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SUMMARY
Tactile sensing is advantageous for the acquisition of local,
proximal information such as the contact condition between
a finger and an object. This type of sensing, however, is
not suited for recognizing an entire object that is easily
recognized by vision. The objective of this paper is to ease
the limitations experienced in tactile sensing by using both
a neural model based on the human tactile sensation and
a tactile-oriented associative memory model to enable a
robot to recognize object contours. In the model, first the
direction vectors belonging to segments of the object contour
are obtained from a filtered tactile pattern of the simulated
neurons’ excitation. Second, the vectors are quantized by the
chain-symbolizing method and stored for use in a memory
matrix that accumulates matrix-products between the vector
and its transposition. In the recalling process, complete
vectors are remembered even if some input vector elements
are missing. In the experiments, a robotic manipulator
equipped with a tactile sensor traces five types of contours,
these being a circle, a square, a triangle, a star, and a hexagon.
After the robot recalls the complete contours, it is able to
recognize a complete contour by just touching even a part of
a contour.
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Contour recognition; Surface-shape.

I. INTRODUCTION
Tactile sensation is one of the important sensations for
robotics because it has advantages that cannot be shared
by other sensations such as vision or hearing.1,2 Since it is
not necessary to control conditions of lighting and reflection
for tactile information processing and surface sensing,
tactile sensation maintains a relatively high precision outside
the laboratory because of insusceptibility to surroundings
such as lighting conditions. In this work we focus
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on the advantages of tactile information processing and
intend to establish a highly robust recognition system. In
preceding papers, we presented a neuron model emulating a
human mechanoreceptive unit for recognizing fine surface
roughness on the basis of remarks3–5 in the fields of
neurophysics and psychophysics. This was done to apply
the robust human recognition mechanism to robotics.6

In the present paper, as work subsequent to the above-
mentioned papers, we intend finally to evolve or apply a
robot equipped with the neuron model to environmental
recognition performed with tactile and haptic sensing. Thus,
we attempt to establish an entire model that emulates the
tactile sensation mechanism, from tactile data acquisition
with the mechnoreceptive unit to awareness as tactile
sensation in the human brain, by combining the neuron model
and a neural network model.

To date, many neural network models7–10 have been
presented to simulate human brain functions. We attempt to
incorporate an associative memory model, which is a type of
neural network model, into our recognition system, because
tactile sensing is restricted to acquiring proximal information
such as the contact condition between a finger and an object.
The model requires a recall function to distinguish a whole
shape from a portion of an object. This is the intrinsic
asperity of tactile sensing, contrasting with visual sensing
capable of acquiring a full image all at once. For example,
we can recognize the position of a switch on a wall in a dark
room, even if we touch just one part of the switch panel. In
that process, associative information is retrieved using key
information, and to date, this function has been formulated
as the associative memory model.

To verify the present recognition system’s surface-
recognition capabilities, in this work we perform a series
of experiments using a robotic manipulator equipped with
the present recognition system and a tactile sensor. First,
the robotic manipulator traces the edges of a fine stepped
structure and estimates their directions. After verifying the
precision level, we perform shape recognition of five fine
relief-shaped contours, these being a circle, a square, a
triangle, a star, and a hexagon.

II. OVERVIEW OF THE PRESENT RECOGNITION
SYSTEM
As Fig. 1 shows, the present recognition system comprises
the three modules described in the following chapters:
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Fig. 1. Schematic view of the present tactile recognition system.

the mechanoreceptive unit (neuron model) module, the
motion control module, and the shape recognition module.
In the present system, recognition of a contour shape is
accomplished with robotic active motion and tactile sensing.
That is, the system continues to recall the shape of contours
scanned by the robot, while in the next step the robotic motion
is decided and performed on the basis of tactile data obtained
from active touches by the manipulator on the environment
in a piecewise, robotic motion.

To recognize contours, the robotic motion of tracing an
object edge is generated by the neuron model module and
the motion control module. In the neuron model module, the
position and height of a fine step are measured using the
output of the simulated neuron mimicking the human tactile
sensation. In the motion control module, the edge direction is
estimated according to the output of the neurons. A robotic
motion for tracing an object is then generated to align the
center of the sensed surface with the edge of the step.

