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We employ the moderate-Péclet-number macroscale model developed in part 2 of
this sequence (Schnitzer et al., J. Fluid Mech., vol. 704, 2012, pp. 109–136) towards
the calculation of electroviscous forces on charged solid particles engendered by an
imposed relative motion between these particles and the electrolyte solution in which
they are suspended. In particular, we are interested in the kinematic irreversibility
of these forces, stemming from the diffusio-osmotic slip which accompanies the
salt-concentration polarisation induced by that imposed motion. We illustrate the
electroviscous irreversibility using two prototypic problems, one involving side-by-side
sedimentation of two spherical particles, and the other involving a force-free
spherical particle suspended in the vicinity of a planar wall and exposed to a
simple shear flow. We focus on the pertinent limit of near-contact configurations,
where use of lubrication approximations provides closed-form expressions for the
leading-order lateral repulsion. In this approximation scheme, the need to solve
the advection–diffusion equation governing the salt-concentration polarisation is
circumvented.

Key words: electrohydrodynamic effects, low-Reynolds-number flows, lubrication theory

1. Introduction
Electrokinetic transport has to do with the interaction between electric fields and

the relative motion between electrolyte solution and charged surfaces. As such,
it can be conceptually decomposed into ‘field-driven’ phenomena, where applied
electric fields or concentration gradients result in fluid motion, and ‘motion-driven’
phenomena, where an imposed flow leads to the formation of an electric field.
The ‘streaming-potential’ mechanism underlying the latter has to do with charge
conservation: by sweeping charged fluid elements within the diffuse-charge layers
adjacent to the charged surfaces, the imposed flow results in effective ‘surface’
currents, which are generally non-uniform. Charge conservation then necessities
Ohmic charging from the surrounding electro-neutral bulk; since the bulk domain is
essentially Ohmic, this implies the formation of a bulk electric field.
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Streaming-potential phenomena in the thin-Debye-layer limit 85

The rich physical phenomena associated with motion-driven electrokinetics have to
do with the generation of forces by the induced electric field, above and beyond the
hydrodynamic forces associated with the driving flow. These ‘electroviscous’ forces
are contributed, on the one hand, by the Maxwell stresses accompanying any electric-
field distribution, and, on the other, by a secondary electrokinetic flow driven by the
action of the distributed field on the diffuse-charge layer. As electroviscous forces are
in general nonlinear in the applied flow, their effect is not captured by the common
linear-response approach, which views the connection between field-driven and motion-
driven electrokinetic phenomena as a special case of the Onsager reciprocal relation
(Doi & Makino 2008).

Studies of electroviscous forces have focused upon such prototypic problems as the
excess flow resistance of narrow capillaries and slits (Elton 1948; Rice & Whitehead
1965; Bowen & Jenner 1995), the excess drag on sedimenting particles (Elton 1949;
Booth 1954; Stigter 1980; Ohshima et al. 1984) and the enhanced viscosity of dilute
suspensions (Booth 1950; Russel 1976, 1978a,b; Lever 1979; Watterson & White
1981; Hinch & Sherwood 1983). Electroviscous drag on particles approaching solid
surfaces is in particular relevant to the prediction of coagulation and deposition rates
of charged colloids (Warszynski & van de Ven 1990, 1991).

It may appear from the above list of research problems that electroviscous forces
essentially tend to retard the driving motion. These forces may play however an
additional role by inducing motion perpendicular to the driving motion. Perhaps
the most familiar illustration of this effect is non-inertial shear-induced repulsion
(‘electrokinetic lift’). This phenomenon was discovered by Alexander & Prieve (1987)
during an attempt to measure colloidal forces between microns-sized polystyrene
particles and a solid surface. Alexander & Prieve (1987) observed motion of the
particles away from the wall at a rate which depends on an applied shear flow
parallel to the wall, in contradiction with the linearity and reversibility properties of
Stokes flow (Jeffrey 1996; Leal 2007). Since the most prominent effect was observed
in glycerol, a highly viscous liquid, an inertial mechanism was discounted; rather, the
observed attenuation with increasing ionic conductivity has suggested a linkage with
streaming-potential phenomena.

The above phenomenon of electrokinetic lift exemplifies the typical breakdown
of Stokes-flow reversibility brought about by electroviscous forces. These forces are
necessarily nonlinear in the applied motion, or flow, and hence are not captured
by low-Péclet-number linearizations (Ohshima et al. 1984). A convenient path for
studying nonlinear electroviscous phenomena is based on ‘macroscale’ descriptions
in the thin-double-layer limit, where the Debye length is small compared to particle
size. Such coarse-grained descriptions were derived in the first two parts of this
series (Yariv, Schnitzer & Frankel 2011; Schnitzer, Frankel & Yariv 2012b) using
a matched-asymptotics reduction of the standard ‘microscale’ electrokinetic equation
set. The resulting models consist of a simplified set of equations governing the
approximately electro-neutral bulk domain, along with a set of effective boundary
conditions representing the transport within the diffuse-charge Debye layers. Together,
parts 1 and 2 cover the entire range of the forcing intensities, viz. from low to
very large Péclet numbers. As thoroughly discussed in these papers, our approach
builds on earlier thin-double-layer models (Bike & Prieve 1990, 1995; van de Ven,
Warszynski & Dukhin 1993; Cox 1997; Warszynski, Wu & van de Ven 1998), in
effect resolving the controversy in the literature regarding the appropriate macroscale
description in the mathematically singular thin-double-layer limit.

The models derived in parts 1 and 2 reveal that the physical mechanism
responsible for kinematic irreversibility is essentially different at moderate and
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86 O. Schnitzer and E. Yariv

large Péclet numbers. Thus, in the large-Péclet-number regime considered in
part 1, electroviscous forces originate due to both Maxwell stresses and the
Newtonian stresses accompanying the secondary electrokinetic flow. The latter,
however, being purely electro-osmotic, are linear and homogeneous in the driving
flow. Irreversibility is then triggered by the electric forces alone. The situation
is rather different in the moderate-Péclet number model developed in part 2
of this sequence. In that limit, the Maxwell stresses do not affect the leading
electroviscous forces. On the other hand, the secondary electrokinetic flow is now
driven by both electro-osmosis and diffusio-osmosis, the latter engendered by an
induced salt-concentration polarisation. Since this polarisation is governed by an
advection–diffusion equation, diffusio-osmosis is inhomogeneous in the driving flow.
Kinematic irreversibility thus stems from the Newtonian stresses associated with the
diffusio-osmotic component of the secondary electrokinetic flow.

Using the model developed in part 1, we have illustrated large-Péclet-number
irreversibility using two prototypical problems: one involving two spheres sedimenting
side-by-side, where electroviscous forces result in a repulsion force along the line of
centres (Schnitzer, Khair & Yariv 2011), and one involving a particle in a shear flow
(Schnitzer, Frankel & Yariv 2012a). In the large-Péclet-number scheme, extracting
the irreversible part of the electroviscous force is relatively straightforward since this
part is solely associated with the induced electric field (the ‘streaming potential’).

While the simplicity of the large-Péclet-number scheme of part 1 is attractive, most
relevant problems are characterised by moderate Péclet numbers. In particular, due to
the nearly matching solid–liquid densities in the common case of polystyrene particles
in aqueous solutions, typical Péclet numbers in sedimentation experiments are actually
small. In problems involving imposed shear, it is possible in principle to reach large
Péclet numbers, but this was not the case in the experiments of Alexander & Prieve
(1987).

The goal of this paper is accordingly to illustrate kinematic irreversibility using the
moderate-Péclet-number model of part 2. We consider the same prototypic problems
studied with the large-Péclet-number model, namely particle-pair sedimentation and
shear-induced lift. While shear is externally imposed only in the second problem, the
irreversible electroviscous repulsion in both problems has to do with the local shear
within the gap region (between the two particles in the first problem, and between the
particle and the wall in the second). This shear is triggered by the relative motion of
the rigid surfaces bounding the gap.

