science and engineering such as viscoelasticity, neurons, electrochemistry,
control, porous media, and electromagnetism (see [11,14,16,17]). For background and
applications of the theory of fractional differential equations, we refer the reader to the
monographs [13,18,21,22] and the papers [1-3,9,10,12,15,23,24].

Recently, many results were obtained that deal with the existence of solutions for
fractional differential equations. Some classical tools have been used to study fractional
differential equations in the literature. These classical tools include fixed-point theory,
topological degree theory and comparison method (see [7,20,25]).

Critical-point theory is an effective tool for dealing with some boundary-value problems
for fractional differential equations. Some new and interesting results can be obtained by
using critical-point theory. In [12], Jiao and Zhou studied the fractional BVP

S (80D; 2 (1)) + 2D (1) + VF(u(0) =0 ace. 1€ [0.7),

u(0) =u(T) =0.

The variational structure was established and various criteria on the existence of solutions
were obtained. In [23], Teng et al. studied

S 3oD W (1) + 5D (1)) € OF (1, u(t) ae. t € [0,T),

u(0) =u(T) =0.

By using a variational method based on non-smooth critical-point theory, the existence
and multiplicity of solutions were proved.

As far as we know, there are no results for discontinuous fractional differential equations
with Sturm—Liouville boundary conditions. As a result, the goal of this paper is to fill the
gap in this area. We shall apply the critical-point theory for non-differentiable functions
to establish the existence results of infinitely many solutions to problem (1.1). With
the Sturm—Liouville boundary condition, we establish the new variational structure and
prove the equivalence between the usual norm and new norm in the space E%? (see
Lemma 4.7). With the discontinuity, we prove that the generalized critical point of the
functional is the generalized solution of problem (1.1) (see Lemma 5.9). In addition, we
point out that problem (1.1) cannot be studied by fixed-point theory because it cannot
be expressed as an integral equation. The results hold for the problem with continuous
nonlinearity and with Dirichlet boundary condition.
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This paper is organized as follows: in § 2 we recall some basic knowledge of non-smooth
analysis and abstract results that we are going to apply; in §3 we introduce fractional
integrals and derivatives; in §4 we introduce fractional derivative space and prove some
lemmas; in §5 we establish the variational structure; in §6 we prove the main results for
bd # 0; in § 7 we prove the main results for bd = 0.

2. Non-smooth analysis

We collect some basic notions and results of non-smooth analysis, namely, the calculus
for locally Lipschitz functionals developed by Clarke [8] and the monograph of Motreanu
and Panagiotopoulos [19].

Let (X, |- ||x) be a real Banach space, let (X*, || -||x+) be its topological dual, and let
¢: X — R be a functional. We recall that ¢ is locally Lipschitz (1.L.) if, for all u € X,
there exists a neighbourhood U, of v and a real number L, > 0 such that

lp(v) —@(w)] < Lyllv —w||x  for all v,w € U,.

Definition 2.1 (Motreanu and Panagiotopoulos [19, Definition 2.161]). Let
@: X — R be L.LL. and fix two points u,v € X. The generalized directional derivative of
© at u in the direction v € X is defined as

goo(u; v) = limsup plw +7v) = go(w)

w—u, T—0t T

Definition 2.2 (Motreanu and Panagiotopoulos [19, Definition 2.166]). The
generalized gradient of an 1.L. functional ¢: X — R at a point v € X is the subset of
X* defined by

dp(u) = {u* € X*: (u*,v) < ¢°(u;v) for all v € X}.

So d¢: X — 2% is a multifunction. We say that ¢ has compact gradient if d¢ maps
bounded subsets of X into relatively compact subsets of X*.

The following proposition gives the relationship between the generalized directional
derivative ¢°(u;v) and the usual directional derivative ¢ (u;v), the generalized gradient
Op(u), and the Fréchet differential ¢'(u).

Proposition 2.3 (Motreanu and Panagiotopoulos [19, Proposition 1.1]). Let
¢ € CY(X) be a functional. Then ¢ is I.L. and

©O(u;v) = ¢’ (uzv)  for all u,v € X, (2.1)
dp(u) ={¢'(u)} forallue X. (2.2)

We say that u € X is a (generalized) critical point of ¢ when
Pu;v) >0 YweX

clearly signifies that 0 € dp(x).
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In the proof of our main results, we will use Theorem 2.4. For this, we assume that X
is a reflexive real Banach space, that @ is a sequentially weakly lower semi-continuous
functional, that 7: X — R is a sequentially weakly upper semi-continuous functional,
and that A is a real positive parameter. Write ¥ :=71, [, =& — \¥W = d — \T.

Provided that r» > inf x @, we can define

su Ao P () = (u
o(r) = inf ( Pues—1((—o0,r)) (u)) ( )7
u€P—1((—oco,r)) r—®(u)

v := liminf p(r), 0:= liminf ¢(r).

r—+o0 r—(inf x &)+
Assuming that @, ¥ are locally Lipschitz functionals, we will use the following result.

Theorem 2.4 (Bonanno and Bisci [4]). Under the above assumptions on X, &
and ¥, one has the following.

(a) For every r > infx @ and every A € (0,1/¢(r)), the restriction of the functional
Iy =& — XV to & !((—o0,r)) admits a global minimum, which is a critical point
(local minimum) of I in X.

(b) If v < 400, then for each A € (0,1/7) the following holds: either
(b1) I possesses a global minimum, or
(be) there is a sequence {u,} of critical points (local minima) of I such that

lim &(uy) = +oo.

n—-+4oo
(c) If 6 < +o0, then for each A € (0,1/§) the following holds: either

(c1) there is a global minimum of @ that is a local minimum of Iy, or

(co) there is a sequence {uy} of pairwise distinct critical points (local minima)
of I, with lim,, 1 @(u,) = infx @, which weakly converges to a global
minimum of P.

3. Fractional calculus

Definition 3.1 (left and right Riemann—Liouville fractional integrals [13,22]).
Let f be a function defined on [a,b]. The left and right Riemann-Liouville fractional
integrals of order  for the function f, denoted by ,D, " f(t) and D, " f(t), respectively,
are defined by

D7 f(t) = ﬁ / (t— ) f(s)ds, t€lab], >0,

and

b
D0 = F [0 @ s telat] v>0

provided that the right-hand sides are pointwise defined on [a,b], where I" > 0 is the
classical gamma function.
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Remark 3.2. For n € N, if v = n, Definition 3.1 coincides with the nth integrals of
the form [13,22)]

1

oDy f(t) = =1l

/t(t - 5)”*1]"’(5) ds, te€]a,b], neN,

and

b
Dy f(t) = ! o /t (s—t)" " 1f(s)ds, t€]la,b], neN.

