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A reduction method is used to prove the existence and uniqueness of strong solutions
to stochastic Kolmogorov{Petrovskii{Piskunov (KPP) equations, where the initial
condition may be anticipating. The asymptotic behaviour of the solution for large
time and space and the random travelling waves are then studied under two di® erent
basic assumptions.

1. Introduction

There are numerous examples of wave phenomena in nature, and in biology there
seem to be particularly many. Some examples of such phenomena are insect dis-
persal, the progressing wave of an epidemic (e.g. the spread of the Black Death
in the 14th century and the current rabies epizootic spreading across Europe), the
movement of microorganisms into a food source, and the spread of killer bees in
South America. Detailed discussions on these and many other examples can be
found in [18].

The KPP equation

@u

@t
= 1

2 D¢u + ru(K u); (1.1)

where r > 0 is the reproduction rate, K > 0 the carrying capacity and D > 0
the di¬usion coe¯ cient, provides a (deterministic) model for the density u(t; x) of
a population living in an environment with a limited carrying capacity. We shall
make the model more realistic by introducing environmental noise. More precisely,
we assume the carrying capacity is stochastic and given by K(t) = c0 + k _Wt, where
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c0 > 0 and _Wt is white noise. Substituting K(t) into (1.1) gives the stochastic
partial di¬erential equation (SPDE)

du(t; x) = ( 1
2
D¢u(t; x) + ru(t; x)(c0 u(t; x))) dt + ku(t; x) dWt: (1.2)

To make the problem well posed, we suppose that the spatial distribution of the
population density at time t = 0 is known, u(0; x) = u0(x).

There are clearly other ways of introducing environmental noise in (1.1). In the
spatially homogeneous case, D = 0, di¬erent versions are discussed and compared
in [7,13,14,16,17,20]. Some of these papers also contain discussions on whether the
Itô or Stratonovich interpretation of the equation is most appropriate. Note that
the spatially homogeneous case when the carrying capacity K > 0 is constant and
r = r0 + ¬ _Wt has recently been analysed in detail in [11,15].

Equation (1.2) is a very simple model for a population living in a stochastic
environment with limited carrying capacity. It is well known that under suitable
conditions the corresponding deterministic equation (1.1) develops travelling waves.
In this paper we shall study how the strength of the environmental noise in®uences
the travelling waves which are known to develop in the corresponding deterministic
equation.

Generally, one would also like r, K and D to be stochastic, time and space depen-
dent. Apart from the practical di¯ culties in analysing the behaviour of the solution
to an equation with so many degrees of freedom, we also face the fundamental prob-
lem that (1.2) may fail to have a solution in the usual sense. It is well known that
solutions of many SPDEs only exist in some generalized sense or measure valued
in multi-dimensions.

However, if the equation is interpreted in the Wick sense and within the context
of the Kondratiev space (S) 1 of stochastic distributions (see [12]), then it has the
form

@u(t; x)

@t
= 1

2 D¢u(t; x) + u(t; x) ¦ (c0 u(t; x)) + k(t)u(t; x) ¦ _W (t; x):

It has been shown recently (see [10]) that if the initial values u(0; x) are speci ed,
then a unique (S) 1-valued solution of this equation exists, for any space dimension.

In view of the above, suppose u(t; x) solves the stochastic KPP equation

du(t; x) = ( 1
2
D¢u(t; x) + u(t; x)c(u(t; x))) dt + k(t)u(t; x) dWt; u(0; x) = u0(x);

(1.3)

for t > 0 and x 2 R, where D > 0 and W = fWt; Ft; t > 0g is a Brownian motion.
It is well known that if c(u) > 0 for 0 < u < 1 and c(u) < 0 for u > 1, k ² 0 and
u0 = À ( 1 ;0], then (1.3) has a unique solution and it tends to a travelling wave as
time and space tend to in nity (see for example, [3,6,8,18,19]).

Assume c 2 C1(R + ) is strictly decreasing, c0 = c(0) > 0 and there is ³ 0 > 0
such that c( ³ ) 6 0 for all ³ > ³ 0, and k is not identically zero. The approximate
travelling wave solution to the stochastically perturbed KPP equation was studied
and some computer simulations of the solution were produced when u0 and k(t) are
deterministic using Hamilton{Jacobi theory (see [4, 5]). The authors showed that
the asymptotic behaviour of the solution depends on the strength of the noise. If
the noise is strong, the solution tends to zero. If it’s moderately strong, the solution
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may tend to a travelling wave (possibly travelling at a reduced speed) or the wave
may be destroyed. The solution tends to the same travelling wave as the solution
of the unperturbed deterministic problem, if the noise is weak. In this paper we
consider similar problems but with either u0 or k(t) being random.

First, we use an extension of the reduction method in [2] (see also [12]) to show
that (1.3) has a unique strong solution when u0 is an FT -measurable random vari-
able and k is deterministic. Applying Itô calculus, we use a similar argument to
prove the existence of a unique strong solution to (1.3) when u0 is F0-measurable
and k is Itô-integrable on compact time-intervals. By a strong solution of (1.3),
we mean that the solution u(t; x) is almost surely twice continuously di¬erentiable
with respect to x. Precise de nition will be given in x 3.

An implicit Feynman{Kac-like formula for the solution of (1.3) will be given.
With this formula it is possible to extend the ideas in [8] for the deterministic KPP
equation to study u(t; x) for large times. We characterize the asymptotic behaviour
of the solution in terms of k in two di¬erent cases.

(a) u0 = À ( 1 ;f ], where f is an FT -measurable random variable for some T > 0
and k 2 L2

loc(R+ ) is deterministic.

(b) u0 = À ( 1 ;0] and k is Itô integrable on compact time-intervals.