In both of the above problems, the advection–diffusion equation governing
the salt-concentration polarisation cannot be solved in closed form. An analytic
investigation of the above two problems thus appears intractable. Nonetheless, by
focusing upon the common situation wherein the gap is narrow, we obtain useful
lubrication-type approximations, a route already taken in the context of earlier
thin-double-layer models (Bike & Prieve 1990; van de Ven et al. 1993; Tabatabaei,
van de Ven & Rey 2006), and in our own demonstrations (Schnitzer et al. 2011,
2012a) of the large-Péclet-number model of part 1. As will become evident, the
resulting approximations predict electroviscous forces that scale inversely with the
square of the gap thickness. Thus, the narrow-gap limit highlights the very regime
wherein irreversibility is most pronounced.

The paper is structured as follows. In the next section we recapitulate the
moderate-Péclet-number macroscale model. In § 3 we discuss quasi-steadiness and the
source of nonlinear irreversibility. In § 4 we formulate the problems of particle-pair
sedimentation and a particle under shear. In § 5 we set the stage for the lubrication
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Streaming-potential phenomena in the thin-Debye-layer limit 87

analysis in the near-contact limit upon which we focus. In §§ 6 and 7 we respectively
analyse the salt-transport problem and the consequent diffusio-osmotic flow. In § 8
we calculate the irreversible repulsive force for both problems. In § 9 we review our
results, provide them in dimensional form, and discuss the linkage of the present
analysis of shear-induced lift with that of Tabatabaei et al. (2006).

2. Recapitulation of the generic macroscale description
2.1. Generic problem and non-dimensonalization

Consider a generic force- or flow-driven electrokinetic problem, involving the motion
of one or more charged solid surfaces (fixed surface-charge density σ ∗) relative to an
electrolyte solution (dielectric permittivity ε∗, Newtonian viscosity µ∗). For simplicity,
we restrict our attention to a symmetric binary electrolyte solution (ionic valences
±Z ) and assume identical diffusivity D∗ of the two ionic species. The imposed flow
or force is characterized by the velocity v∗ and the length scale a∗. An additional
length scale is the Debye width 1/κ∗, defined by

κ∗
2
=

2Z e∗c∗

ε∗ϕ∗
, (2.1)

in which
ϕ∗ =

k∗T∗

Z e∗
(2.2)

is the thermal voltage, wherein k∗T∗ is the Boltzmann temperature and e∗ the
elementary charge. As in prototypic force- or flow-driven electrokinetic phenomena,
no electric field or salt gradients are imposed. Thus, at large distances away from the
solid surfaces, the electric field vanishes and the two ionic concentrations approach
their equilibrium value, say c∗.

We employ a dimensionless notation, normalizing length variables by a∗, velocities
by v∗ and electric potentials by ϕ∗. Consistent with the above, we normalise angular
velocities by v∗/a∗, stresses by µ∗v∗/a∗, forces by µ∗v∗a∗ and torques by µ∗v∗a∗2.
The electrokinetic problem is governed by three key parameters: the first,

δ =
1
κ∗a∗

, (2.3)

is the ratio of the Debye thickness and characteristic length scale of the problem; the
second is the Péclet number

Pe=
a∗v∗

D∗
; (2.4)

and the third is the Hartmann number

λ=
2k∗T∗a∗c∗

µ∗v∗
. (2.5)

Yariv et al. (2011) noted that the above three parameters are not independent, but
are rather related as

λPe=
α

δ2
, (2.6)

in which

α =
ε∗ϕ∗2

µ∗D∗
(2.7)
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88 O. Schnitzer and E. Yariv

(which may represent a Péclet number in field-driven phenomena, see Saville 1977) is
independent of both particle dimension a∗ and electrolyte concentration c∗. For typical
ionic diffusivities (D∗ ≈ 10−9 m2 s−1) in aqueous solutions (µ∗ ≈ 10−3 kg m−1 s−1),
α . 0.5. By the Einstein–Smoluchowski relation, (2.7) is independent of µ∗ and is
accordingly of order unity for highly viscous solutions.

The identification of (2.6) implies that the thin-doubler-layer limit δ � 1 can be
studied using a family of different limit processes. In what follows we consider the
(realistic) limit where the Péclet number is assumed moderate, as discussed in detail
by Schnitzer et al. (2012b).

2.2. Macroscale description
We use the generic macroscale model developed by Schnitzer et al. (2012b), valid
for O(1) Péclet numbers. In that model, the pertinent bulk variables are the electric
potential ϕ, the mean (‘salt’) ionic concentration c and the flow field v. The first two
possess the following asymptotic expansions,

ϕ = δ2ϕ2 + · · · , c= 1+ δ2c2 + · · · , (2.8a,b)

representing the weak disturbance at moderate Pe. The flow field v is expanded as

v = v0 + δ
2v2 + · · · , (2.9)

with a similar expansion governing both the associated pressure field p

p= p0 + δ
2p2 + · · · , (2.10)

and the surface velocity of the bounding walls

u= u0 + δ
2u2 + · · · . (2.11)

Since these rigid walls undergo rigid-body motion, the latter amounts to an asymptotic
expansion of their respective rectilinear and angular velocities. Finally, consider the
Newtonian stress

N =−pI + (∇v)+ (∇v)†, (2.12)

in which † denotes tensor transposition. Since it is linear in p and v, it also possesses
a similar expansion,

The scheme of Schnitzer et al. (2012b) is expressed in terms of the preceding
expansions. The effective boundary conditions in that scheme, applied over the
generic boundary s, represent a lumped macroscale description of the Debye-layer
physics. In that description, the dimensionless surface-charge density σ = σ ∗/ε∗κ∗ϕ∗

on the solid wall is represented by the dimensionless zeta-potential ζ :

σ = 2 sinh
ζ

2
. (2.13)

Consistent with the scheme of Schnitzer et al. (2012b), we assume that σ (and then
also ζ ) is uniform on each surface. It should be noted that ζ refers here to the Debye-
layer voltage; the asymptotically small concentration polarisation (see (2.8b)) results
in a small perturbation to that voltage, but this has no bearing on the leading-order
electrokinetic flow (Schnitzer et al. 2012b).
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Streaming-potential phenomena in the thin-Debye-layer limit 89

2.3. Driving flow
The leading-order flow (v0, p0) is governed by the continuity and homogeneous Stokes
equations,

∇ · v0 = 0, ∇p0 =∇
2v0, (2.14a,b)

together with the no-slip boundary condition on the solid boundaries,

v0 = u0 on s. (2.15)

In addition, at large distances, it approaches a prescribed Stokes flow, say v∞(x)
(wherein x denotes the position vector):

v0 ∼ v∞(x) as |x|→∞. (2.16)

The above leading-order flow is not affected by electrokinetic phenomena. In fact,
it is the flow field in the absence of surface charge. We accordingly refer to it as
the ‘driving’ flow. Its leading-order correction v2, which would trivially vanish in the
absence of surface charge, is thus denoted the ‘electrokinetic’ flow.

