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Abstract. The resonant interaction between three waves in a uniform magnetized
plasma is considered. Using the somewhat inaccessible result of the general theory,
we deduce the explicit expressions for the coupling coefficients of a cold magnetized
two-component plasma.

1. Introduction
The physics of nonlinear waves is a rapidly developing research field that has
recently received increased attention (e.g. Azeem and Mirza 2005; Marklund and
Shukla 2005; Mendonca et al. 2005; Onishchenko et al. 2004; Shukla 2004; Shukla
and Stenflo 2005a, b; Stenflo 2004; Vladimirov and Yu 2004; Wu and Chao 2004).
Although there are general formalisms to treat such phenomena, there is also a
need to have access to reliable explicit expressions for specific cases. As a particu-
lar example, Brodin and Stenflo (1988; 1990) considered the resonant interaction
between three magnetohydrodynamic (MHD) waves in a plasma. Starting from the
standard MHD theory they thus derived the coupling coefficients. However, the
textbook MHD equations are not able to correctly treat the nonlinear interaction
between three Alfvén waves (cf. Shukla and Stenflo 2005b). In the present paper,
we are therefore going to reconsider the general nonlinear interaction between
three waves in a cold, magnetized, two-component plasma, in order to derive the
explicit expressions for the coupling coefficients. Such expressions have previously
been presented for a one-component plasma (Stenflo 1973), but, due to algebraic
difficulties, never before for a two-component plasma.

2. Results
Considering the resonant interaction between three waves with frequencies ωj (j =
1, 2, 3) and wavevectors kj , we assume that the matching conditions

ω3 = ω1 + ω2 (1)

and

k3 = k1 + k2 (2)

are satisfied. The development of, for example, the z-components (Ejz ) of the wave
electric field amplitudes is then governed by the three coupled bilinear equations
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(e.g. Stenflo 1994)

dE∗
1z

dt
= α1E2zE

∗
3z (3a)

dE∗
2z

dt
= α2E1zE

∗
3z (3b)

and
dE3z

dt
= α3E2zE1z (3c)

where the z-axis is along the external magnetic field (B0ẑ), the star denotes complex
conjugate, αj are the coupling coefficients, d/dt = ∂/∂t + vgj · ∇ + νj , where vgj

is the group velocity of wave j, and νj accounts for the linear damping rate. The
general formula for αj for a hot magnetized plasma has been derived previously
(e.g. Stenflo 1994; Stenflo and Larsson 1977) and it is therefore only presented in
Appendix A here. Although, in principle, it covers all interaction mechanisms in
uniform plasmas, it is not easy to apply it directly to, for example, Alfvén waves
in a cold two-component plasma. However, after some straightforward, but rather
lengthy evaluation of the formula in Appendix A, we can finally write αj in the
comparatively simple form

α1,2 =
M1,2

∂D(ω1,2,k1,2)/∂ω1,2
C (4a, b)

and

α3 = − M3

∂D(ω3,k3)/∂ω3
C (4c)

where

C =
∑

σ

qω2
p

mω1ω2ω3k1z k2z k3z

×
[
k1 ·K1

ω1
K2 ·K∗

3 +
k2 ·K2

ω2
K1 ·K∗

3 +
k3 ·K∗

3

ω3
K1 ·K2

− iωc
ω3

(
k2z

ω2
− k1z

ω1

)
K∗

3 · (K1 ×K2)
]

(5)

K = −
[
k⊥ + i

ωc
ω
k× ẑ+

( ∑
i(ωc/ω)

(
ω2
p

/(
ω2 −ω2

c

))
1−k2c2/ω2 −

∑(
ω2
p

/(
ω2 − ω2c

)))(
k× ẑ− i

ωc
ω
k⊥

)]

×
(1 − k2

⊥c2/ω2 −
∑

(ω2
p/ω2))ω4

(ω2 − ω2
c )k2

⊥c2
+ kz ẑ (6)

D(ω,k) =
(

1 − k2c2

ω2
−

∑ ω2
p

ω2 − ω2
c

)

×
[(

1 − k2
z c2

ω2
−

∑ ω2
p

ω2 − ω2
c

)(
1 − k2

⊥c2

ω2
−

∑ ω2
p

ω2

)
− k2

⊥k2
z c4

ω4

]

−
(∑ ω2

pωc

ω(ω2 − ω2
c )

)2(
1 − k2

⊥c2

ω2
−

∑ ω2
p

ω2

)
(7)

https://doi.org/10.1017/S0022377805004204 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377805004204