As in [4, 5], we  nd that the solution’s behaviour depends on the strength of the
noise. In case (a) we obtain the same limit behaviour for a.e. !, whereas in case (b)
we  nd that the behaviour is ! dependent.

If the noise is strong, that is if

lim inf
t ! 1

1

2t

Z t

0

k(s)2 ds > c(0) = c0; (1.4)

the solution in case (a) almost surely tends to zero as time tends to in nity. In
case (b) the solution tends to zero for a.e. ! for which (1.4) holds.

We say the noise is weak if
Z 1

0

k(s)2 ds < 1:

In case (a), when the noise is weak, the solution of (1.3) a.s. converges to the same
travelling wave as the solution of the corresponding unperturbed deterministic KPP
equation. In case (b) it converges to the same wave for a.e. ! such that

Z 1

0

k(s; !)2 ds < 1:

When the noise is neither strong nor weak, we say the noise is moderately strong.
The asymptotic behaviour of the solution to (1.3) is, in this case, analysed using
methods from [4, 5]. We  rst compare the solution of (1.3) with the solution w of
a random partial di¬erential equation, where ! only enters as a parameter. If, in
addition, there exist a2 > a1 > 0 such that 2a1 6 k(t)2 6 2a2 for all su¯ ciently
large t, we are able to obtain asymptotic estimates on w. These bounds can then
be used to obtain more explicit estimates on u as time tends to in nity.
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In the case where the initial function is anticipating and k(t) is deterministic, the
limit behaviour obtained below agrees with what is found for the related problem
studied in [4], using di¬erent methods. When the initial condition is adapted and
k is assumed Itô-integrable on compact time-intervals, we observe a more complex
behaviour, in the sense that the solution’s limit behaviour may depend on !.

The paper is organized as follows. In x 2 we give two results from white noise anal-
ysis needed to understand the reduction method in x 3, when the initial condition
is assumed to be anticipating. In x 3 we show how existence and uniqueness results
can be obtained for (1.3). The asymptotic behaviour of the solutions is studied in
x 4. In the  nal section we brie®y discuss our results.

2. Two results from white noise analysis

We refer the reader to [12] for a comprehensive introduction to white noise analysis
and SPDEs. Here we only mention two results which play an important role in what
follows. Let S 0 be the space of tempered distributions, B be the Borel ¼ -algebra on
S 0 and (S 0; B; P ) denote the white noise probability space as it is de ned in ch. 2
of [12]. Let W = fWt; 0 6 t < 1g be the Brownian motion given by the coordinate
process and _Wt denote the distributional time derivative of Wt. If f is Skorohod
integrable, then Z t

0

f (s) ¯ Ws =

Z t

0

f (s) ¦ _Ws ds;

where the left-hand side is interpreted as a Skorohod integral (or Itô integral if f
is adapted) and the right-hand side as a Pettis integral in the space of tempered
distributions (see, for example, [12, p. 45] for details). Here, ¦ denotes the Wick
product. The de nition of the Wick product will not be needed in the following,
since all Wick products that occur can be expressed in terms of the ordinary product
using Gjessing’s translation formula (see, for example, [12, theorem 2.10.7]). This
result says that if ¿ 2 L2(R + ) and X 2 Lp(P ) for some p > 1, then

(X ¦ E 1 ( ¿ ))(!) = X(! ¿ ) ¢ E 1 ( ¿ ; !) a.s.; (2.1)

where

Et( ¿ ) := exp

³Z t

0

¿ (s) dWs
1

2

Z t

0

¿ (s)2 ds

´
; 0 6 t 6 1: (2.2)

3. Existence and uniqueness of a strong solution

Let D > 0, c 2 C1(R + ) and suppose there is ³ 0 > 0 such that c( ³ ) 6 0 for all
³ > ³ 0. We shall apply a reduction method to prove the existence and uniqueness
of a strong solution to

du(t; x) = ( 1
2D¢u(t; x) + u(t; x)c(u(t; x))) dt + k(t)u(t; x) dWt; u(0; x) = u0(x);

(3.1)

for (t; x) 2 R + £R. The idea is to transform (3.1) into a deterministic equation that
can be solved for each ! separately. We study case (a) and case (b) using di¬erent
methods. Case (a) is shown using an extension of the white noise technique in [2],
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and case (b) using Itô calculus. We present a complete argument for the  rst case
and sketch an argument for the second, since it is similar.

Definition 3.1. A random  eld u : [0; 1) £ R £ S 0 ! R is called a (strong)
solution of (3.1) if the following hold.

(a) u(¢; ¢; !) 2 C0;2((0; 1) £ R) a.s.

(b) u(t; x), ¢u(t; x) 2 L2(dP ) for all (t; x) 2 (0; 1) £ R.

(c) u satis es (3.1) a.s. in the sense that, for all 0 < t0 < t < 1 and x 2 R,

u(t; x) = u(t0; x) +

Z t

t0

( 1
2
D¢u(s; x) + u(s; x)c(u(s; x))) ds

+

Z t

t0

k(s)u(s; x) dWs a.s.

If u0(¢; !) is continuous a.s., the integral formulation holds with t0 = 0.

Remark 3.2. If (t; !) 7! u(t; x; !) is not Ft-adapted, we interpret the stochastic
integral in (3.1) as Z t

0

k(s)u(s; x) ¦ _Ws ds

and require the result to be in L2(P ). (This is often called a generalized Skorohod
interpretation of (3.1).)

Since u0 may have discontinuities, u will satisfy the initial condition in the sense
that, for almost all x 2 R,

lim
t#0

u(t; x; !) = u0(x) a.s.

(In fact, for all x 2 R at which u0(¢; !) is continuous.)

3.1. Anticipating case

In this section we prove the existence and uniqueness of a strong solution to (3.1),
when k 2 L2

loc(R + ) and u0(x) is a stochastic, possibly anticipating, random variable
for x 2 R.