2.4. Streaming potential and salt polarisation
Considering v0 as known, the streaming potential ϕ2 and salt-concentration perturbation
c2 turn out to satisfy linear boundary-value problems. The streaming potential is
governed by Laplace’s equation in the fluid domain,

∇
2ϕ2 = 0, (2.17)

the far-field attenuation condition,

∇ϕ2→ 0 as |x|→∞, (2.18)

and the inhomogeneous Neumann condition on the solid boundaries

∂ϕ2

∂n
= ζ Pe

∂p0

∂n
on s, (2.19)

wherein ∂/∂n= n̂ · ∇, in which n̂ is a unit vector normal to s pointing into the fluid
domain. The salt perturbation is governed by the advection–diffusion equation

∇
2c2 = Pe

(
∂c2

∂t
+ v0 · ∇c2

)
, (2.20)

the inhomogeneous Neumann condition

∂c2

∂n
=−H (ζ )Pe

∂p0

∂n
on s, (2.21)

and the attenuation condition

c2→ 0 as |x|→∞. (2.22)

The quantity

H (ζ )=−2 ln
(

1− tanh2 ζ

4

)
, (2.23)

appearing in (2.21), represents the ‘salt capacitance’ of the Debye layer. Note that
the normal derivative of p0 is proportional to the surface divergence of the tangential
shear associated with v0; the effective conditions (2.19) and (2.21) thus represent
the appropriate balances between Debye-scale advection of charge and salt and their
corresponding bulk fluxes (Schnitzer et al. 2012b).
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2.5. Electrokinetic flow
Conveniently, both the streaming potential and concentration polarisation are
independent of the electrokinetic flow (v2, p2). Once ϕ2 and c2 are determined,
(v2, p2) is obtained by solving an electro-diffusio-osmotic problem, consisting of the
homogeneous Stokes equations

∇ · v2 = 0, ∇p2 =∇
2v2, (2.24a,b)

and attenuation requirement

v2→ 0 as |x|→∞, (2.25)

together with the slip condition

v2 − u2 =
α

Pe
{ζ∇sϕ2 −H (ζ )∇sc2} on s, (2.26)

wherein
∇s = (I − n̂n̂) · ∇ (2.27)

is the surface-gradient operator.
It is convenient to decompose v2 as

v2 = v2,u + v2,ϕ + v2,c (2.28)

(with a similar decomposition for p2), where each of the three components separately
satisfies the homogeneous equations (2.24) and the decay condition (2.25). On the
boundary s, they respectively satisfy

v2,u = u2, v2,ϕ =
α

Pe
ζ∇sϕ2, v2,c =−

α

Pe
H (ζ )∇sc2. (2.29a−c)

2.6. Forces and torques
In a typical situation, the boundary s includes the surface of one or more freely
suspended particles. Given the flow-field expansion (2.9), similar expansions apply to
both the hydrodynamic force F and torque T (about a reference point xO) acting on
such a particle:

F=F0 + δ
2F2 + · · · , T= T0 + δ

2T2 + · · · . (2.30a,b)

The zeroth-order force and torque

F0 =

∮
dA n̂ · N0, T0 =

∮
dA (x− xO)× n̂ · N0, (2.31a,b)

represent the hydrodynamic loads in the absence of electrokinetic effects. The
electroviscous force and torque are similarly given by

F2 =

∮
dA n̂ · N2, T2 =

∮
dA (x− xO)× n̂ · N2, (2.32a,b)

where N2 is the Newtonian stress associated with the electrokinetic flow v2. Note
that the contribution of Maxwell stresses enters only at O(δ4), and is accordingly
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Streaming-potential phenomena in the thin-Debye-layer limit 91

disregarded in our analysis. This is in sharp contradiction to the case of large Péclet
numbers discussed by Yariv et al. (2011).

The motion of the particle is determined by the conditions

F+Fe = 0, T+ Te = 0, (2.33a,b)

where Fe is the external force and Te the external torque. In particular, the
leading-order rigid-body motion of the particle (namely u0) is governed by the
mobility problem,

F0 +Fe = 0, T0 + Te = 0. (2.34a,b)

The electroviscous correction is also governed by a mobility problem, namely

F2 = 0, T2 = 0. (2.35a,b)

The decomposition (2.28) implies a similar one for N2 and hence also for F2 and T2.
Since F2,u and T2,u simply represent the hydrodynamic force and torque associated
with the rigid-body motion u2, the force F2,ϕ + F2,c and torque T2,ϕ + T2,c can be
interpreted as ‘external’ loads. In what follows we focus on the calculation of these
electroviscous loads.

3. Quasi-steadiness and irreversibility

The preceding macroscale model applies to a generic motion-driven electrokinetic
problem. The animating motion may be driven by either imposed flow, as appearing
in (2.16), or imposed forces, as appearing in (2.33). In what follows, we illustrate our
scheme for two representative problems. The first, driven by an imposed force, is that
of two particles sedimenting side by side. The second, driven by an imposed flow, is
that of a particle which is exposed to a simple shear flow in the vicinity of a planar
wall.

In both of these problems, the reversibility properties of the Stokes flow (Leal
2007) guarantee the existence of a reference frame in which the flow is steady in
the absence of electrokinetic effects. In that frame, time dependence enters through
the irreversible O(δ2) motion. The temporal-derivative term in (2.20) is of relative
order δ2, and is accordingly relegated to the next asymptotic balance. Thus, both
the O(1) flow problem and the O(δ2) electrokinetic problems are quasi-steady, with
time-dependence entering only implicitly through the slow temporal variation of the
problem geometry.

In this quasi-steady description, it is evident from the problem formulation that the
streaming potential must be of the form

ϕ2(x; Pe, ζ )= Pe ζ ϕ̃(x), (3.1)

where ϕ̃ is linear and homogeneous in the driving flow v0. The same form does
not apply for the salt polarisation: while c2 is governed by a linear boundary-value
problem, it is evident from (2.20) that it is not homogeneous in the driving flow. The
perturbation here is therefore of the more general form

c2(x; Pe, ζ )= Pe H (ζ )c̃(x; Pe), (3.2)
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where c̃ is in general nonlinear in the driving flow. This rescaled perturbation satisfies
the differential equation

∇
2c̃= Pe v0 · ∇c̃, (3.3)

the inhomogeneous Neumann condition

∂ c̃
∂n
=−

∂p0

∂n
on s, (3.4)

and the far-field attenuation condition

c̃→ 0 as |x|→∞. (3.5)

By a straightforward extension of the reversibility properties of Stokes flows
(Jeffrey 1996), it is readily seen that a Stokes flow that is linear in a prescribed
forcing cannot result in irreversible particle motion. The streaming potential ϕ is
linear in the imposed flow v0, which itself is linear in the mechanical forcing; it then
follows that the loads F2,ϕ and T2,ϕ , associated with the ‘electro-osmotic’ component
v2,ϕ of v2 do not result in an irreversible motion. The same argument does not hold
for the loads created by salt polarisation: since v2,c is nonlinear in the driving flow
v0, the resulting loads F2,c and T2,c generally lead to irreversible motion. Our focus
is accordingly centred on the ‘diffusio-osmotic’ flow component v2,c. We define:

v2,c = αH 2(ζ )ṽ, p2,c = αH 2(ζ )p̃. (3.6a,b)

The flow (ṽ, p̃) is governed by the homogeneous Stokes and continuity equations and
the requirement of far-field decay; it is engendered by the slip condition

ṽ =−∇sc̃ on s. (3.7)

As the streaming potential does not result in any irreversibility, we do not calculate
it. This is in marked difference with the limit of large Péclet numbers (Yariv et al.
2011), where irreversibility is induced by that potential through Maxwell stresses.

The preceding simplifications, allowing us to limit our attention on the diffusio-
osmotic flow component, follow from the assumed quasi-steadiness. In an inherently
unsteady problem, the temporal-derivative term in (2.20) constitutes an additional
source of irreversibility. An example of such a problem is the sedimentation of a
particle towards a solid wall.