(n—

Definition 3.3 (left and right Riemann-Liouville fractional derivatives
[13,22]). Let f be a function defined on [a,b]. The left and right Riemann-Liouville
fractional derivatives of order v > 0 for the function f, denoted by ,D; f(t) and D} f(t),
respectively, are defined by

dr . 1 dr ¢ e
DO = §aD) 10 = g 3 [ =905 0s)

and

n n b
D10 = (1" D 0 = - ([ -0 as).

where t € [a,b], n —1 <y <n and n € N. In particular, if 0 < v < 1, then

DO = 50010 = g ([0 as). el
and
b
D) = =Dy 10 =~ G ([0 re ). e

Remark 3.4. For n € N, if v becomes an integer n — 1, according to Definition 3.3,
the left and right Riemann—Liouville fractional derivatives become the usual definitions,
namely,

JDPTH) = () and D) = (1) V@), € a,b],

where (=1 (t) is the usual derivative of order n — 1.

Remark 3.5. If f € C([a,b],RY), it is obvious that the Riemann-Liouville fractional
integral of order v > 0 exists on [a, b]. On the other hand, following [13, Lemma 2.2, p. 73],
we know that the Riemann-Liouville fractional derivative of order v € [n — 1,n) exists
almost everywhere on [a,b] if f € AC"([a,b],RY), where C*([a,b],RY) (k = 0,1,...)
denotes the set of mappings that are k-times continuously differentiable on [a,b],
AC([a,b],RY) is the space of functions that are absolutely continuous on [a,b], and
AC®) ([a,b],RN) (k =1,2,...) is the space of functions f such that f € C*~([a, b],RY)
and f*~1 € AC([a,b],RY). In particular, AC([a,b],RY) = ACY([a,b],RN). If f €
L([a,b],RY), the Riemann-Liouville fractional integral is also in L*([a, b], R™).
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Definition 3.6 (left and right Caputo fractional derivatives [13]). Let v > 0
and n € N.

(i) f v € (n—1,n) and f € AC"([a,b],RY), then the left and right Caputo frac-
tional derivatives of order ~ for the function f, denoted by D f(t) and {D] f(t),
respectively, exist almost everywhere on [a, b]. D] f(t) and { D) f(t) are represented
by

D150 = oD 100 = o ([ =) as)

and

—1\" b
DL = (-1pD] 0 = ( [s=ormms) ds),

respectively, where ¢ € [a, b]. In particular, if 0 < v < 1, then

D010 =D 0 = s ([0 eas). el

and

b
DL = -0 70 =~ ([6- 0@ ), e

(i) If y =n—1 and f € AC"([a,b],RY), then D' f(¢) and §D; ' f(t) are repre-
sented by

SDPTU() =) and (DR = ()" V@), e fa,b.
In particular, SD?f(t) = ¢DY f(t) = f(t), t € [a,b].

Property 3.1 (Kilbas et al. [13]). The left and right Riemann-Liouville fractional
integral operators have the property of a semigroup, i.e.

oDy M (oDy P f(8) = oDy RS and Dy (oD, P f(E) = Dy TR ()
V’Yl,’}/z >0

in any point ¢ € [a, b] for the continuous function f and for almost every point in [a, b] if
the function f € L'([a, ], RY).

Property 3.2 (Kilbas et al. [13], Samko et al. [22]). We have the following
property of fractional integration:

b b
/ WD F(6)]g(t) di = / WDy g (B dt, >0,

provided that f € L?([a,b],RY), g € LI([a,b],RN) and p>1,¢>1,1/p+1/g <1+~
orp#Lg#1 1/p+1/g=1+7.
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Property 3.3 (Kilbas et al. [13]). Let n € Nand n -1 < v < n. If f €
AC™([a,b],RN) or f € C"([a,b],RY), then

oDy T(GDY () = f(1) -
and

Tl (Z1)d fO) ,
DDy ) = 1) - 3 SOy

for t € [a,b]. In particular, if 0 < v < 1 and f € AC([a,b],RY) or f € C([a,b],RY),
then
oD (@D f() = f(t) — fa) and Dy (D) f(t)) = f(t) — f(b).

Definition 3.7 (left and right Riemann—Liouville fractional integrals and
fractional derivatives on the real line [13,21]). Let f be a function defined on R.
The left and right Riemann—Liouville fractional integrals of order v > 0 on the real line
for the function f, denoted by _D; 7 f(t) and ;D" f(t), respectively, are defined by

WD f() = ﬁ / (t— sy~ f(s) ds
and
D210 = 1 [ (s — 7 (s) ds,

where t € R and v > 0.
The left and right Riemann—Liouville fractional derivatives of order v > 0 on the real
line for the function f, denoted by _oD; f(t) and DX f(t), respectively, are defined by

D10 = D10 = (| - s) as)

den I'(n—7v)dt" \ J_o
and
DI = (1) DL 10 = o (0 e [ = 0r s as)

where t € R, n—1 <~ <nand n € N. In particular, if v becomes an integer n — 1, then
oD = fTV @) and (DISHF(E) = (-1 HFTY(@), teR, neN,

where f("~1(t) is the usual derivative of order n — 1.
If 0 < v <1, then

L DYf(t) = M(i(/tm(ts)Vf(s) ds), t R,
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and
DLIO =g ([ -0 0a), ek

Property 3.4 (Fourier transform property [10]). Let 0 > 0, u € LP(R), p > 1.
The Fourier transform of the left and right Riemann—Liouville fractional integrals satisfy

FoooDyu(x)) = (iw) " 7a(w),

€T

F(Dlu(x)) = (—iw) 7a(w),

oo

where @(w) denotes the Fourier transform of u, t(w) = [ e™“"u(x) dz.

Property 3.5 (Fourier transform property [10]). Let ¢ > 0 and let u € C§°(£2),
where (2 is a subset of R. The Fourier transform of the left and right Riemann—Liouville
fractional derivatives satisfy

F(-ooDiu(z)) = (iw)"i(w),
F(DEu(z)) = (—iw) a(w).

4. Fractional derivative space
Definition 4.1. Let a € (1,1], p € [1, +00). The fractional derivative space
E“P = {u: [0,T] — R : u is absolutely continous and §D%u € LP([0,T],R™)}

is defined by the closure of C°°([0, T], RY) with the norm

lullap = </OT [u(@®)” + 5D u(®)[? dt)l/p~ (4.1)

When p = 2, we write E*2 = E®. It is obvious that the fractional derivative space
E®? is the space of functions u € LP([0,T],RY) having an a-order Caputo fractional
derivative §D&u € LP([0,T],RYN).

Lemma 4.2. Let a € (0,1], p € (1,400); the space E*? is a reflexive and separable
Banach space.