The three-wave coupling coefficients for a cold magnetized plasma 145

and

Mj =
(

1−
k2

j c2

ω2
j

−
∑ ω2

p

ω2
j −ω2

c

)(
1 −

k2
jz c

2

ω2
j

−
∑ ω2

p

ω2
j − ω2

c

)
−

(∑ ω2
pωc

ωj

(
ω2

j − ω2
c

))2

(8)

where k = (k2
z + k2

⊥)1/2, k⊥ is the perpendicular (to ẑ) part of the wavevector,
ωp is the plasma frequency (ωpe for the electrons and ωpi for the ions), ωc =
qB0/m is the cyclotron frequency, q and m are the particle charge and mass,
and c is the speed of light in vacuum. For notational convenience, the subscript
σ denoting the various particle species has been left out in the above formulas.
We stress that no approximations have to be used to derive the expressions (4)–
(8), which are thus quite general for the case of three-wave interactions in a cold
magnetized two-component plasma. It can also be verified that (4) agrees with
the coupling coefficients for a magnetized one-component (Stenflo 1973; 1994)
plasma.
Equations (3a)–(3c), with (4), significantly improve the (approximate) equations

in the previous work by Brodin and Stenflo (1988) for the case when the plasma is
cold. Thus, although the main emphasis in that work was on the coupling between
Alfvén waves and magnetosonic waves where useful results were derived, it was
also mentioned that there is no coupling between Alfvén waves in the MHD limit.
The present paper shows, however, that this is not true. Thus, there is a non-zero
interaction between, for example, one dispersive Alfvén pump wave (Shukla and
Stenflo 2005b) and two inertial Alfvén waves characterized by

ω1,2 � k1,2zVA
1 + k2

1,2⊥λ2
e

(9)

where VA is the Alfvén velocity and λe = c/ωpe. In the particular case when Ez is
zero for one of the waves, it is of course straightforward to use other variables, e.g.
Ex instead of Ez , to derive expressions similar to those above.

3. Conclusions
In the present paper we have improved the approximate results for three-wave
interactions in a MHD plasma (Brodin and Stenflo 1988) and found the explicit
expressions for the coupling coefficients for wave interactions in a cold magnetized
two-component plasma. Our coupling coefficient C can thus be used as a starting
point (see, for example, Appendix B) of any estimate of the coupling strength where
the interaction between any kind of waves (Alfvén waves, whistler waves, etc.) in
a cold plasma has to be considered. It can also be useful in interpretations of
stimulated scattering of electromagnetic waves in space plasmas (e.g. Kuo 2001;
2003; Stenflo 1999; Yukhimuk 1998). In the latter case we refer the reader to a
short historical account of stimulated electromagnetic emissions in the ionosphere
(Stenflo 2004).

Appendix A
When calculating the coupling coefficients, it turns out that they contain a common
factor V . It is then possible to write the three coupled equations as

dW1,2

dt
= −2ω1,2 ImV (A 1)
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and
dW3

dt
= 2ω3 ImV (A 2)

where W = ε0E∗ · (1/ω)∂(ω2ε)E is the wave energy, ε is the usual textbook
dielectric tensor, and ImV stands for the imaginary part of V where (Stenflo 1994;
Stenflo and Larsson 1977)

V =
∑

s

m

∫
dv F0 (v)

∑
p1+p2=p3

pj =0,±1,±2,...

Ip1
1 Ip2

2 I−p3
3

×
[
k1 ·u1p1

ω1d
u2p2 ·u∗

3p3
+
k2 ·u2p2

ω2d
u1p1 ·u∗

3p3

+
k3 ·u∗

3p3

ω3d
u1p1 ·u2p2 − iωc

ω3d

(
k2z

ω2d
− k1z

ω1d

)
u∗

3p3
· (u1p1 × u2p2)

]
(A 3)

where ωjd = ωj − kjz vz − pjωc, Ij (= exp(iθj )) = (kjx
+ ikjy )/kj⊥, and the velocity

ujpj
satisfies

ωjdujpj
+ iωcẑ× ujpj

=
iq

mωj

{
ωjdJpj

Ej +
[(

vzEjz +
pjωc
k2

j⊥
kj⊥ ·Ej⊥

)
Jpj

+
iv⊥ωc
k2

j⊥
(ẑ× kj ) ·Ej

d

dv⊥
Jpj

]
kj

}
(A 4)

where Jpj
= Jpj

(kj⊥v⊥/ωc) denotes a Bessel function of order pj .

Appendix B
The limit when ω is much smaller than ωci is of special interest. In that case, we
approximate (6) by

Ke � − iω

ωce

(1 + k2
⊥λ2

e )
k2

⊥λ2
e

k× ẑ+ kz ẑ (B 1)

and

Ki � − iω

ωci

(1 + k2
⊥λ2

e )
k2

⊥λ2
e

[
k× ẑ− iω

ωci
k⊥

]
. (B 2)

We note that the ion contributions dominate the first three terms in (5), whereas the
electron contributions are most important for the fourth term in (5). As a result we
have a non-zero coupling coefficient C for the particular case of interaction between
three Alfvén waves, in contrast to what one obtains from the over-simplified text-
book MHD equations (see Brodin and Stenflo (1988), where CAAA was zero).
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