4. Formulation of the two problems
We here demonstrate electroviscous irreversibility by considering in detail two

problems which involve spherical particles (radius a∗) moving in an electrolyte
solution. The first entails two identical torque-free particles settling in an otherwise
quiescent unbounded fluid under an external force (gravity, buoyancy, etc.) acting
perpendicular to their line of centres. The force magnitude is F∗ and its direction
is specified by the unit vector ĝ. The second problem we analyse is driven by an
imposed flow; it entails a single particle suspended in proximity to a solid wall
and exposed to simple shear flow (shear-rate magnitude G∗, direction ĝ). The two
problems are described in figure 1. Noting the mirror symmetry of the first problem
about the mid-plane, both problems can be formulated using a configuration consisting
of a plane, denoted hereafter as ‘the’ plane, and a single sphere (particle ‘1’ in the
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12

(a) (b)

FIGURE 1. (Colour online) (a) Force-induced problem: two identical spheres sedimenting
in a direction perpendicular to their line of centres under the action of an external force.
(b) Flow-induced problem: a spherical particle suspended in proximity to a solid wall and
exposed to a simple shear flow.

sedimentation problem), denoted hereafter as ‘the’ particle. The geometry of both
problems is described by a single fixed vector ê⊥ perpendicular to that plane, as
shown in figure 1.

We employ the dimensionless notation of § 2. In the first problem we employ
F∗/µ∗a∗ as the velocity scale v∗. The external force and torque on particle ‘1’ are
thus (see (2.33))

Fe = ĝ, Te = 0. (4.1a,b)

In the second problem we choose the velocity scale v∗ as a∗G∗. Here the external
force and torque vanish:

Fe = 0, Te = 0. (4.2a,b)

4.1. Motion in the absence of electrokinetic effects
Let U and Ω respectively denote the rigid-body rectilinear and angular velocities of
the particle in the absence of electrokinetic effects (U is the instantaneous velocity of
the particle centre). Simple symmetry arguments (Jeffrey 1996, see also (A 5), (A 6))
show that the vectors U and Ω are respectively aligned in the directions of ĝ and
ê⊥ × ĝ,

U=U ĝ, Ω =Ω ê⊥ × ĝ. (4.3a,b)

The particle thus retains a constant separation distance, say ε, from the plane. The
velocities U and Ω are obtained by balancing external and hydrodynamic loads. In
the first problem, the latter loads consist of resistance to rigid-body motion (see
appendix A). In the second problem, there is an additional contribution owing to the
ambient shear flow (with a unity shear-rate magnitude). Specifically, the force balance
in the ĝ-direction and the torque balance in the direction of ê⊥× ĝ respectively yield
(see (A 5), (A 6))

f = f‖U +mΩ, t= t‖Ω +mU , (4.4a,b)
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1

1

z

x x

z

Unit
force

Unit shear(a) (b)

FIGURE 2. (Colour online) Dimensionless description: (a) particle-pair sedimentation;
(b) particle in shear flow. The velocities U and Ω represent the relative rigid-body motion
of the particle relative to the fluid in the absence of electrokinetic effects. Also shown is
the electroviscous repulsive force, of magnitude R.

wherein the force (f‖), torque (t‖) and coupling (m) coefficients, which are functions
of ε, are defined in the appendix A. In the first problem, f = 1 and t = 0 represent
external force and torque coefficients. In the second problem, f and t represent the
hydrodynamic loads on a stationary particle in a simple shear flow of unit shear rate.
Just like the resistance coefficients, the latter are also functions of ε.

Inversion of (4.4) yields U and Ω as functions of ε:

U (ε)=
ft‖ −mt

t‖ f‖ −m2
, Ω(ε)=

tf‖ −mf
f‖t‖ −m2

. (4.5a,b)

4.2. The electroviscous problem
We employ a Cartesian reference system, where the x-axis points in the external-force
(or flow) direction ĝ. The z-axis points in the direction of ê⊥ and passes through
the centre of particle ‘1’. The plane z= 0 coincides with the symmetry plane in the
first problem and the solid wall in the second; see figure 2. To conform with the
requirement of quasi-steady transport, as defined in § 3, the system is instantaneously
moving with velocity U êx.

In this reference frame, the driving flow (v0, p0) satisfies the continuity and Stokes
equations together with the no-slip condition on the particle boundary,

v0 = êyΩ × n̂. (4.6)

In the first problem, v0 satisfies the symmetry conditions

∂u0

∂z
=
∂v0

∂z
=w0 =

∂p0

∂z
= 0 (4.7)

at z= 0, and the approach to a uniform stream,

v0→−êxU , (4.8)

as |x|→∞ (x= (x, y, z) being the position vector). In the second problem, it satisfies
the no-slip condition

v0 =−êxU (4.9)
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Streaming-potential phenomena in the thin-Debye-layer limit 95

at z= 0, and the condition
v0 ∼G · x− êxU , (4.10)

where G= êxêz, as |x|→∞. The problem is closed by imposing the conditions (2.34)
of a freely suspended particle, which are satisfied by the very construction of U and
Ω . We shall consider v0, which is linear in U and Ω , as known for any given value
of ε.

In what follows, we proceed to the calculation of the electrokinetic flow v2.
Specifically, following the arguments of § 3, we focus upon the calculation of the
diffusio-osmotic subfield v2,c, the only component of (2.28) responsible for irreversible
repulsion. We accordingly limit our attention to the problems governing the rescaled
fields c̃ and ṽ, respectively defined by (3.2) and (3.6). In doing so, it is convenient
to employ cylindrical coordinates (r, θ, z), where the azimuthal angle θ is measured
counter clockwise from the x-axis in the xy-plane. The radial, azimuthal and axial
components of v0 are denoted (u0, v0, w0). We employ a similar notation for the
diffusio-osmotic flow ṽ, denoting the respective components (ũ, ṽ, w̃).

The rescaled salt perturbation c̃ is governed by the advection–diffusion equation
(cf. (3.3))

∂ c̃
∂r2
+

1
r
∂ c̃
∂r
+

1
r2

∂ c̃
∂θ 2
+
∂ c̃
∂z2
= Pe

(
u0
∂ c̃
∂r
+
v0

r
∂ c̃
∂θ
+w0

∂ c̃
∂z

)
, (4.11)

the inhomogeneous boundary condition on the particle surface (3.4) and far-field
decay. The pertinent boundary condition on the plane z= 0 depends on the problem
considered. In the first c̃ satisfies the symmetry condition

∂ c̃
∂z
= 0 at z= 0, (4.12)

while in the second it satisfies the inhomogeneous Neumann condition (cf. (3.4))

∂ c̃
∂z
=−

∂p0

∂z
at z= 0. (4.13)

The flow ṽ, induced by the diffusio-osmotic slip condition (3.7), is governed by the
continuity equation (see (2.24a))

1
r
∂

∂r
(rũ)+

1
r
∂ṽ

∂θ
+
∂w̃
∂z
= 0; (4.14)

the homogeneous Stokes equations (see (2.24b))

∂ p̃
∂r
=∇

2ũ−
ũ
r2
−

2
r2

∂ṽ

∂θ
, (4.15)

1
r
∂ p̃
∂θ
=∇

2ṽ +
2
r2

∂ ũ
∂θ
−
ṽ

r2
, (4.16)

∂ p̃
∂z
=∇

2w̃; (4.17)
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and far-field decay. In the first problem ṽ satisfies the symmetry conditions

∂ ũ
∂z
=
∂ṽ

∂z
= w̃=

∂ p̃
∂z
= 0 (4.18)

at z= 0; in the second problem, it vanishes there.
Once the flow (ṽ, p̃) is determined, we can calculate the repulsive force R= êz ·F2,c

acting on the particle; see figure 2. Using the rescaling (3.6), it is given by

R = αH 2(ζ )êz ·

∮
dA n̂ · Ñ, (4.19)

wherein (cf. (2.12))
Ñ =−p̃I + (∇ṽ)+ (∇ṽ)†, (4.20)

is the Newtonian stress associated with ṽ.
For future reference, we note that the symmetry of the driving flow problem about

the xz-plane allows us to write the components (u0, v0,w0) of v0 and the pressure p0
as (O’Neill 1969)

ū(r, z) cos θ, v̄(r, z) sin θ, w̄(r, z) cos θ, p̄(r, z) cos θ. (4.21a−d)

It is important to note that, due to the presence of the advection term in (3.3), neither
c̃ nor (ṽ, p̃) can in general be represented in a similar manner.