To obtain the existence and uniqueness theorem, we will extend the method in [2].
Let Et( k) be given by (2.2) for (deterministic) k 2 L2

loc(R + ) and note that

d

dt
Et( k) = k(t) _Wt ¦ Et( k); 0 < t < 1:

If u solves (3.1) and v(t; x) := u(t; x) ¦ Et( k), then

@

@t
v(t; x) = ( 1

2 D¢u(t; x) + u(t; x)c(u(t; x))) ¦ Et( k):

The de nition of v and Gjessing’s formula gives

@

@t
v(t; x; !) = 1

2
D¢v(t; x; !) + v(t; x; !)c(u(t; x; ! + kÀ [0;t])):
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Another application of Gjessing’s formula shows that v(t; x; !) satis es

@

@t
v(t; x; !) = 1

2
D¢v(t; x; !) + v(t; x; !)c(Et( k; !) 1v(t; x; !));

v(0; x; !) = u0(x; !)

9
=

; (3.2)

for almost every  xed ! 2 S 0.
If a classical solution, v(t; x; !), of (3.2) is known for a.e. ! 2 S 0, then

u(t; x; !) = v(t; x; ! kÀ [0;t])Et( k; ! kÀ [0;t])
1 = v(t; x; ! kÀ [0;t])Et(k; !)

(3.3)

is a solution of the original problem (3.1).
This shows that to solve (3.1) it is su¯ cient to solve (3.2), where ! only enters

as a parameter. Then (3.3) gives a solution of (3.1). Moreover, if (3.2) has a unique
solution, the solution of (3.1) is unique as well.

To prove (3.2) has a unique solution for almost every ! 2 S 0, one may apply any
method for deterministic nonlinear parabolic PDEs. A contraction method yields
the following result.

Proposition 3.3. Let D > 0, c 2 C1(R + ), and let k 2 L2
loc(R + ) be deterministic.

Suppose there exists ³ 0 > 0 such that c( ³ ) 6 0 for all ³ > ³ 0. Assume u0 2
L 1 (S 0; L 1 (R)) is such that x 7! u0(x; !) is piecewise continuous and non-negative
for a.e. ! 2 S 0. Then (3.1) has a unique strong solution.

Proof. We begin by proving (3.2) has a unique classical solution, v, for a.e. ! 2 S 0.
Let F » S 0 be a set of 1 measure on which t 7! Et( k; !) is continuous and
x 7! u0(x; !) is piecewise continuous.

Fix any T > 0 and ! 2 F . A classical solution of (3.2) has to satisfy

v(t; x; !) =

Z

R
p(t; x; 0; y)u0(y; !) dy

+

Z t

0

Z

R
p(t; x; s; y)v(s; y; !)c(v(s; y; !)Es( k; !) 1) dy ds (3.4)

for (t; x) 2 (0; T ]£R, where p denotes the Green’s function associated with @t+
1
2 D¢

on R + £ R.
By the comparison theorem (see, for example, [9]), a classical solution of (3.2)

has to satisfy the a priori bounds

0 6 v(t; x; !) 6 ku0(¢; !)k1 _ ³ 0 max
06t6T

Et( k; !) (3.5)

for (t; x) 2 [0; T ] £ R. Based on these properties, equation (3.4) can be used to
construct a contraction (see [19, ch. 14] for details). Applying Banach’s  xed point
theorem, we obtain a unique solution v(¢; ¢; !) 2 C((0; T ] £ R) of (3.4). A classical
regularity result (see, for example, [9, ch. 1.7]) ensures that v(¢; ¢; !) 2 C1;2((0; T ]£
R). Since v was found using a contraction method, v(t; x; ¢) is measurable and (3.5)
ensures that v(t; x; ¢) 2 L2(P ) for all (t; x) 2 [0; T ] £ R. To obtain a solution for all
t > 0, note that T > 0 was arbitrary.
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The argument preceding the proposition ensures that u is a strong solution
of (3.1). The solution u is unique, since v is the unique solution of (3.2). The
other statements follow easily.

The solution also enjoys the following properties.

Proposition 3.4. Let u denote the strong solution of (3.1). Then the following
hold.

(a) u(t; x) > 0 for all (t; x) 2 R + £ R a.s.

(b) If x 7! u0(x) is decreasing a.s., then x 7! u(t; x; !) is decreasing for each
t 2 R + and a.e. ! 2 S 0.

Proof. Part (a) follows from (3.3), (3.5) and the fact that Et( k) > 0 for t > 0 a.s.
For part (b), let y > 0. Suppose v and w solve (3.2) with the initial conditions

v(0; x) = u0(x) and w(0; x) = u0(x+y), respectively. From the comparison theorem,
v(t; x) > w(t; x). Applying (3.3) completes the proof.

Remark 3.5. The solution u(t; x) we obtain is the unique strong solution of (3.1).
Note also that we have shown the existence of a unique strong solution to a nonlinear
SPDE, where the nonlinear term uc(u) does not satisfy a global Lipschitz condition.

Travelling waves do not form under arbitrary initial conditions, e.g. u0 ² const: >
0. Later we shall assume u0 = À ( 1 ; f(!)], where f is an FT -adapted random vari-
able for some T > 0. The following remark gives a representation formula for the
solution u for large times, when u0 is B « FT -measurable. This formula turns out
to be very useful in x 4.

Remark 3.6. Let u0 be B « FT -measurable for some T > 0. Suppose v(t; x; !)
is a classical solution of (3.2) for a.e. ! 2 S 0. Then v satis es the Feynman{Kac
formula,

v(t; x; !)