Proof. The proof is similar to that in [12, Proposition 3.1]. We state it as follows.
LP([0,T],RY) x LP([0,T],RY) is a reflexive and separable Banach space with the norm

[0l Lo (jo.11.%5) Lo o,y = (01l + l02ll0) "7,

where v = (vy,v2) € LP x LP, since LP([0,T],R") is a reflexive and separable Banach
space. Now we consider the space 2 = {(u,{Dfu): u € E*P} C LP([0,T],RY) x
LP([0,T],RY).

We claim that (2 is a closed subset of LP([0,7],RY) x L?([0, T], RY).

https://doi.org/10.1017/5001309151600050X Published online by Cambridge University Press


https://doi.org/10.1017/S001309151600050X

Discontinuous fractional-order differential equations 1029
In fact, let
Un = (Un, §DfMun) — (uo,v0) = o in LP([0,T],RY) x L*([0,T],RN);

then u,, — ug and D", — vy in LP([0, 7], RY). Since E*? is closed and u, € E*P,
one has u, — u° in E*?. So u,, — u° and §D{u, — §Dful in LP([0,T],RY). We claim
that ug = u%, v = §Du’ almost everywhere in [0, T]. In fact,

luo — u®|| 2o = |Juo — wn + wp — u°|| e < |Jtn — uollLr + |Jun — u®||zs — 0
as n — 00. So ug = u’ almost everywhere in [0, T]. Then
lvo = 6D u® | Lo = llvo = §Df un + § Dfun — § DF | o
< 5D un = voll Lo + 1§05 un — 5D |[ Lo — 0
as n — 00. So vy = §D¢u’ almost everywhere in [0,7], @y € 2. Therefore, {2 is also

a reflexive and separable Banach space with respect to the norm || - ||z»x . Define an
operator A: E%P — (2 as

A:u— (u,6Dfu) Yu € EYP.

It is obvious that the operator A: u — (u,§Dfu) is an isometric mapping and E*? is
isometric isomorphic to the space (2. Thus, E*P is a reflexive and separable Banach
space. O

Lemma 4.3 (Jiao and Zhou [12, Lemma 3.1]). Let 0 < a <1 and 1 < p < oo.
For any f € L?([0,T],RY), we have

(0%

t
< 7)||f||Lp([0,t]) fOI‘g € [07t]7 te [O7T]

D¢ P
||0 I3 f”L ([0,2]) F(a +1

Lemma 4.4. Let 0 < a« <1 and 1 < p < oo. For any f € LP([0,T],RY) we have

il t)a) | flleqe,my for & elt,T], t €0,T].

le D7 flloe e,y < m

Proof. If p =1, we have

T
le D2 fllr ey = Fi/t

N
3
S
N
!

_ F(la)/tT/:(s—é)aldff(S)lds

1 T(s—t)

e | ol
T
< sl
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If 1 < p < +oo, then let g € LI([0,T],RY), where 1/p + 1/q = 1. Define
Heop: LY([0,T]),RY) - R

b
y Heeslo) = [ Tg@)( /5 T(soalf(s)ds) de. (42)

/tTg(é“)(/:(T —7) (T =T +¢) dT) df‘

/T(TT)al (/T g &) f(T — T+§)d£> dr

We compute

/fg(f)([(s —€)*Lf(s) ds> d§’ _

< 11 ze ey Mgl Lage,ry) (4.3)
for t € [0,T). So He,p € (L([0, T],RY))*, where (L([0,7],RY))* denotes the dual space
of L([0,T],RN).

Therefore, by (4.2), (4.3) and the Riesz representation theorem, there exists h €
LP([0,T],RY) such that

[ semeras = st = [ [ e-oas)as

for all g € L4([0, T],RY). By (4.3), |2/l Lo,y < (T =) /)| fll Lo o1 -
By (4.4),

MO _ 1T et o) o
F(a)_F(a)/E( §) f(s)ds =D f(§) for € € [t,T],

which means that

_ IPllLeqery (T —t)
DZ* < —- < . O
le D7 Fl e ge.,77) T(a) F(a+1)||f\\Lp[t,T]
Lemma 4.5. For u(x) a real-valued function, one has
—+oo —+o0
/ (LoD (1), DO/ () dt = — cos 7ra/ oDl (1) dt

—c0 —o0

+oo
= — cos 7ra/ e DM (1)) dt. (4.5)

— 0o

Proof. The idea of the proof comes from [10, Lemma 2.4]. By the Fourier transform

properties,
/u@dx:/ﬁgdw, (4.6)
R R
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where 4(w) = F(u), and, with the observation that

Gw)aT = {exp(—iw(a — 1)) (—w)e—1 ifw >0, (47)

exp(im(a —1))(—iw)*—1  if w <0,

we have

“+o0
/ ( Dafl /( )7tDoz—1 /( )) dt
/.7-" oo DY (1) F(: DS F(.DX /(1) u'(t))dw (we have used (4.6))
= /R(lw)o‘ L/ (w)(—iw)=1u/(w) dw  (we have used Property (3.4))
0 - -
- [ (1)1 (1) exp(—im(a — 1)) (i) 0/ (w) duw
+oo R —
—|—/O (iw)* '/ (w) exp(ir (o — 1)) (iw)* 1o/ (w) dw  (we have used (4.7))
0 [
= /_ (iw)* 1/ (w) (iw) 1o’ (w) dw cos w(a — 1)
0 [
- i/_ (iw) >t/ (w) (iw) =1/ (w) dw sin (a — 1)
+oo —~ R E————
+/0 (1w)* 1! (w) (iw) 1! (w) dw cos T(a — 1)
+oo R -
+ i/o (iw)* ! (w) (iw) @1/ (w) dw sin 7(a — 1)
+oo —~ —_—
= [ (iw)* 1/ (w) (iw)*—1u' (w) dw cos w(a — 1)

—isinm(a — 1)</_0w(1w)a 117’(10)de
- [ @ ) ).

(4.8)
We compute
i )T @) dw— [ () ) ()T (@) de
/mmu) @ (w) (w)o 1 (w) d / (10)7 10 (w) (1)1 (@) d
0 . . “+o0 R L
2/7 (iw)aflu’(w)(iw)a—lu’(—w)dw—/0 (iw)* 1/ (w) (iw) o=/ (—w) dw

+o0 R - +o0 R o
:/ (—it)* @ (—0) (—i)a T ()dt—/ () (o) (0) T () dw
0 0
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oo T N oot T N, o~ ~
= exp —E(a— i Jt* “exp —E(a— Di Jte—w!(—t)u/(t) dt
0

_ /O+°° exp (g(a - 1)i)wa1exp (;r(a - 1)i)walz7(w)z7(w) dw
= 0. (4.9)

Combining (4.8) and (4.9), one has

+o00
| Cabr .0 o)

—00

+oo —~ _—
= /_ (1w) M/ (w) (iw) =14/ (w) dw cos (e — 1)

+oo
= (Coo DX (1) F(_oo D1 () dw cos (e — 1)

— 00

+oo
= / | oo DYt/ (t)|* dt cos m(a — 1) (we have used (4.6))

— 00

+oo
= fcosm)z/ | oo D1/ ()% dt.