5. Near-contact limit: preliminaries
We focus hereafter upon the near-contact limit ε � 1 (but still δ � ε). This

limit is interesting because, as will become evident, it results in a relatively large
repulsion. Consideration of this limit also allows us to take advantage of known
results which apply in the absence of electrokinetic effects. In particular, the flow
v0, along with the associated resistance coefficients, has been calculated in the
near-contact limit by O’Neill and coworkers for the two configurations we consider
in the present contribution. These calculations were carried out using inner–outer
matched asymptotic expansions. The outer region corresponds to the particle scale,
where at leading order the particle appears to touch the plane z= 0. The inner region
constitutes the narrow gap between the particle and the plane z= 0, and is described
by the strained coordinates

Z = z/ε, R= r/ε1/2. (5.1a,b)

In these coordinates, the particle boundary is Z = H(R; ε), where H is provided by
the expansion

H(R; ε)=H(0)(R)+ εH(1)(R)+ · · · ; (5.2)

in particular (see O’Neill & Stewartson 1967),

H(0)(R)= 1+
R2

2
. (5.3)

As will become evident, the final results are independent of H(1); since no confusion
should arise, we omit hereafter the superscript from H(0).
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5.1. The driving flow v0 and the associated resistance coefficients
The calculation of v0 in the first problem, of two settling spheres, was carried out by
O’Neill (1969) in a laboratory-fixed reference frame, where the fluid at infinity is at
rest. In what follows, we present his results in our comoving coordinates. The linearity
of the governing equations allows us to decompose the problem into two parts: (i) two
stationary particles in a uniform stream −U êx perpendicular to their line of centres;
and (ii) two particles counter rotating with velocities ±Ω êy without translation. These
two parts differ significantly: the former is described at leading order by simply setting
ε = 0 (i.e. two spheres touching), and does not really require the use of matched
asymptotic expansions; the latter is singular in ε (due to the intense shear rate within
the narrow gap) and is characterised by an O(ε−3/2) large pressure within the inner
gap region.

The appropriate gap-region scalings of the velocity amplitudes are

ū= Ū(R, Z; ε), v̄ = V̄(R, Z; ε), w̄= ε1/2W̄(R, Z; ε), (5.4a−c)

while the pressure there is

p̄= ε−3/2P̄(R, Z; ε). (5.5)

At leading order, these fields are affected only by the ‘singular’ pure-rotation
component of the problem. In particular, employing the generic expansion

F̄(R, Z; ε)= F̄(0)(R, Z)+ εF̄(1)(R, Z)+ · · · , (5.6)

the results of O’Neill (1969) read

Ū(0)
=

1
2
(Z2
−H2(R))

dP̄(0)

dR
−Ω, V̄ (0)

=
1
2
(H2(R)− Z2)

P̄(0)

R
+Ω, (5.7a,b)

where
P̄(0) =

3R
5H2(R)

Ω (5.8)

is a function of R alone. As will become evident, we do not require here the
comparable explicit description in the outer region.

The solution of O’Neill (1969) also provides the asymptotic expansions of the
resistance coefficients appearing in (4.4). Thus, in the limit ε → 0 O’Neill (1969)
obtained (with an error smaller than some power of ε)

f‖/6π≈ 0.72426, m/8π≈ 0.11843, (5.9a,b)

where the two O(1) terms are contributed by the outer region, and

t‖/8π≈− 3
20 ln ε + 0.62664, (5.10)

where the terms are contributed by both the inner and outer regions. The logarithmic
divergence of t‖ is associated with the large pressure, itself associated with the pure-
rotation problem.

In the second problem, it is convenient to decompose the driving flow into three
components respectively representing: (i) a stationary sphere suspended near a wall,
with the fluid–wall environment moving with velocity −êxU ; (ii) a sphere rotating
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with a velocity êyΩ relative to an otherwise quiescent fluid and a stationary wall; and
(iii) stationary sphere and wall exposed to the imposed shear flow G · x. In the near-
contact limit, these sub-problems were respectively analysed by O’Neill & Stewartson
(1967), Cooley & O’Neill (1968) and O’Neill (1968). There is here a fundamental
difference between the first two sub-problems, where the limit ε→ 0 is a singular one,
associated with O(ε−3/2)-large gap pressures, and the third one, wherein no relative
motion is imposed between the sphere and the wall and the limit ε→ 0 is regular.
The inner scalings (5.4)–(5.5) are accordingly applicable, now with the pertinent fields
affected only by the (‘singular’) components (i) and (ii) of the flow. (Remarkably, then,
while the second problem is forced by the imposed shear, the direct contribution of
flow component (iii) in that problem does not affect the subsequent calculation.) In
particular, the translation component yields here (O’Neill & Stewartson 1967)

Ū(0)
=

Z(Z −H)
2

dP(0)

dR
+U (Z − 1), V̄ (0)

=−
Z(Z −H)

2
P(0)

R
−U (Z − 1),

(5.11a,b)

wherein
P̄(0) =

6R
5H2(R)

U , (5.12)

while the rotation component gives (Cooley & O’Neill 1968)

Ū(0)
=

Z(Z −H)
2

dP(0)

dR
−ΩZ, V̄ (0)

=−
Z(Z −H)

2
P(0)

R
+ΩZ, (5.13a,b)

wherein
P̄(0) =

6R
5H2(R)

Ω. (5.14)

The calculations of O’Neill & Stewartson (1967) provide the force and coupling
coefficients (see appendix A) for a particle translating near a wall, namely

f‖/6π≈
8
15

ln
2
ε
+ 0.58461, m/8π≈−

1
10

ln
2
ε
+ 0.26227. (5.15a,b)

The comparable torque coefficient,

t‖/8π≈− 2
5 ln ε + 0.37085, (5.16)

is provided by Cooley & O’Neill (1968). The terms in (5.15)–(5.16) are contributed
by both the inner and outer regions. The force and torque in sub-problem (iii), f êx
and têy, are contributed at leading order by the outer region (O’Neill 1968):

f /6π≈ 1.7009, t/8π≈ 0.471996. (5.17a,b)

In approximations (5.9)–(5.10) and (5.15)–(5.17) the error is asymptotically smaller
than some positive power of ε. Substituting (5.9)–(5.10) into (4.5) provides the
rigid-body velocities U and Ω in the settling problem. In the shear problem, these
velocities are obtained using (5.15)–(5.17). As is the common practice in asymptotic
analyses with singular algebraic terms, logarithmic terms are considered as effectively
belonging to O(1) (Hinch 1991). With this interpretation, we consider U and Ω , as
provided by (4.5), to be a (known) O(1) numbers.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.647


Streaming-potential phenomena in the thin-Debye-layer limit 99

In the present context, the O(ε−3/2) pressure scaling associated with the singular
components of the flow (counter rotation in the first problem, counter rotation and
translation in the second problem) is expected (see (3.4)) to result in a comparable
scaling of the associated salt perturbation. Moreover, because of the structure of the
electroviscous problem, this is anticipated to result here in an algebraic singularity
of the repulsive force as ε→ 0. As our goal is to calculate the repulsion to leading
order in ε, this suggests that the salt perturbation needs to be calculated only within
the narrow gap region.

Before proceeding further, it is worthwhile to note the following points for future
reference. First, use of (5.3) implies that, in the inner region, the vector

−êz + êrε
1/2R[1+O(ε)] (5.18)

is normal to the particle surface. Substitution into (2.27) yields the corresponding
expansion of the surface-gradient operator

∇s = êrε
−1/2

[
∂

∂R
+ R

∂

∂Z
+O(ε)

]
+ êθε−1/2 1

R
∂

∂θ
+ êz

[
R
∂

∂R
+ R2 ∂

∂Z
+O(ε)

]
.