= ·E

µ
u0(x +

p
D ·Bt; !) exp

³Z t

0

c(v(t s; x +
p

D ·Bs; !)Et s( k; !) 1) ds

´¶

for a.e. ! 2 S 0, where ·B = f ·Bt; t > 0g is a Brownian motion de ned on an auxiliary
probability space, ( ·« ; ·F ; ·P ), and ·E denotes the expectation with respect to ·P .
To obtain u from v, we substitute ! kÀ [0;t] for ! in v and multiply by Et(k).
Since u0(x) is FT -adapted, u0(x; ! kÀ [0;t]) = u0(x; ! kÀ [0;T ]) for T 6 t 6 1.
A straightforward calculation shows that Es( k; ! kÀ [0;t])

1 = Es(k; !) for all
0 6 s 6 t 6 1. Therefore, v(t; x; ! kÀ [0;t]) = v(t; x; ! k) for all t > T . Let
~v(t; x; !) := v(t; x; ! k), then u(t; x; !) = ~v(t; x; !)Et(k; !) for t > T , where ~v
satis es

@

@t
~v = 1

2D¢~v + ~vc(~vEt(k)); ~v(0; x; !) = u0(x; ! k) (3.6)
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for (t; x) 2 R + £ R a.e. ! 2 S 0. Since ~v is a strong solution of (3.6), ~v almost surely
satis es the Feynman{Kac formula

~v(t; x; !)

= ·E

µ
u0(x +

p
D ·Bt; ! k) exp

³Z t

0

c(~v(t s; x +
p

D ·Bs; !)Et s(k; !)) ds

´¶

for (t; x) 2 R + £ R.

We sum up our results in this section the following theorem.

Theorem 3.7.

(a) Let D > 0, k 2 L2
loc(R + ), c 2 C1(R + ), and suppose there exists ³ 0 > 0

such that c( ³ ) 6 0 for all ³ > ³ 0. Assume u0 2 L 1 (S 0; L 1 (R)) is such
that x 7! u0(x; !) is piecewise continuous and non-negative for a.e. ! 2 S 0.
Then (3.1) has a unique non-negative strong solution.

(b) If, in addition to the assumptions above, u0 is B « FT -measurable for some
0 6 T < 1, then

u(t; x; !) = ~v(t; x; !)Et(k; !) for (t; x) 2 [T; 1) £ R;

where ~v satis¯es (3.6) for all (t; x) 2 R + £ R.

(c) If, in addition to the conditions in (a), x 7! u0(x; !) is decreasing a.s., then
x 7! u(t; x; !) is decreasing almost surely for every t > 0.

3.2. Adapted case

Suppose u0(x) is F0-measurable for every x 2 R, k = k(s; !) is Itô integrable on
compact time-intervals, and u(t; x) is a strong solution of (3.1). Let b = 1

2
D¢u +

uc(u) and ¼ = ku, then ut solves the di¬usion equation

dut = b dt + ¼ dWt; utjt= 0 = u0

for each x 2 R. Let

Yt := (Et(k)) 1 = exp

³ Z t

0

ks dWs +
1

2

Z t

0

k2
s ds

´
;

then Yt satis es
dYt = k2

t Yt dt ktYt dWt; Y0 = 1:

Itô’s formula shows that ~v(t; x) = u(t; x)Yt satis es

@

@t
~v(t; x) = 1

2D¢~v(t; x) + ~v(t; x)c(Et(k)~v(t; x)); ~v(0; x) = u0(x): (3.7)

Again we have arrived at a PDE where ! enters as a parameter only. Moreover, it
is not di¯ cult to show that if (3.7) has a unique solution ~v for almost every !, then
u(t; x) = ~v(t; x)Et(k) is the unique strong solution of (3.1).

Arguing as in the previous section, one can prove the following result.
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Theorem 3.8.

(a) Let D > 0, c 2 C1(R + ), and suppose there exists ³ 0 > 0 such that c( ³ ) 6 0
for all ³ > ³ 0. Assume k(t; !) is Itô-integrable on compact time-intervals and
u0 2 L 1 (S 0; L 1 (R)) is such that x 7! u0(x; !) is piecewise continuous and
non-negative for a.e. ! 2 S 0. Suppose also that u0(x) is F0-measurable for
x 2 R. Then (3.1) has a unique non-negative strong solution u(t; x) given by

u(t; x; !) = ~v(t; x; !)Et(k; !) for (t; x) 2 R + £ R;

where ~v almost surely satis¯es (3.7) for (t; x) 2 R + £ R.

(b) If, in addition to the assumptions above, x 7! u0(x; !) is decreasing a.s., then
x 7! u(t; x; !) is decreasing a.s. for every t > 0.

4. Travelling waves for the stochastic KPP equation

Below we study the solution of (3.1) for large time and space. First we would like
to remind the reader of the behaviour in the deterministic case.

If c is strictly decreasing, k ² 0 and u0 = À ( 1 ;0], the solution of (3.1), tends
to a travelling wave. With Freidlin’s point of view, i.e. if we consider the solution’s
limit as time and space tend to in nity and ignore questions concerning the wave’s
shape, this can be expressed as

lim
t! 1

inf
x<t(

p
2c0D h)

u(t; x) = c 1(0) and lim
t! 1

sup
x>t(

p
2c0D + h)

u(t; x) = 0 (4.1)

for any h > 0, where c0 := c(0). We call ¬ =
p

2c0D the speed of the wave. On the
right-hand side of the line x = ¬ t, the solution tends to 0 and on the left-hand side
it tends to c 1(0), where c 1(¢) denotes the inverse of c(¢).

In the following paragraphs we study how the solution of (3.1) behaves as time
tends to in nity in cases (a) and (b) classi ed in x 1.