Since
+OO o~ - =< +OO o~ - =
/ (iw)°=10 (w) (i)~ L0 (w) o = / (—iww)* = (w) (i) () o,
one has
—+o0 —+o0
/ DO L (1) dt :/ D=L/ ()2 dt.
— o )
The result follows. |

Lemma 4.6. If a € (%, 1], then for any u € E* we have

T T T
1
—coswa/ |SDfu(t) > dt < f/ (5D u(t), SDSFu(t)) dt < — / S D& u(t)]? dt.
0 0 cosTa Jo
(4.10)
Proof. Let u € E* and define
u(t), te[0,T],
a(t) = qu(0), t<0, (4.11)
w(T), t=T.

It is clear that

DI (t) =0 fort <0
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and
D (t) =0 for t > 0.

So by Lemma 4.5, we have
T
- [ GDputo.iDfu(e)
0

T
= / (oDg M/ (t), ;DS ' (t))dt  (we have used the definitions of left
0 and right Caputo fractional derivatives)

+oo
= / (oDt (t), DS ' (t)) At (we have used (4.11))

— 00

+oo

[ Canr . oy o) a
—+oo

= —cos wa/ |_oeD§ Y/ (t)|>dt  (we have used Lemma 4.5)

— 00

+oo
= fcosmx/ lo D& ! (£)|2 dt
0

T
> —coswa/ loD& 1/ () dt
0

T
— Cos 71'04/ S D& u(t)|? dt.
0

On the other hand,
- [ Giutn ot >>dt\
]/ D8 005 0) o
\/0 \F|0Da ol (8)|V2e] Dl ()] dt

T
1
< [ D O + e, Dy (0) P
0

1 T
& [ lprapares [T Lostapar
€ 0
1 T
< i [hprupae [ uostapa
0 —
— 1 T| ¢ Doy ()‘2dt— € /+OO( Dailﬁ/(ﬂ Da_lﬂ/(t))dt
T de 0 cosma| ) oo Tt e

(we have used Lemma 4.5)
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9

I )
= — oDZu(t)]” dt —
45/0 loDu(t)] Cos T
I )
= — oDfu(t)|”dt —
4e Jo oD u(®)] CoS QL

T
/ <0D3—1u'<t>,tD;-1u’<t>>dt\
0

e

/ ' (§Dpu(t). {DFu(t) dt|.

T T
E C « C « ]' C (3
(1 + oS m) ‘/0 (6D&u(t), $ DFu(t)) dt‘ < 4—6/0 s D& u(t)[? dt.

By taking € = —% cos o, we have

1

COS T

T T
\ / <8Dfu<t>,§D%u<t>>dt]<— |t pac

Lemma 4.7. Let o € (3,1] and u € E“. The norm |ul|a,2 is equivalent to
T 1/2
cpa,, cpo c 2 a 2
full = (= [ GDRutDg0ar+ S + Fu)? )
Proof. First we will show that there exists an M; > 0 satisfying ||u|,2 < Mi|u|. By
Property 3.3, 0 D; *(§Dfu(t)) = u(t) — u(0). So
T T
| o at= [ oDy () + o)
0 0

T
<2 / 0D (D u(t))? + [u(0)? dt

T2a

< 2T u(0)* + QWHSD,?WHQLQ (we have used Lemma 4.3)

2T2a T
cDSu, $ DY) dt
(F(a+1))2cos7ra/0 (oD7"w, i Dru)

(we have used Lemma 4.6)

b 272
< 27—, — %, 4.12
max{ a’ (I'a+1))?2 coswa}”u (4.12)

ba
< o 2
< 2Ta b(u(O)) +

By (4.12) and Lemma 4.6,

T 1/2
oz = ( | o+ |8D?ul2dt)
0

b 272« ) 1 T 1/2
g 2T*, —_ CDa ,CDD‘ dt
<max{ a (I'a+1))? coswa}”u” + P /0 (6Df u, { Dyu) >
b 273 1 1/2
s o~ - ; 4.13
(max{ a’ (I'(a+1))? Coswa} cos7ra> el (4.13)
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which means that

[ulla,2 < Miflull, (4.14)
where e
b 272 1
My = 27—, — — . 4.15
! (max{ a’ (Ia+1))2 coswa} coswa) (4.15)

In the following we will show that there exists an My > 0 satisfying ||u|| < Ma||u|q.2-
By Property 3.3, u(0) = u(t) — oDy “(§Du(t)). So

T
w(0) = & / u(0) ds

0
T

/ "
0

1 T T

([ wlars [ oorGoguear)

0 0
1 —Q/C «
L (T2 ullgs + TV D5 (DT u() | 0m)

(we have used Holder’s inequality)

T
= [l — oD GDzu(e) at

/N

N

< 1 TY2||u 2 + Ll/2||‘3D‘)‘u|| (we have used Lemma 4.3)
ST LT Pla+ 1) lome HiLz0T] we v '
\f 12 T71/2+a
<V2 -2 = L. 41
max {77172, T o (1.16)

By Property 3.3, u(T) = u(t) — :D;“(§DFu(t)). So
1 /7
u(T) = ?/0 u(T)ds
1 /7
1 T T
<z ([ monars [ rozeeoguena)
0 0

1 —Q/C [
< f(TWIIUHL2 + T2 D7 ((DFu() | L2p0,77)

(t) =D (; D7u(t)) dt

(we have used Holder’s inequality)

1 Ta+1/2
< T <T1/2||U||L2[0,T] + I‘(O{#»l)'fD%u|L2[0’T}) (We have used Lemma 44)
(4.17)

We compute
I DFul 320,77 = 11D 0 [| L2 10,7y

< /(thgla’,tho—la')dt
R
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= / DS P dt
R
1

=- /(_OODf‘_lﬂ’,th‘o_lﬂ') dt (we have used Lemma 4.5)
cosma Jg

_coslwa /R (F(ll_ a) /too(t —5)" %' (s) ds,

ﬁ /too(s — 1)/ (s) ds) dt
_coslwa /R (F(ll_ a) /Ot(t —s)" %/ (s) ds,

ml_a)/tT(s i (s) ds) at

L g 1 1

e /0 (oDg~"/, DS~ u') dt
1 T

- s | GoruDgwar
1 r )

< W/o |6Dful” dt  (we have used Lemma 4.6). (4.18)

By (4.17) and (4.18),
1 Ta+1/2
T < = T1/2 - |ep
D) < (T ulltom) - g1y ossg 1507 ulioto
_Ta71/2

< max {Tlﬂ, }(Hum[o,ﬂ T leDgull o)

I'la+ 1) cosma

_Tozfl/Q
< ﬁmax{Tl/Q, }Hu o2 (4.19)

I'la+1)cosma

Equations (4.16) and (4.19) and Lemma 4.6 mean that ||u|| < Ms||u||q 2 for some My > 0.
The proof is completed. (Il

5. Variational structure for bd # 0

Let a =1— (/2. Then o € (3, 1].