(5.19)

Second, as the Stokes-flow pressure field p0 must be harmonic, P̄(1) is related to P̄(0)
via the differential equation

∂2P̄(1)

∂Z2
+

(
d2

dR2
+

1
R

d
dR
−

1
R2

)
P̄(0) = 0. (5.20)

6. Salt transport
In light of the boundary condition (3.4) and the pressure scaling (5.5), we define

c̃= ε−3/2C(R, Z, θ; ε). (6.1)

The rescaled concentration C is governed by the advection–diffusion equation
(cf. (4.11))

∂2C
∂Z2
+ ε

(
∂2

∂R2
+

1
R
∂

∂R
+

1
R2

∂2

∂θ 2

)
C

= Pe ε3/2

(
Ū cos θ

∂

∂R
+ V̄

sin θ
R

∂

∂θ
+ W̄ cos θ

∂

∂Z

)
C, (6.2)

together with the salt-flux condition (3.4), which, upon using (5.18), reads

∂C
∂Z
− ε(R+ · · ·)

∂C
∂R
=−

[
∂P̄
∂Z
− ε(R+ · · ·)

∂P̄
∂R

]
cos θ at Z =H(R; ε). (6.3)

In the first problem, C additionally satisfies the symmetry condition at Z = 0,
∂C/∂Z= 0. In the second problem, C satisfies there the salt-flux condition (cf. (3.4)):

∂C
∂Z
=−

∂P̄
∂Z

cos θ. (6.4)
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Given (4.18), however, ∂P/∂Z vanishes in the first problem at Z = 0; it follows that
(6.4) applies for both problems. Last, asymptotic matching of (6.1) with the O(1)
concentration outside the gap implies:

lim
R→∞

C= 0. (6.5)

Equations (6.2)–(6.3) suggest the expansion

C(R, Z, θ; ε) = C(0)(R, Z, θ)+ ε1/2C(1/2)(R, Z, θ)
+ εC(1)(R, Z, θ)+ ε3/2C(3/2)(R, Z, θ)+ · · · . (6.6)

Substituting (6.6) into (6.2) yields, at the leading four asymptotic orders:

∂2C(0)

∂Z2
= 0, (6.7a)

∂2C(1/2)

∂Z2
= 0, (6.7b)

∂2C(1)

∂Z2
+

(
∂2

∂R2
+

1
R
∂

∂R
+

1
R2

∂2

∂θ 2

)
C(0)
= 0, (6.7c)

and

∂2C(3/2)

∂Z2
+

(
∂2

∂R2
+

1
R
∂

∂R
+

1
R2

∂2

∂θ 2

)
C(1/2)

= Pe
(

Ū(0) cos θ
∂

∂R
+ V̄ (0) sin θ

R
∂

∂θ
+ W̄ (0) cos θ

∂

∂Z

)
C(0). (6.7d)

Since P̄(0) is independent of Z, the corresponding conditions at Z = 0 are

∂C(n/2)

∂Z
= 0 for n= 0, 1, 3 (6.8a)

and
∂C(1)

∂Z
=−

∂P̄(1)

∂Z
cos θ. (6.8b)

Making use of the salt-flux condition (6.3) and noting that P̄(0) is a function of R
alone we obtain at Z =H(R)

∂C(0)

∂Z
= 0, (6.9a)

∂C(1/2)

∂Z
= 0, (6.9b)

∂C(1)

∂Z
+

(
H(1) ∂

2

∂Z2
− R

∂

∂R

)
C(0)
=−

(
∂P̄(1)

∂Z
− R

dP̄(0)

dR

)
cos θ, (6.9c)

and
∂C(3/2)

∂Z
+

(
H(1) ∂

2

∂Z2
− R

∂

∂R

)
C(1/2)

= 0. (6.9d)
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Equations (6.7a), (6.8a) and (6.9a) imply that C(0) is independent of Z and is
accordingly a function of R and θ alone. Its explicit form is found using the solvability
condition governing C(1), obtained as follows. Integration of (6.7c) from Z = 0 to
Z =H in conjunction with (6.8b) yields

∂C(1)

∂Z

∣∣∣∣
Z=H

+
∂P̄1

∂Z

∣∣∣∣
Z=0

cos θ =−H
(
∂2

∂R2
+

1
R
∂

∂R
+

1
R2

∂2

∂θ 2

)
C(0). (6.10)

Also, integration of (5.20) across the gap gives

∂P̄(1)

∂Z

∣∣∣∣
Z=H

=
∂P̄(1)

∂Z

∣∣∣∣
Z=0

−H
(

d2

dR2
+

1
R

d
dR
−

1
R2

)
P̄(0). (6.11)

Substitution of (6.10)–(6.11) into (6.9c) yields:{
∂2

∂R2
+

(
1
R
+

R
H(R)

)
∂

∂R
+

1
R2

∂2

∂θ 2

}
C(0)

=−cos θ
{

d2

dR2
+

(
1
R
+

R
H(R)

)
d

dR
−

1
R2

}
P̄(0). (6.12)

The solution of this equation, which also satisfies (6.5), is clearly

C(0)
=−P̄(0)(R) cos θ. (6.13)

This result was to be expected; as advection only affects the transport equation
(6.2) at O(ε3/2), the problem governing C(0) and the solvability condition obtained
from the problem governing C(1) are clearly unaffected by it. Going back to the
original problem governing c̃, we see that in the absence of advection this field is
harmonic, whence condition (3.4) implies a simple proportionality to the harmonic
field p0.

Given the dependence of C(0) upon θ , the corresponding slip (3.7) is anti-symmetric,
and so does not contribute to the repulsive force. Thus, we need to go to a higher
asymptotic order and evaluate C(1/2). From (6.7b), (6.8a) and (6.9b) we find that C(1/2),
just like C(0), is a function of R and θ alone. The differential equation governing C(1/2)

is obtained from the solvability condition governing C(3/2); thus, integrating (6.7d) over
0< Z <H(R) and substituting (6.8a) and (6.9d) yields{

∂2

∂R2
+

(
1
R
+

R
H(R)

)
∂

∂R
+

1
R2

∂2

∂θ 2

}
C(1/2)

=
Pe

2H(R)

{
(1− cos 2θ)

P̄(0)

R

∫ H

0
V̄ (0) dZ − (1+ cos 2θ)

dP̄(0)

dR

∫ H

0
Ū(0) dZ

}
.

(6.14)

Clearly, C(1/2)(R, θ) can be decomposed into two terms, one linear in cos 2θ and the
other, say C̄(1/2)(R), independent of θ . Since the former, again, does not contribute
to the repulsive force, we focus on the contribution of the latter, governed by the
following ordinary differential equation{

d2

dR2
+

(
1
R
+

R
H(R)

)
d

dR

}
C̄(1/2)

=
Pe

2H(R)

{
P̄(0)

R

∫ H

0
V̄ (0) dZ −

dP̄(0)

dR

∫ H

0
Ū(0) dZ

}
.

(6.15)

As will become evident, calculation of the repulsive force engendered by C̄(1/2) does
not require the explicit solution of this equation.
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102 O. Schnitzer and E. Yariv

7. Diffusio-osmotic flow
By the linearity of the Stokes equations and the slip condition (3.7) we can

solve independently for the axisymmetric part of ṽ induced by the axisymmetric
part C̄(1/2)(R) of C(1/2). Since the leading-order term in (6.6) does not contribute to
the repulsive force, (3.7) and (6.1) suggest writing the radial and axial components
of the axisymmetric part of ṽ as

ε−3/2U(0)(R, Z)+ · · · , ε−1W (0)(R, Z)+ · · · , (7.1a,b)

with the corresponding pressure being

ε−3P(0)(R, Z)+ · · · . (7.2)

In what follows, it proves useful to treat the two problems separately.