4.1. Strong noise

We  rst consider case (a). Suppose k 2 L2
loc(R + ) is deterministic and de ne

a ¤ := lim inf
t! 1

1

2t

Z t

0

k(s)2 ds:

Theorem 4.1. Suppose the conditions in theorem 3.7 (a) hold and let u(t; x) denote
the strong solution of (3.1). If a ¤ > max06 ³ 6 ³ 0 c( ³ ), then, for almost every ! 2 S 0,

0 6 u(t; x; !) 6 ku0k1 exp

³
t max

³
c( ³ ) +

Z t

0

k(s) dWs(!)
1

2

Z t

0

k(s)2 ds

´
! 0

as t ! 1, for all x 2 R.

Proof. Let u denote the solution of (3.1). Then

u(t; x; !) = v(t; x; ! kÀ [0;t])Et(k; !)
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from (3.3), where v satis es

v(t; x; !)

= ·E

µ
u0(x +

p
D ·Bt; !) exp

³Z t

0

c(v(t s; x +
p

D ·Bs; !)Et s( k; !) 1) ds

´¶

6 ku0k 1 exp t max
³

c( ³ )
¢

for all (t; x) 2 [0; 1) £ R. It follows that, for almost every ! 2 S 0,

0 6 u(t; x; !)

6 ku0k 1 exp

³
t max

³
c( ³ ) +

Z t

0

k(s) dWs(!)
1

2

Z t

0

k(s)2 ds

´

= ku0k 1 exp

³Z t

0

k(s) dWs(!)

³
1

2t

Z t

0

k(s)2 ds max
³

c( ³ )

´
t

´

6 ku0k 1 exp

³Z t

0

k(s) dWs(!) 1
2
(a ¤ max

³
c( ³ ))t

´
! 0

as t ! 1, for all x 2 R. The convergence part follows easily from Doob’s inequality
and a ¤ max³ c( ³ ) > 0.

We may argue similarly in case (b). Suppose k(t; !) is Itô integrable on compact
time-intervals and de ne

a ¤ (!) := lim inf
t! 1

1

2t

Z t

0

k(s; !)2 ds:

Theorem 4.2. Suppose the conditions in theorem 3.8(a) are satis¯ed and let u(t; x)
denote the strong solution of (3.1). If A = f! 2 S 0; a ¤ (!) > max³ c( ³ )g, then, for
a.e. ! 2 A,

u(t; x; !) ! 0 as t ! 1;

for all x 2 R.

Thus, for a.a. ! such that a ¤ > max³ c( ³ ), the solution of (3.1) tends to zero (uni-
formly in x) as t tends to in nity. Put di¬erently, if the noise is su¯ ciently strong,
the wave structure for the corresponding deterministic equation is destroyed. This
is not surprising considering that the solution of the SODE we obtain from (3.1)
by letting D = 0 also vanishes if the noise is su¯ ciently strong. This, in fact, fol-
lows immediately from our results. See [1] and the references therein for alternative
discussions.

4.2. Moderate noise

When the noise is moderately strong, the solution of (3.1) displays a more com-
plex behaviour than what we found in the previous section.

Theorem 4.3. Suppose the conditions in theorem 3.7 (a) are satis¯ed and let u
denote the strong solution of (3.1). Assume that c0( ³ ) 6 0 for ³ > 0 and u0(x; !) =
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À ( 1 ;f (!)](x), where f is an FT -measurable random variable for some 0 6 T < 1.
If k 2 L2

loc(R + ) (deterministic) is such that the limit

a := lim
t! 1

1

2t

Z t

0

k(s)2 ds

exists and 0 6 a 6 c0 := c(0), then, for any h > 0,

lim
t! 1

sup
x>t( ¬ + h)

u(t; x) = 0 a.s.;

where ¬ =
p

2(c0 a)D.

Proof. Fix arbitrary h > 0 and choose 0 < " < h(h+2 ¬ )=4D. Then, for a.e. ! 2 S 0,
there is t0 = t0("; !) > T such that

e (a + ")t 6 Et(k; !) 6 e (a ")t for t > t0: (4.2)

Let ! 2 S 0 be such that (4.2) holds and consider

Vt = 1
2
D¢V + V c(e (a + ")tV ); V jt= t0 = V0:

By the comparison theorem (see, for example, [9]),

V (t; x) > ~v(t; x) for (t; x) 2 [t0; 1) £ R; (4.3)

if V0(x) > ~v(t0; x) for x 2 R, where ~v denotes the solution of (3.6). De ne

V0(x) :=
ec0t0

p
2 º t0

Z (f(! k) x)=
p

D

1
e z2=2t0 dz for x 2 R;

and note from the Feyman{Kac formula for ~v in remark 3.6 that V0(x) > ~v(t0; x)
for all x 2 R. Let

w(t; x) = V (t + t0; x) exp( (a + ")(t + t0)): (4.4)

Then w satis es

wt = 1
2 D¢w + w(c(w) a "); wjt = 0 = e (a + ")t0 V0:

The implicit Feynman{Kac formula for w shows that

w(t; x) 6 ec0t (a + ")(t0 + t) ·E[V0(x +
p

D ·Bt)] for (t; x) 2 R + £ R: (4.5)

From theorem 3.7 (b) and equations (4.3), (4.4) and (4.5), we obtain

u(t + t0; x) = ~v(t + t0; x)Et + t0 (k) 6 ec0t ·E[V0(x +
p

D ·Bt)]Et+ t0 (k) (4.6)

for all (t; x) 2 R + £ R. Using the de nition of V0, it is not di¯ cult to show that

ec0t ·E[V0(x +
p

D ·Bt)] =
ec0(t+ t0)

2 º
p

t t0

Z 1

1

Z (f(! k) x)=
p

D y

1
e z2=(2t0) dz e y2=(2t) dy

= ec0(t0 + t) ·P

³
·Bt + t0 <

f (! k) xp
D

´
:
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Using Doob’s inequality ensures that, for any  > 0, there is a t1 = t1(";  ; !) > 0
such that

·P

³
·Bt + t0 <

f (! k)  (t + t0)p
D

´
6 exp

»³
 2

2D
+ "

´
(t + t0)

¼

for t > t1. Combining this with (4.2) and (4.6) gives

0 6 u(t + t0;  (t + t0); !) 6 K exp((c0 a + 2"  2=2D)t)

for t > t1. Our choice of " ensures that

u(t; ( ¬ + h)t; !) ! 0 as t ! 1:

The theorem now follows from theorem 3.7 (c) and observing that h > 0 and ! were
arbitrary.