Defining Dy := {z € R | f is discontinuous at z}, we recall that f is said to be
continuous almost everywhere if Dy is (Lebesgue) measurable and m(Dy) = 0. Moreover,
if f is locally essentially bounded, we write

()= 51ir(r)17 ﬁS_sZIigg f(z), ff(z)= (slirgl+ Tfis‘g? f(z) foreachteR.

We observe that f~, ft are, respectively, lower semi-continuous and upper semi-
continuous.
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Definition 5.1. A function v € E® is said to be a generalized solution of (1.1) if u
satisfies the boundary condition of (1.1) and the equation of (1.1) for almost everywhere
te0,T).

Remark 5.2. If f is a continuous function, then (oD; "u’), (:D; ') € C[0,T), and
u is a classical solution of problem (1.1).

For each v € E“, define &: E“ — R by

1 r cpPo,, cyo c 2 a 2 1 2
v =—4 [ GDpuiDg) dt+ﬁ<um> b2 () = 3l
fo )) dt, where F(u) := [} f(s)ds, j(u) =0, ¥(u) = T(u) — j(u) = T(u),

I)\() () NI/()— P(u) — /\T()

Lemma 5.3. &: E* — R is weakly lower semi-continuous.

Proof. It is clear that @ is lower semi-continuous. In order to show that @ is weakly
lower semi-continuous on E?, it is sufficient to show that & is convex on E¢.

Let A € (0,1), let u,v € E%, and let @ and © be the extensions of u and v by [0, T
defined in (4.11). Then

@1 ((1 — Nu+ )

T
- _%/O (ED2((1 = N+ Av), ED&((1 = N+ ) dt

T
% / (0DFH(1 = N + M), e DETH(1 = Mo + Av')) dt
0

+o0
-1 / (Lo DEH (1 = N + AT, (DI (1 = N + AT)) dt

oo

+o0o
— 3 cos wa/ | oo DE7H(1 = N)@' + A')[2dt (we have used Lemma 4.5)

— 00

+oo
< —%coswa/ [(1 = N)| oD@ M |2 + A _oo DX 10| dt

+oo +oo
=1(1- /\)/ (oo DY DO ) dt + %)\/ (oD, DA 1) dt

+oo +oo
= %/ (1 —)\)(OD?_lﬂ’,tD%_lﬂ’)dtJr%/ ANoDy ', DF~10) dt

oo — 00

T T
1/ (1 7)\)(OD?_1’U/’25D%_1U/) dt + %/ A(OD?_l’Ul’tD%_l’Ul) dt
0 0

2
1-A Tc a, cno A Tc a, ¢
T T 9 o 6Dy uatDTU>dt_§ o (6D;'v,{Dyv) dt

= (1 = NP1 (u) + APy (v).
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So @4 is convex on E“. Clearly,
c a
®o(u) == —|u(T)]* + - 2
) 1= e u(T) + e fu0)]
is convex on E%. So ®(u) := P1(u) + P2(u) is convex on E*. The proof is complete. O
Lemma 5.4. For u € E®, there exists M3 > 0 such that ||u||c < Msz||u||, where

ulloo = ax, lu(t)|,

Ta— 1/2 Ta71/2

"Ia+ 1)} * ()2 — 1)4/2/|cos ma|’

M; = V2M; max {T1/2

and M, is defined in (4.15).

Proof. For u € £,

—/C « 1 a—le o
ol (ODt““”':ﬁ/ (t — )" 5D u(s) ds
1 1/2 T 1/2
< F(OL( 2(a 1) ds) (A ‘SD?U(S)F ds)
1 (0%
S m Hth ullr2(0,7)
Ta71/2 T 1/2
< — CDOéu t ,CDau t dt
F(a)(Za_1)1/2\/m|{ /0 (6Dt u(t), { DTu(t)) ]

(we have used Lemma 4.6)
Ta71/2

I'(a)(2a — 1)1/2/|cos ]

By (4.14) and (4.16),

Jull. (5.1)

N

\[ 12 Ta—1/2 \[ 12 Toc—l/2
< e a2 < V2M T4 ———— .
| (0)] 2 max {T F(a+1)}||u| 2 1max{ F(a+1)}u||
(5.2)
By Property 3.3, (5.1) and (5.2),
[ulloe = [u(0) + oDy * (GDu(t))]
Ta—1/2 Ta—1/2
< |V2M; max T_l/Q, } + ] U
[ ' { I'(a+1) I'(0)(200 — 1)1/2,/|cos mal| Il
= M3||ul|.
The result follows. |
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Proposition 5.5. Let 0 < a < 1, 1 < p < oo. Assume that o > 1/p and the
sequence (uy) converges weakly to u in E*P_ i.e. uy — u. Then uj, — u in C([0,T],RY),
ie. |Jup — uljo = 0 as k — oo.

Proof. By ||ullcc < M3]|ul|, the injection of E*? into C([0,T],RY) is continuous, i.e. if
ur — win E*P, then uy, — uin C([0, T],RY). Since uj, — u in E%P, it follows that uy —
u in C([0,T],RN). In fact, for any h € (C([0,T],RN))*, if ux — u in E*P, then uy — u
in C([0,T],RY), and thus h(up) — h(u). Therefore, h € (E*P)*, which means that
(C([0,T],RN))* C (E*P)*. Hence, if ux — u in E*P, then for any h € (C([0,T],RY))*
we have h € (E*P)*, and thus h(ux) — h(u), i.e. up — wu in C([0,T],RY). By the
Banach—Steinhaus theorem, (uy) is bounded in E*P, and hence in C([0,T],RY). We are
now in a position to prove that the sequence (uy) is equi-uniformly continuous. For any
t1, to satisfying 0 < 1 < to < T, we have, by Property 3.3,

luk(t1) = uk(t2)| = [0 Dy, (607, uk(t1)) — 0Dy, (6D, ur(t2))| (5.3)
First we compute

loDy, " f(t1) — 0Dy, f(t2)]

1 ty w1 B ta ., ot s
| | = s = [T

1 ty a1 01 () ds L 2 ol e ds
< | =97 = =) *’r«a>‘/£ (12— )" f(s)d

1 2 o . 1/q
< F(a)(/o (b1 —8)* 7" = (ta — 5)*7 | ds> £ L 0.00]