7.1. Settling problem
Using (5.19), the slip condition (3.7) reads at leading order

U(0)
=−

dC̄(1/2)

dR
, W (0)

=−R
dC̄(1/2)

dR
at Z =H(R). (7.3a,b)

The symmetry conditions (4.18) yield

∂U(0)

∂Z
= 0, W (0)

= 0 at Z = 0. (7.4a,b)

With definitions (7.1)–(7.2), the leading-order balances of the radial and axial
momentum equations (4.15) and (4.17) are

∂P(0)

∂R
=
∂2U(0)

∂Z2
,

∂P(0)

∂Z
= 0, (7.5a,b)

the latter implying that P(0) is a function of R alone. The leading-order balance of the
continuity equation (4.14) is

1
R
∂

∂R
(RU(0))+

∂W (0)

∂Z
= 0. (7.6)

These equations are supplemented by the matching condition

lim
R→∞

P(0) = 0. (7.7)

The preceding problem is handled using the standard lubrication-flow procedure.
Integration of the radial momentum equation (7.5a) in conjunction with (7.3a)
and (7.4a) yields

U(0)
=

Z2
−H2(R)

2
dP(0)

dR
−

dC̄(1/2)

dR
. (7.8)

Substitution into (7.6), followed by integration over Z in conjunction with (7.3b)–
(7.4b) yields an ordinary differential equation governing P(0):{

d2

dR2
+

(
1
R
+

3R
H(R)

)
d

dR

}
P(0) =−

3
H2(R)

{
d2

dR2
+

(
1
R
+

R
H(R)

)
d

dR

}
C̄(1/2). (7.9)
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Streaming-potential phenomena in the thin-Debye-layer limit 103

Conveniently, the differential operator appearing in the right-hand side of (7.9) is
the same as that governing C̄(1/2) in (6.15). (This is why we did not calculate C̄(1/2).)
Thus, substitution of (6.15) provides the ordinary differential equation governing P(0){

d2

dR2
+

(
1
R
+

3R
H(R)

)
d

dR

}
P(0) =

Λ(R)
RH3(R)

, (7.10)

wherein

Λ(R)=
3
2

Pe R
{

dP̄(0)

dR

∫ H

0
Ū(0) dZ −

P̄(0)

R

∫ H

0
V̄ (0) dZ

}
. (7.11)

This second-order equation can be written as a first-order equation governing dP(0)/dR,

d
dR

{
RH3(R)

dP̄(0)

dR

}
=Λ(R), (7.12)

whose solution is

dP̄(0)

dR
=

1
RH3(R)

{
constant+

∫ R

0
Λ(R′) dR′

}
. (7.13)

It is readily verified that the particular integral is bounded as R → 0; to ensure
regularity of the pressure there we accordingly set the constant to zero. A subsequent
integration in conjunction with the matching condition (7.7) yields

P(0)(R)=−
∫
∞

R

dR′

R′H3(R′)

∫ R′

0
dR′′Λ(R′′). (7.14)

7.2. Shear problem
The scaling of the diffusio-osmotic flow driven by axisymmetric salt concentration
C̄(1/2)(R) is provided by (7.1)–(7.2). The flow is governed by (7.3)–(7.7), except that
the symmetry conditions (7.4) at Z = 0 are replaced by the slip and impermeability
conditions

U(0)
=−

dC̄(1/2)

dR
, W (0)

= 0. (7.15a,b)

Because of that difference, (7.8) changes to

U(0)
=
(Z −H(R))2

2
dP(0)

dR
−

dC̄(1/2)

dR
. (7.16)

Proceeding as before, we obtain the following differential equation,{
d2

dR2
+

(
1
R
+

3R
H(R)

)
d

dR

}
P(0) =−

12
H2(R)

{
d2

dR2
+

(
1
R
+

R
H(R)

)
d

dR

}
C̄(1/2),

(7.17)

governing the diffusio-osmotic pressure.
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8. Repulsive force

We can now calculate, to leading order in ε, the repulsive irreversible force R =
êz · F2,c acting on the particle. Due to the salt-perturbation scaling in the gap, this
force is dominated by the gap-region stresses. In the inner region n̂ ∼ −êz thus the
normal stress is dominated by the fluid pressure, see (4.20). Substitution of (7.2) into
(4.19) followed by integration over the entire inner region yields

R ∼ 2παH 2(ζ )ε−2
∫
∞

0
dR RP(0)(R). (8.1)

In calculating the integral appearing in (8.1), we first consider the settling problem.
Substituting (7.14) and interchanging the order of the two outermost integrations
yields

−
1
2

∫
∞

0

dR R
H3(R)

∫ R

0
dR′Λ(R′). (8.2)

A subsequent interchange in the order of integration yields

−
1
2

∫
∞

0
dR′Λ(R′)

∫
∞

R′

dR R
H3(R)

. (8.3)

Evaluating the inner integral finally gives

−
1
4

∫
∞

0

Λ(R)
H2(R)

dR. (8.4)

We conclude that

R ∼−
1
2
παH 2(ζ )ε−2

∫
∞

0

Λ(R)
H2(R)

dR. (8.5)

The function Λ(R), defined in (7.11), is obtained via substitution of (5.7)–(5.8).
Performing the quadrature in (8.5) eventually yields

R =
6π

25
ε−2αH 2(ζ )PeΩ2. (8.6)

Recall that Ω is an O(1) function of ε, provided by (4.5b) and (5.9)–(5.10) with f = 1
and t= 0.

Considering now the shear problem, we note that the differential equation (7.17)
governing P̄(0) is the same as (7.9), obtained in the sedimentation problem, except for
a factor-four difference on the right-hand side. Since the diffusio-osmotic pressure is
otherwise governed by the same homogeneous condition, namely (7.7), it follows that,
upon accounting for that factor, expression (8.5) for the repulsion force between two
sedimenting particles may be readily applied, giving:

R ∼−2παH 2(ζ )ε−2
∫
∞

0

Λ(R)
H2(R)

dR. (8.7)

The function Λ(R) is still given by (7.11), but the driving-flow variables appearing
therein are now provided by the superposition of (5.11) (using (5.12)) and (5.13)
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(using (5.14)). Calculating the quadrature in (8.7) then furnishes the desired
approximation:

R =
24π

25
ε−2αH 2(ζ )Pe (U +Ω)2, (8.8)

wherein U and Ω are provided by (4.5) and (5.15)–(5.17) as O(1) functions of ε.
The resulting particle velocity (namely the rigid-body motion associated with u2)

may by calculated using (2.35). In principle, this requires the calculation of all
the electroviscous loads. It is however evident from the problem symmetry (see
indeed (A 5a)) that the calculation of the ‘repulsive’ velocity in the z-direction
requires only the lateral repulsion calculated above. This velocity is thus given by
R/f⊥. For small ε, it is well known that f⊥ ∼ 6π/ε, where the asymptotic error is
smaller than some positive power of ε (Cox & Brenner 1967). Thus, for Pe= O(1)
the magnitude of the repulsive velocity is O(δ2/ε) relative to the driving flow. It is
important to note however that experiments devised to detect electroviscous repulsion
are typically based on observing equilibrium positions which are determined by the
balance with external forces (Alexander & Prieve 1987). The quantity of interest in
the present analysis is therefore the repulsive force.

9. Discussion
In parts 1 and 2 of this sequence we derived effective macroscale models enabling

the calculation of electroviscous forces over the entire range of Péclet numbers. An
important point revealed by these analyses is that, for both moderate and large Péclet
numbers, the ratio of the induced-to-driving velocities scales as the square of the
dimensionless Debye length δ. These models show that apparently small nonlinear
mechanisms can nevertheless generate Stokes-flow irreversibility, and hence their
consequences may be important. For example, in the shear-induced lift experiments
of Alexander & Prieve (1987) and Bike, Lazarro & Prieve (1995), electroviscous
forces give rise to an otherwise impossible motion in a direction perpendicular to the
driving motion.