An argument similar to the one above gives the corresponding result in case (b),
when u0 = À ( 1 ;0] and k(t; !) is Itô-integrable on compact time-intervals.

Theorem 4.4. Suppose the conditions in theorem 3.8 (a) are satis¯ed and let u
denote the strong solution of (3.1). Assume c is decreasing and u0 = À ( 1 ;0]. Let

a(!) := lim
t ! 1

1

2t

Z t

0

k(s; !)2 ds;

for those ! 2 S 0 for which the limit exists and leave a(!) unde¯ned otherwise.
Then, for a.e. ! 2 S 0 such that 0 6 a(!) 6 c0 := c(0),

lim
t! 1

sup
x>( ¬ (!)+ h)t

u(t; x; !) = 0

for any h > 0, where ¬ (!) =
p

2(c0 a(!))D.

It is more complicated to obtain bounds on the solution when x < t
p

2(c0 a)D.
We begin by comparing u with w, the solution of another partial di¬erential equa-
tion. The proof is essentially the same as the proof of lemma 3.1 in [5] and lemma 1.6
in [4]. Note, however, that for the problems studied here, w satis es a random par-
tial di¬erential equation. But since ! only enters as a parameter in the equation
for w, it is easier to study the asymptotic properties of w than it is to study the
asymptotic properties of u directly.

Theorem 4.5. Assume the conditions in theorem 3.7 (a) and (b) are satis¯ed and
let u be the strong solution of (3.1). Suppose that, for a.e. ! 2 S 0, w is a classical
solution of

@w

@t
= 1

2D¢w + w(c(w) 1
2k2); w(0; ¢; !) = u0(¢; ! k); (t; x) 2 R + £ R:

(4.7)
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If c is decreasing, then

w(t; x) exp

³
inf

06 ¼ 6t

Z t

¼

ks dWs

´
6 u(t; x)

6 w(t; x) exp

³
sup

06 ¼ 6t

Z t

¼

ks dWs

´
; t > T; x 2 R;

(4.8)

for a.e. ! 2 S 0.

Proof. Suppose, to obtain a contradiction, that there is (t0; x0) 2 [T; 1) £ R such
that

u(t0; x0) > w(t0; x0) exp

³
sup

06 ¼ 6t0

Z t 0

¼

ks dWs

´
; (4.9)

then u(t0; x0) > w(t0; x0). To simplify notation let ·Xt 0 ;x 0

s = (t0 s; x0 +
p

D ·Bs) for
s > 0 and let ~u(t; x) := ~v(t; x)Et(k) for (t; x) 2 R + £ R, where ~v solves (3.6). Recall
from theorem 3.7 (b) that ~u(t; x) = u(t; x) when t > T . De ne the stopping time

·½ := inffs > 0; ~u( ·X t0 ;x0

s )) = w( ·X t0 ;x0

s )g

for each ! 2 S 0. Using the strong Markov property we obtain that

u(t0; x0) = ·E

µ
~u( ·X t 0 ;x0

·½ ) exp

³Z ·½

0

c(~u( ·X t0 ;x 0

s )) ds +

Z t 0

t0 ·½

ks dWs
1

2

Z t0

t 0 ·½

k2
s ds

´¶

< ·E

µ
w( ·X t 0 ;x 0

·½ ) exp

³Z ·½

0

c(w( ·X t0 ;x 0

s )) ds
1

2

Z t0

t 0 ·½

k2
s ds +

Z t0

t 0 ·½

ks dWs

´¶

6 ·E

µ
w( ·X t 0 ;x 0

·½ ) exp

Z ·½

0

[c(w( ·X t0 ;x 0

s )) 1
2 k2

t0 s] ds

¶
exp sup

06 ¼ 6t0

Z t 0

t0 ¼

ks dWs

= w(t0; x0) exp sup
06 ¼ 6t 0

Z t 0

¼

ks dWs;

which contradicts (4.9) and proves the upper bound in (4.8). The lower bound is
shown similarly.

Arguing as above gives the corresponding result when u0 is F0-measurable and
k(t; !) is Itô-integrable on compact time-intervals.

Theorem 4.6. Suppose the conditions in theorem 3.8 (a) are satis¯ed and let u
denote the strong solution of (3.1). If c is decreasing and w is the classical solution
of

@w

@t
= 1

2 D¢w + w(c(w) 1
2 k2); wjt = 0 = u0 (4.10)

for almost every ! 2 S 0, then

w(t; x) exp inf
06 ¼ 6t

Z t

¼

ks dWs 6 u(t; x)

6 w(t; x) exp sup
06 ¼ 6t

Z t

¼

ks dWs; (t; x) 2 R + £ R:
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To obtain more explicit bounds on the solution of (3.1), we shall study the asymp-
totic behaviour of the solutions to (4.7) and (4.10). The following standard result for
deterministic PDEs, presented without proof, will play an important role (see [6,8]
for details).