1 to L 1/q
e (AR Rt I P

1 t1 1/q
< (/ (t; — S)(afl)q — (ty — 8)(0‘*1)(1 dS) ||f||Lp[07t1]
0

=)
1 t2 ) 1/q
i F(O‘)(/t (tz = )" ds) (FAIFZITS
— /1l zog0,61) < tga_l)qﬂ n —téa_l)‘”l + (ty — tl)(al)qul)l/q
Fl@) \a-lg+1 (a=Dg+1
+ Hf||LP[t1,t2] (ta — tl)(a*1)+1/q
Ila)  [(a—1)g+1]Va
17 lsri, . -
- I'o)[(a— 1[)qtj_ 1]t/ [tg Datt _ té Da+1 (1 — )@ D+ 1/a
I 0erts e (ty — tp) @ D+1/a
I(o)[(o—1)g+1)/a 2
2| 1o o o
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By (5.3) and (5.4),
2ty — 1) ! o
I'(a)[(a—1)g+ 1]1/4 16D urll oo, 7]
2||uk||Ea»p (
S I(a)[(a—1)g + 1]V 2
— C(t2 _ tl)afl/p.

lur(t1) — ur(t2)] <

_ tl)afl/iﬂ

By the Arzela—Ascoli theorem, (ug) is a relatively compact sequence in C([0,T], RY).
By the uniqueness of the weak limit in C ([0, T],RY), every uniformly convergent subse-
quence of (ug) converges to u. Thus, (ux) converges uniformly on [0, 7] to w. O

Following this, we shall prove Lemma 5.9; we first present some necessary results.

Lemma 5.6. Let u,v € L*([0,T],R"). If, for every ¢ € C§°[0,T],

T T
/ (ult), (1)) dt = — / (0(t), B(1)) d, (5.5)
0 0

then u is the primitive of v, that is, u(t fo s)ds +c for a.e. t € [0,T], c € R™.

Proof. Let us define w € C([0,T],R"™) by w(t fo s) ds so that

/OT(w(t),¢’(t))dt = /OT (/Otv(s) ds,qb’(t)) dt

By Fubini’s theorem, (5.5), we obtain

/OT(w(t),qs’(t))dt = /OT UST(U(S),qy(t))dt} ds

T
- / (v(s). 6(s)) ds
0
:/ (u(s), @' (s)) ds.
0

So .
/ (u(s) —w(s),¢'(s))ds = 0. (5.6)
0
By the fundamental lemma of the calculus of variation, one has u(t) — w(t) = ¢, where
c € R. The proof is complete. O

Lemma 5.7. Consider the problem

(30D 0 (1) + 5D (1))

au(0) = b(30D; "' (0) + $: D7 /' (0))
cu(T) + d(30D; "/ (T) + 5Dy (T))

h(t) ae. tel0,T],

0
0,
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where h € L2([0,T]). Problem (5.7) has a unique solution & € E® such that (oD; ”(@)),
(tD;ﬁ (@) are almost everywhere continuous and @ satisfies (5.7). Furthermore, @ is
obtained via
: T cpo, cpo C 2 a o
i (6DF v, § D) dt + Zv™(T) + 3 v7(0) o
Proof. If u is a classical solution of (5.7), then, by integration by parts, Property 3.1
and Property 3.2, we have

T T
% / (oD; v/ + D7 'Y v dt + / h(t)(t) dt
0 0
T
= = SulT)o(T) = Zu(0)v(0) - 3 / (D2 D=2 + (D2l o D2
0
T
+ / h(t)u(t) dt
0
c 1

T
a C « C « C « C «
= ——u(T)v(T) — gu(O)v(O) +3 /0 (6D¢u, y Dv) + (§DFu, g Dyv) dt

d
T
+ /0 h(t)u(t) dt

for all v € E°.
Let
1 [T c a
atw0) = =5 [ GDFuEDF0) + (DFu 5Dt + SulT)lT) + Ful0)o(0)
Clearly, a(u,v) is a continuous coercive bilinear form on E*. We apply the Lax—Milgram
theorem [5, Corollary 5.8] with the bilinear form a(u,v) and the linear functional p: v

fOT h(t)v(t) dt. We obtain that there exists a unique element 4 € E* such that

T
a(t,v) = / h(t)v(t) dt (5.8)
0
for all v € E*. Moreover, @ is obtained by min,ege{1a(v,v) — fOT h(t)v(t)dt}. So

T
1 C Q- C e c o~ C [0 67
0=-3 [ (6Dra.iDfv) + (Dfa§D) dt + Su(Tu(T) +
0

; : a(0)v(0)

T
- / h(t)u(t) dt
0

T
% / (OD;ﬁ/Qa’,tD;ﬁ/%'>+(tD;f’/Qu/,OD;ﬂ/%')dHSamum
0

a T
+ 7a(0)v(0) - /O h(t)u(t) dt

1/T( D + D7 ') dt + Sa(T)(T) + La(o) (O)—/Th(t) dt (5.9)
,Ootu Dy u’ v duv buv ; v .

2
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holds for all v € E*. Without loss of generality, (5.9) holds for all v € C§° C E®, where
C§° ={u e C>[0,T]: u(0) = u(T) = 0}. Then (5.9) becomes

1

- T
0= 3 / (th_Bﬂ/ + tDZ_"Bﬂ/a v')dt — / h(t)v(t) dt
0 0

for all v € C§°. By Lemma 5.6,

t
%(OD;’BTL' —i—tD;BT/) = —/ h(s)ds+c¢ ae.t€0,T], ceR.
0

So
1d _ _
530D P’ +,D7Pa )+ h(t) =0, te[0,T]. (5.10)
Since h is almost everywhere continuous on [0, T], we have that
d

&(onﬁﬁ/ +.D; )

is almost everywhere continuous on [0,7]. Substituting (5.10) into (5.9), we have, by
integration by parts,

T
0-1 / (D774 + D7 ') dt + Sa(T)o(T) + Tu(0)e(0)
0
T(d -8 -3
+/O (dt(;th u + 3,Dr ﬂ’),v> dt

(T)o(T) + S (0)v(0) + 1 (oD; P + Dy, v)|T

|
I

i
3
=
3
+

Qlo alo

+ {Zﬂ(@) — 20D, %4 (0) — L, D3 @ 0)]7}(0) (5.11)

Similarly, we have

i.e. the boundary conditions hold.
It is clear from (5.8) that (D; @' € L2[0,T]. Hence, we have ;D7 @ € L2[0,T]. If
h € C[0,T), then D; v’ € C[0,T], (oD; "u') € C[0,T). 0
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Lemma 5.8. Let u € E. If a(u,v) = 0 for all v € L?[0,T], then uw =0 for t € [0,T].

Proof. If a(u,v) = 0 for all v € L?[0,T], then, without loss of generality, a(u,u) = 0.
Since a(u,u) = ||ul|?, we have u(t) = 0 for t € [0, 7). O

Lemma 5.9. Let f: R — R be a locally essentially bounded and almost everywhere
continuous function. Assume that

(i) for a.e. t € [0,T], for each u € Dy, f~(u) <0< f*(u) implies that f(u) = 0.