The present paper illustrates irreversibility at moderate Péclet numbers by
considering two prototypic problems. The first is side-by-side sedimentation of
two spherical particles, and the second involves a spherical particle which is
suspended in the vicinity of a planar solid wall and is exposed to a simple shear.
Due the reversibility properties of the Stokes equations, no lateral repulsion would
be predicted in these configurations in the absence of electrokinetic effects. Our
analyses are based on the macroscale model developed in part 2 of this sequence.
In this limit, leading-order electroviscous forces are contributed by the Newtonian
stresses accompanying the electrokinetic flow, which is driven by a combination of
electro-osmosis and diffusio-osmosis. As the salt concentration is governed by an
advection–diffusion equation, the latter mechanism is nonlinear in the driving flow
and accordingly results in irreversible motion of suspended particles.

Since the effective boundary condition governing the salt-concentration distribution
involves the pressure gradients of the driving flow, this repulsion becomes singular at
near-contact configurations. In that limit, which is actually representative of realistic
configurations, repulsion is dominated by the large ‘diffusio-osmotic’ pressure in the
narrow-gap region. Use of appropriate lubrication approximations thus allows for an
asymptotic treatment of the problem.

We find that the source of irreversibility is similar in both problems. The
salt-concentration polarisation engendered by the advection of the driving flow
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possesses an axisymmetric component. The leading-order repulsion is contributed
by the pressure distribution associated with the accompanying diffusio-osmotic flow.
In calculating this repulsion, there is no need to assume small Péclet numbers; in
fact, repulsion would not be detected if one were to use a small-Péclet-number
linearization. Remarkably, the ordinary differential equations which represent the
advection–diffusion problem in the lubrication approximation do not need to be
explicitly solved in order to obtain closed-form approximations for the lateral
repulsion.

It is convenient to express these approximations in a dimensional form, with h∗
denoting the small thickness εa∗. For the problem of side-by-side sedimentation under
a force field of magnitude F∗ we have obtained the formula (cf. (8.6))

R∗ =
6π

25
H 2(ζ ∗/ϕ∗)Ω2 ε

∗ϕ∗2a∗2

h∗2µ∗2D∗2 F∗2
, (9.1)

wherein Ω , a slowly-varying function of h∗/a∗, is provided in (4.5b), with f = 1 and
t = 0 and the resistance coefficients provided in (5.9)–(5.10). Ignoring the slowly-
varying dependence on h∗/a∗ in these relations, and noting that the external force F∗
is typically proportional to the particle volume, we see that R∗ essentially scales as
the eighth power of a∗. For the problem of imposed shear of magnitude G∗ we have
obtained (cf. (8.8))

R∗ =
24π

25
H 2(ζ ∗/ϕ∗)(U +Ω)2

ε∗ϕ∗2a∗6

h∗2D∗2 G∗2
, (9.2)

where U and Ω are again given by the mobility relations (4.5), now with the
coefficients provided in (5.15)–(5.17). Here, R∗ essentially scales as the sixth power
of a∗.

The quadratic nonlinear dependence of the repulsive force in the ‘driver’ of the
flow (F∗ in the force problem, G∗ in the second) is evident in (9.1)–(9.2). (In the
dimensionless notation, the nonlinearity is manifested via the dependence upon the
Péclet number.) Because of the Einstein–Smoluchowski relation, the product µ∗D∗ is
independent of the solution viscosity (Schnitzer & Yariv 2014). Thus, expression (9.1)
is essentially independent of the electrolyte viscosity, while expression (9.2) essentially
scales as its square. The latter is qualitatively consistent with the observation of
increased repulsion for highly viscous liquids (Alexander & Prieve 1987).

It appears that the most related work in the literature is that of Tabatabaei et al.
(2006), who employed the model of Cox (1997) to calculate the electroviscous forces
on a sphere which is translating and rotating in the vicinity of a solid wall. While
this problem is not the same as the shear-induced problem considered herein, it may
nevertheless provide the requisite electroviscous forces when properly choosing the
translation and rotation velocities (see § 5). A careful scrutiny reveals that, under
these conditions, expression (9.2) coincides with the lift-force approximation derived
by Tabatabaei et al. (2006). As discussed in part 1 of this sequence, an oversight in
the analysis of Cox (1997) results in confusion when considering both the validity
domain of his scheme and the asymptotic ordering of the different electroviscous
effects; thus, apparently O(1) terms in Cox’s scheme are numerically large when
considering moderate-Péclet-number conditions. Somewhat fortuitously, Cox’s scheme
has the same elements as in the moderate-Péclet-number model of part 2.

While the electroviscous forces are formally ‘small’ in the thin-double-layer limit,
their irreversible nature renders them important, especially as their effect upon particle

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.647


Streaming-potential phenomena in the thin-Debye-layer limit 107

motion accumulates in time. Furthermore, these forces are amplified in the prevailing
near-contact configurations, scaling inversely with the square of the gap thickness. The
present illustrations thus point out to the potential importance of electroviscous forces
in the behaviour of colloidal dispersions. Specifically, the near-contact amplification
suggests that these repulsive forces, acting to offset the London–van der Waals
attraction (Israelachvili 2010), may affect such phenomena as particle coagulation,
suspension stability and particle–surface deposition. Our macroscale paradigm allows
for analysis of such problems. This paradigm, moreover, may be extended to analyse
streaming-potential phenomena in free-surface systems (Ohshima et al. 1984), where
it is anticipated that electroviscous forces are significantly larger (Schnitzer, Frankel
& Yariv 2013).

Appendix A. Resistance coefficients
It is useful to recall here the resistance relations which hold in the Stokes-flow

regime when a particle undergoes a rigid-body motion in an otherwise quiescent
liquid (in the absence of any electrokinetic effects). We employ the dimensionless
notation of § 2.1, where length variables are normalized by a∗, rectilinear and angular
velocities by v∗ and v∗/a∗, respectively and forces and torques by µ∗v∗a∗ and
µ∗v∗a∗2, respectively. In particular, we consider a spherical particle with instantaneous
rectilinear velocity (at its centre) U and angular velocity Ω . The hydrodynamic force
F̀ and torque (about the particle centre) T̀ are provided (Happel & Brenner 1965) by
the linear representations

F̀=−F ·U−M ·Ω, T̀=−M†
·U− T ·Ω, (A 1a,b)

where the resistance tensors F , T and M are functions of geometry.
In the two problems considered in this paper the geometry is specified by a sphere

(the particle boundary) and a plane. It therefore provides a single fixed vector, ê⊥, the
(say unit) normal to the plane. It follows that the true tensors F and T must possess
the form

F = f⊥ê⊥ê⊥ + f‖(I − ê⊥ê⊥), T = t⊥ê⊥ê⊥ + t‖(I − ê⊥ê⊥), (A 2a,b)

while the pseudo-tensor M is given by

M =mε · ê⊥, (A 3)

in which ε is the alternating tensor. The scalar resistance coefficients appearing in
(A 2)–(A 3) can depend only upon the single geometric parameter of the problem,
namely the distance ε from the sphere to the plane.

It is convenient to decompose the pertinent vectors in the generic form A=A⊥+A‖,
where

A⊥ =A · ê⊥ê⊥, A‖ =A · (I − ê⊥ê⊥). (A 4a,b)

It then follows from (A 1)–(A 2) that

F̀⊥ = f⊥U⊥, T̀⊥ = t⊥Ω⊥ (A 5a,b)

and

F̀‖ =−f‖U‖ −mΩ‖ × ê⊥, T̀‖ =−t‖Ω‖ +mU‖ × ê⊥. (A 6a,b)
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