Lemma 4.7. Let D > 0, k 2 C(R + ), and let x 7! w0(x) > 0 be bounded and
piecewise continuous. Suppose c 2 C1(R + ) and that there is ³ 0 > 0 such that
c( ³ ) 6 0 for all ³ > ³ 0. Let w be the unique classical solution of (the deterministic
equation)

@w

@t
= 1

2 D¢w + w(c(w) 1
2 k(t)2); wjt = 0 = w0; (t; x) 2 R + £ R:

If there is a > 0 such that a 6 1
2
k(t)2 (respectively, 1

2
k(t)2 6 a) for all t > t0 > 0,

then

0 6 w(t; x) 6 q(t; x) (respectively, 0 6 q(t; x) 6 w(t; x)) for (t; x) 2 [t0; 1) £ R;

where

@q

@t
= 1

2 D¢q + q(c(q) a); qjt = t0 (¢) = w(t0; ¢); (t; x) 2 [t0; 1) £ R:

Moreover, if a > max³ c( ³ ), then q(t; x) # 0 (uniformly in x) as t ! 1. If c is
strictly decreasing and 0 6 a < c0 := c(0), then, for any h > 0,

lim
t! 1

inf
x<t( ¬ h)

q(t; x) = c 1(a) and lim
t! 1

sup
x>t( ¬ + h)

q(t; x) = 0;

where ¬ =
p

2(c0 a)D.

With this lemma we can study the asymptotic behaviour of the solutions to (4.7)
and (4.10). The following argument applies to w satisfying (4.7) when u0 = À ( 1 ;f ],
for an FT -measurable random variable f , as well as to w satisfying (4.10) when
u0 = À ( 1 ;0]. Assume, in addition, that t 7! k(t) is continuous (respectively, con-
tinuous almost surely). Since ! only enters as a parameter in the SPDEs for w, we
 x ! 2 S 0. If there exist a2 > a1 > 0 such that

0 6 a1 6 1
2k(t)2 6 a2 (4.11)

for t > t0 > 0, then lemma 4.7 ensures that

w2(t; x) 6 w(t; x) 6 w1(t; x) for (t; x) 2 [t0; 1) £ R;

where
@

@t
wi = 1

2
D¢wi + wi(c(wi) ai); wijt= t0 = wjt = t0

for t > t0, x 2 R and i = 1; 2.
We can now apply the last part of lemma 4.7 to obtain explicit bounds on w1 and

w2 as time tends to in nity. We thereby also obtain explicit bounds on u. We con-
sider the situation in theorem 4.5 in detail. If c 2 C1(R + ) is strictly decreasing and
k 2 C(R + ) satis es (4.11) with 0 6 a1 6 a2 6 c0, we observe three di¬erent types
of behaviour. For any ", h > 0 and almost every ! 2 S 0, there is t1 = t1(!; "; h) > 0
such that the following hold.
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(i) If x < (
p

2(c0 a2)D h)t and t > t1,

(c 1(a2) ") exp inf
06 ¼ 6t

Z t

¼

ks dWs 6 u(t; x)

6 (c 1(a1) + ") exp sup
06 ¼ 6t

Z t

¼

ks dWs:

(ii) If (
p

2(c0 a2)D h)t 6 x < (
p

2(c0 a1)D h)t and t > t1,

0 6 u(t; x) 6 (c 1(a1) + ") exp sup
06 ¼ 6t

Z t

¼

ks dWs:

(iii) If (
p

2(c0 a1)D + h)t < x and t > t1, then

0 6 u(t; x) 6 ":

If, in addition to (4.11), the limit

a = lim
t! 1

Z t

0

k(s)2 ds=2t 2 [a1; a2]

exists, we may apply theorem 4.3 to improve the two last estimates above as follows.

(ii0) If (
p

2(c0 a2)D h)t 6 x < (
p

2(c0 a)D h)t and t > t1,

0 6 u(t; x) 6 (c 1(a) + ") exp sup
06 ¼ 6t

Z t

¼

ks dWs:

(iii0) If (
p

2(c0 a)D + h)t < x and t > t1, then

0 6 u(t; x) 6 ":

Several remarks are in order. If a2 > c0, (i) no longer applies and the estimate
in (ii) (or (ii0)) holds for all x < (

p
2(c0 a1)D h)t (or x < (

p
2(c0 a)D h)t,

respectively). If a1 > c0 also, then u converges uniformly to 0 by the results in x 4.1.
Observe that if k(t) doesn’t vary much for large times, i.e. if a1 a2 is close

to zero, the region (ii) (and (ii0) if a exists) is small and we obtain more accurate
estimates on u. In particular, if k 1 = limt! 1 k(t) exists, the KPP equation for w
tends to a travelling wave as time tends to in nity. It follows that, for any " > 0
and h > 0,

(c 1( 1
2
k2

1 ) ") exp inf
06 ¼ 6t

Z t

¼

ks dWs 6 u(t; x)

6 (c 1( 1
2 k2

1 ) + ") exp sup
06 ¼ 6t

Z t

¼

ks dWs

when x < ( ¬ h)t and t is su¯ ciently large, where

¬ =
q

2(c0
1
2 k2

1 )D:
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Moreover,
lim

t! 1
sup

x>( ¬ + h)t

u(t; x) = 0:

Similar results are easily obtained if the assumptions in theorem 4.6 are satis-
 ed, c 2 C1(R + ) is strictly decreasing, t 7! k(t; !) is continuous almost surely, and
u0 = À ( 1 ;0]. Note that, in this case, we  nd that (i){(iii) (respectively, (i) and (ii0){
(iii0)) hold for a.e. ! 2 S 0 for which (4.11) hold with 0 6 a1(!) 6 a2(!) 6 c0.

4.3. Weak noise

If the noise is weak, a concept which is made precise in the theorems below, the
solution of (3.1) tends to the solution of the corresponding deterministic equation
(k = 0 and u0 = À ( 1 ;0]) as time tends to in nity.