Ifu € E* is a generalized critical point of I, then u is a generalized solution of BVP (1.1).

Proof. Let ug € E“ be a generalized critical point of Iy, i.e. I(ug,v) > 0 for all
v € F“. From this we obtain

D (ug) (v) + AM(=1)"(ug;v) =0
for all v € E*. That is,
1 4 c Mo c o c o c Mo ¢ a 0
7/0 (5Dt uo, D) + (§ DFug, gD v) dt — guo(T)v(T) - guo(O)v(O) < A=0)"(ug;v)

2
(5.12)
for all v € E%. Clearly, setting

1
2

T
C a
| 6DFu0.ED50) + (DF 0. 500 dt = Sua(T)o(T) = Fua(0)000)

Ly, (v):=
forallv € E®, L,, is a continuous and linear functional on E%; from which, (5.12) implies
that Ly, € A0(=7)|ga(up). Now, since E* is dense in L?[0,T], from [6, Theorem 2.2]
one has d(=71)|ga(uo) € O(=T)|r2(0,1)(t0). S0 Ly, € AO(=T)|12(0,7)(10), and then L is
continuous and linear on L2[0, T]. Therefore, there is an h € L2[0, T] satisfying L, (v) =
fOT h(z)v(x) dz for all v € L?[0, T]. From Lemma 5.7, there is a unique % € E® satisfying
that (oD; (@), (tD;ﬁ(ﬂ'))’ are almost everywhere continuous such that (5.7) holds.
In particular,

T T
| @p@)ds =4 [ GDrwiDg0) + (Dfa 5D de — Sa(T)o(T) -
0 0

u(0)v(0)
for all v € E*. Hence,

1

T
C a
3 | 6D iDF) + (Dfua,5DF0) o = Sun(T)e(T) - Fua(0)u(0)
0

— L (v) = /0 F(2)o(z) dz,
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which means that a(ug — 4,v) = 0 for all v € L?[0,7]. Lemma 5.8 implies that ug = .

So (oD; Pup) € C[0,T], (;D7 up) € C[0,T] and

T

1 c « C « (& « c « C

3 | Do iDF0) + (Dfuo, D) dt = Sun(T)o(T) = Fuo(0)o(0)
0

holds for all v € E*. So
Trd
/ (dt(%thﬁuB + étDTﬁug)ﬂ)(t)) dt < )‘(_T)O(Uo;v)
0

for all v € E“. Hence, [6, Corollary, p. 111] ensures that

 (BoDi Py + 5D € (M) (o(@)), (AN (wo(@))]  (5.13)

for a.e. t € [0,T]. Since m(D;) = 0, we obtain

d

—&(%th_ﬁug +1,D7°up) =0 for ae. t € uy(Dy).
From Lemma 5.9 (i), Af(uo(t)) = 0 for a.e. t € uy*(Dy). So

d

—g(%th_ﬁug + LD ul) = A f(uo(t)) for ace. t € ug'(Dy).

On the other hand, for a.e. t € [0,T]\ uy *(Dy), (5.13) reduces to

d

—a(%oD;'B%(t) + %tDEﬁUG(t)) = Af(uo())-

Hence, our claim is proved and the assertion follows. (I

6. Existence results for bd # 0

Now put
a F(t F
A = lim inf M<e 710 Xlt‘gf ( ), B = limsup (25)7
§—+o0 13 £—+400 3
1 T2 c My 1
My = = M= —n Ao = ———
YT TP B (- @ "7 BT T 2MITA’

where M3 is defined in Lemma 5.4.
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Theorem 6.1. Let f: R — R be a locally essentially bounded and almost everywhere
continuous function. Put F(§) := fOE f(s)ds for every & € R, assume that Lemma 5.9 (i)
holds and also that

1
(ii) / F(t)dt > 0 for every € > 0;
0

oy e .. MaXjyce F(2) . F(&) 1
iii) liminf ——————~ < klimsu , where k = ————.
(iif) Lim inf €2 iy e OMZM,

Then for each A € |A1, A2|, the problem (1.1) has a sequence of generalized solutions that
is unbounded in E¢.

Proof. We shall apply Theorem 2.4 to prove the theorem. By (iii), there exists a real
sequence (c,,) satisfying lim,, o ¢, = +00 and

ma. . F(t
tim 2Sse FO (6.1)
n—-+4oo Cn

Put 7, = £(c2/M3) for all n € N. By Lemma 5.4, for all v € E® satisfying [|v||> < 27y,
we have ||v]|oo < Ms]|v|| < M3+/2r, = ¢p. So

inf (Supueé—l(]—oo,rn D Lp(u)) - W(u)
weP—1(]—o0,ry[) Ty — @(U)
SUP ||u||2 <27, W(u) - W(O)

’r’ﬂ/
T
SUP|ye<ay, Jo Fv(z))de

p(rn) =

N

rn
Tmax|t|<c” F(t)

Tn

N

By (6.1), p(rn) < 2M3TA. So

7y := liminf o(r) < liminf ¢(r,) < 2MITA < +o0.

r—+00 n—00

Now we claim that I is unbounded from below for

M. 1 1
A S ()\1,)\2) = <_B;ﬂ mm) C (0,,)/)

By (iii), let (d,,) be a real sequence satisfying lim,,—, o d,, = +00 and

lim F(dn)

n—-4oo d%

- B. (6.2)
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For all n € N, define
2d,t

d, te|
Clearly, w,, € X and

T
c e C (e} c a
ol = = | GDFwEDFwn) i+ () + (w0 0))?

-/ ) (ml_a) / t(t—s)“wﬁs)ds,@ / T(s—t)&wus)ds) at

c
Zd?
+ 7%

! et a2de (T2, ¢
masart ), (Lot [ eooe g fe
< 1 dELT172o¢ N EdQ
= (F(l — a))2 23—404(1 _ O¢)2 am
= M4di

Therefore,
2 T 2 T
B(un) W) = 121 *A/ Fwy (t)) dt < M‘;d" —A/ Flw,(t)) dt
0 0

By (ii), we have

/T Flwn(t))dt > /T F(dy) dt = F(d,)(AT).
0

T/2

Therefore,

D(w,) — MW (w,) < %dz

n

AT
- TF(dn)

for all n € N.
Now, if B < 400, by (6.2) for any ¢ < B — M4/(T)), there exists N, € N such that

F(d,) > (B —¢)d> foralln> N..