Theorem 4.8. Suppose the conditions in theorem 3.7 (a) are satis¯ed and let u
be the strong solution of (3.1). Assume c 2 C1(R + ) is strictly decreasing and
u0 = À ( 1 ;f ], where f is an FT -measurable random variable for some T > 0. If
k 2 L2(R + ) is deterministic, then, for any h > 0,

lim
t ! 1

sup
x<t( ¬ h)

u(t; x) = c 1(0) and lim
t! 1

sup
x>t( ¬ + h)

u(t; x) = 0 a.s.,

where ¬ =
p

2c0D.

Proof. From theorem 4.3, it is su¯ cient to show that u(t; x) tends to c 1(0) on the
left-hand side of x = t

p
2c0D. If k 2 L2(R + ), by Lebesgue’s dominated convergence

theorem there exists g 2 L1(S 0) such that

Z t

0

ks dWs
1

2

Z t

0

k2
s ds ! g as t ! 1 (4.12)

for almost every ! 2 S 0. Let ! 2 S 0 be such that (4.12) holds and h > 0, then, for
any " > 0, there is t0 = t0(!; ") > T such that

g " 6
Z t

0

ks dWs
1

2

Z t

0

k2
s ds 6 g + "; t > t0:

From the comparison theorem and (4.1), we see that

e 2"c 1(0) 6 u(t; x; !) = ~v(t; x; !)Et(k; !) 6 e2"c 1(0);

when x < t(
p

2c0D h) and t is su¯ ciently large. Since h and " were arbitrary, the
result follows.

The following theorem is shown similarly.

Theorem 4.9. Suppose the conditions in theorem 3.8 (a) are satis¯ed and let u be
the strong solution of (3.1). Let c 2 C1(R + ) be strictly decreasing, u0 = À ( 1 ;0],
and let k(t; !) be path continuous and Itô integrable on compact time-intervals.
Then, for a.e. ! 2 S 0 such that

Z 1

0

k(s; !)2 ds
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is ¯nite,

lim
t! 1

sup
x<t( ¬ h)

u(t; x; !) = c 1(0) and lim
t ! 1

sup
x>t( ¬ + h)

u(t; x; !) = 0;

where h > 0 is arbitrary and ¬ =
p

2c0D.

Note that the wave speed found above, ¬ =
p

2c0D, coincides with the wave
speed in the deterministic case. Moreover, we have shown that the solution tends
to c 1(0) on the left-hand side and 0 on the right-hand side of the wave. It follows
that if the noise is weak, the stochastically perturbed equation has the same limit
behaviour as the corresponding deterministic equation (k ² 0).

5. Concluding remarks

We have considered the asymptotic behaviour of the solution to (3.1) in two di¬erent
cases (case (a) and case (b)). In both cases, the solutions’ behaviour in the limit
depends on the strength of the noise, i.e. the asymptotic properties of

Z t

0

k(s)2 ds:

The main di¬erence between the results in the two cases is that in (a), the solution
behaves the same way for a.e. ! 2 S 0, whereas in (b), it may behave di¬erently for
di¬erent ! 2 S 0, depending on the asymptotic properties of

Z t

0

k(s; !)2 ds:

We have shown that if the noise is strong, i.e. if

lim inf
t! 1

1

2t

Z t

0

k(s)2 ds > max
³

c( ³ );

the solution of (3.1) tends to zero (uniformly in x) as t tends to in nity. This should
not come as a surprise, since the SODE that results from putting D = 0 in (3.1)
behaves similarly (see also [1] and the references therein).

When the noise is weak, i.e. if k 2 L2(R + ) or, for almost every ! 2 S 0 such that
Z 1

0

k(s; !)2 ds < 1;

the solutions of the two equations we have considered tend to the solution of the
corresponding unperturbed deterministic equation.

If the noise is moderately strong, the solution of (3.1) displays a more com-
plex behaviour than it does in the corresponding deterministic case. Note that our
estimates on the solution are not as accurate as the ones in the deterministic case,
cf. (4.1). This is not surprising considering that t 7! u(t; x) for x ½ 0 behaves essen-
tially as the SODE one obtains from (3.1) by letting D = 0 and u(0) = u0 > 0.
It has been shown that the solution of this equation with c(u) = r(1 ® u), k = ¼
and u0 > 0, where r > 1

2
¼ 2 > 0, has a À 2 stationary distribution with parameter

² = 2r=¼ 2 1 (see [1] and the references therein). We can therefore not expect the
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solution of (3.1) in the stochastic case to converge to speci c values as the solution
of the corresponding deterministic problem does.

Suppose there is a constant a1 such that 0 6 2a1 6 k2(t), for all t large enough,
then there are constants d1 and d2 with d1 < 0 < d2 such that, for any h > 0,

1

t
log u(t; x) < d1 if x > (

p
2(c0 a1)D + h)t

and

log u(t; x)p
2t log log t

6 d2 if x < (
p

2(c0 a1)D h)t

for all su¯ ciently large t. If, in addition, there is a constant a2 such that k2(t) 6
2a2 < 2c0 for all t large enough, we can  nd d3 < 0 such that

d3 6 log u(t; x)p
2t log log t

6 d2 if x < (
p

2(c0 a2)D h)t

for all su¯ ciently large t.
Observe the similarities with the deterministic case. We do not obtain a con-

vergence as in the deterministic case, but we still observe two distinct types of
behaviour separated by a cone. The width of the cone depends on how much k
varies for large t and tends to zero if a2 a1 tends to zero.

Note also that as a1 is increased from 0 to c0, the region where the solution
converges to zero exponentially grows. For a1 = 0, the region coincides with the
one found in the deterministic case and as a1 approaches c0, the region approaches
the  rst quadrant in the plane. One may interpret this as the speed of the wave is
reduced as a1 is increased. If a1 > c0, the noise is strong and the solution converges
exponentially to 0 (uniformly in x) as t tends to in nity.

Our results also agree with the ones in [4], where a related problem for determin-
istic k and smooth bell-shaped initial conditions was studied using Hamilton{Jacobi
theory.
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