So
Myd2 AT
2 2

2
2 dn

D(wy,) — A (wy,) < =

(B—¢)d (My —MT(B—¢)) > —©

as n — +00.
If B = 400, fix M5 > My/(AT), and from (6.2) there exists Npy € N such that
F(d,) > Msd? for all n > Njs. Therefore,

B(wy,) — AN (wy,) < A Myd2 — INTMsd2 = 3d2%(My — AM5T) — —o0

as n — +o00. Since all the assumptions of Theorem 2.1 (b) are verified, the functional I

admits a sequence (u,) of generalized critical points such that lim, o [|us| = +0o0,
that is, (u,) is unbounded in E®. By Lemma 5.9, (u,) is a sequence of generalized
solutions of BVP (1.1). The proof is complete. |
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Remark 6.2. The constant My in the assumptions is decided by the choice of wy,(t).

Corollary 6.3. Let f: R — R be a continuous function. Assume that Theorem 6.1 (ii)
and (iii) hold. Then for each \ € (A1, A2), problem (1.1) possesses a sequence of pairwise
distinct classical solutions.

Corollary 6.4. Let f be a locally essentially bounded and almost everywhere con-
tinuous function. Assume that (ii) and (iii) of Theorem 6.1 hold. Furthermore, assume
that

F(§) - M,y

iiiy) limsup ,
( 1) §—+o0 52 T

ooy maxyge FI(D) 1
(i) liminf — NEIVE

Then, for each A € (A1, A2), the problem

—% Af(u(t)) ae. tel0,T],

au(0) — b(LoD; P’ (0) + L, D7 4/ (0)) = 0, (6.3)
cu(T) +d(2oD; P/ (T) + 3. D3P/ (T) = 0

(5007 (W (t) + 3:D7" (' (1))

possesses a sequence of generalized solutions that is unbounded in E®.

Let
F(t F
A* = liminf ma¥e<e 71 ( ), B* = limsup 7(5)7
§—07 &2 &0+ &2
\r o M . 1
LT BT 2T aM2T A

Theorem 6.5. Let f: R — R be a locally essentially bounded and almost everywhere
continuous function. Assume that Theorem 6.1 (ii) holds and that
F(§) 1

o e . MaXp<e F(1) .
iii’) liminf ————~= < klimsu here k = ————;
(i) Him in Iz o g2 " 2M2ZM,

(i") for a.e. t € [0,T7, for each u € Dy, f~(u) <0< f*(u) implies that f(u) = 0.

Then for each A € (A}, \5), problem (1.1) has a sequence of generalized solutions that is
unbounded in E¢.

Proof. Apply Theorem 2.4 (c), similar to the proof of Theorem 6.1, and we have the
result. a

Example 6.6. Put

_2nl(n+2)' -1

_ 2nl(n+2)'+1
S TP TR -

bn 4(n+1)!
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for n € N and define the non-negative discontinuous function f: R — R as

16 = {2(n+ DI +1)2 = nl2], €€ (an, ba),
07 é- ¢ UneN(an7 bn)
Consider the problem

d
Cdt
u(0) = (30D; P/ (0) + L, D774/ (0)) = 0, (6.4)

u(T) + (LoD P/ (T) + 1, D77/ (T)) = 0,

(5007 (W' (1) + 5:D77 (' (1)) = Af(u(t)) ae. t€0,T],

where § = i, T = 1. Contrast with (1.1) fora=p=y=0=1.
We have f;" f(&)d¢ = (n+1)!?2 — n!% Then

F(ay, F(b,
lim @) _ lim ZOn) _
n—-+oo (L% n—-+oo b%
So
F(t F F
lim inf %ﬁ() = liminf ©) =0 and limsup ©) =4.
£—+o0 52 £E—+o0 52 £—400 52

Hence, Theorem 6.1 (iii) is satisfied. Clearly, the conditions of Theorem 6.1 are satisfied.
By computation, Ay > 1/2, Aa = +00. So for A € (1/2,+00), problem (6.4) has a sequence
of generalized solutions that is unbounded in E<.

7. Main results for bd = 0

If b =0, d # 0, then problem (1.1) is reduced to

_d

dt
— 1 p=B8,/ 1 =B,/ —

uw(0) =0, cu(T)+d(50D; "u/(T) + 5:Dp"u'(T)) = 0.

(30D, (/1) + 3:D7" (W' () = Af(u(t)) ae. t€(0,T], (7.1)

Define the fractional derivative space X1 = {u € E*: u(0) = 0} with the norm

T
(& o (& « c
Julls == | (D 5D de+ Su(D))

We claim that the norm ||-|| x, is equivalent to ||-|| o 2. Our claim can be proved analogously
to the proof of Lemma 4.6 by using the estimates in formulas (4.12)—(4.17). It is clear
that X is a reflexive Banach space.
Define @¢1: X — R by
1

T
(& (o9 (& « c
P10) = =y [ GDRuEDF0 A+ (TR = Hluli,

Let
Ta—1/2

()20 — 1)1/2/[cos ma|

Mg =
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Remark 7.1. With M3 replaced by Mg, Theorem 6.1, Corollaries 6.3 and 6.4, and
Theorem 6.5 are applicable to problem (7.1).
If b # 0, d = 0, then problem (1.1) is reduced to

d

—&(%ODZB(U’(U) + 5 D7 (0 (1)) = M (u(t)) ae. t €1[0,T],

(7.2)
au(0) — b(1oD; Pu'(0) + 1, D7 4/ (0)) =0, w(T) = 0.
Define the fractional derivative space Xy = {u € E*: u(T') = 0} with the norm
T a 1/2
fullx. = (= [ GDrwsDR0a+ 5 0(0)?)

Define @3: X — R by

T
1 (& o (& « a
Bafa) = = [ GDRwEDR0) A+ (O = k.
Let
. t€(0,47],
wn(t) =
n 2d,t
g 1 2dn, te[3T,T).
Let

dn 2 T3—2a
My = ——+ 2
T(1-—a)'(1—a«)) 23-4 "}
Remark 7.2. With M; replaced by 1/+/|cosma|, and M, replaced by My, Theo-
rem 6.1, Corollaries 6.3 and 6.4, and Theorem 6.5 are applicable to problem (7.2).
If b =0, d = 0, then problem (1.1) is reduced to the Dirichlet boundary-value problem

d

~ 5 oD W (1) + 3 D7 (W (0) = M(u(t) et € (0,T),

w(0) =0, u(T)=0.

(7.3)

Define the fractional derivative space X5 = {u € E*: u(0) = 0,u(T) = 0} with the
norm

T
lullx, = — / (6Dfu, D) .

Define @¢3: X — R by

T
1 C (e} C «
Balu) = =y [ GDRuEDF0at = Huli,

Let o 1
=, te 0,571,
T
wp(t) =
2d,t 1
—p +2da, € [FTTI.
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2 2 T3—2a T3—2a
Mg = — + — .
T(l—a)(1—a)) \ 22200 7 21-a
Remark 7.3. With M, replaced by Mg, and M; replaced by 1/4/|cosma|, Theo-
rem 6.1, Corollaries 6.3 and 6.4, and Theorem 6.5 are applicable to problem (7.3).

Let
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