The edge directions obtained by the scanning motion
are input to the associative memory model included in the
shape recognition module one after the other. In the shape
recognition module, the whole contour is recalled to the robot
by a part of the contour data obtained during the edge tracing.

III. NEURON MODEL
In the preceding paper,6 a mathematical model for the me-
chanoreceptive unit was formulated according to remarks3–5

derived from human psychophysical experiments based
on the McCulloch-Pitts model.7 Figure 2 shows a neural
network related to the tactile sensory system. When
mechanical stimuli are applied to the surface of the skin, the
mechanoreceptor accepts the stimulus and emits an electric
signal. The signal is transmitted to a dendrite extending from
a neuron through a synaptic connection. The arrival of the

Fig. 2. Modeling of mechanoreceptive unit. (a) Schematic view of
actual neurons. (b) Mathematical model.

output signal from the mechanoreceptor effects a change in
the membrane potential inside the neuron. If several signals
from mechanoreceptors arrive almost simultaneously at the
neuron, these signals are superimposed in the neuron and the
summation of these signals changes the membrane potential.
This effect is called spatial summation and is modeled
first.

The neuron accepts n-signals s1, s2, . . . , sn emitted from
n-mechanoreceptors distributed in the skin (corresponding
to n-elements of a tactile sensor in robotics). The weight of
the synaptic connection between the i-th mechanoreceptor
and the neuron is represented as wi. Taking into account the
spatial summation, the membrane potential, u is calculated
as

u =
n∑

i=1

wisi. (1)

The mechanoreceptor seems to detect the time derivative
of skin deformation. Since it is assumed that the
mechanoreceptor detects the strain rate caused in the skin and
that it emits signals proportional to the magnitude of the strain
rate, instead of the strain rate emitted by the mechanoreceptor
we designate displacement rate of the sensing element as si

of Eq. (1) for the robotic tactile sensor. Namely, the output
of the i-th sensing element si of Eq. (1) is calculated by the
following expression,

si = a

∣∣∣∣dUi

dt

∣∣∣∣, (2)

where Ui is the displacement of the i-th sensing element and
a is a coefficient.
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Fig. 3. Principle of edge tracing.

When an output signal emitted from the mechanoreceptor
arrives at the neuron, a change occurs in the membrane
potential. If the next signal arrives at the neuron before
the change attenuates and vanishes, the next signal is
superimposed on the residual of the preceding signal. This
effect is called time summation, and is formulated as the
convolution integral of wi(t – t′)xi (t′) with respect to t′ from
the past to the present t if the weight of the synaptic con-
nection between the i-th mechanoreceptor and the neuron is
represented as wi(t′) at time t′. Consequently, by incorpo-
rating the time summation into Eq. (1), the membrane
potential u is calculated as

u =
n∑

i=1

∫ t

−∞
wi(t − t ′)xi(t

′) dt ′. (3)

The influence of a signal’s arrival on the membrane potential
decreases with time. This effect is expressed as a decrease in
the synaptic potential wi(t). However, there are no available
data on variation in the synaptic potential. In the present
paper, it is assumed that wi(t) varies as a square wave; namely,
it takes a constant value during 0 to τ sec, after which it
takes 0.

wi(t) =
{

1, 0 ≤ t < τ

0, t < 0
. (4)

It is known that neurons exhibit the threshold effect where
the neuron emits an output if the membrane potential u,
expressed as Eq. (3), exceeds a threshold h. The output
is a pulse signal and the pulse density of the signal is
proportional to the difference between membrane potential
u and threshold h. The signal’s pulse density is expressed
as z, while the threshold function, φ(q) is designated to
formulate the threshold effect. The pulse density, z, is given
by

z = φ(u − h) (5)

φ(q) =
{

q, q ≥ 0

0, q < 0
. (6)

IV. MOTION CONTROL MODULE
Ishikawa11 presented an active sensing method in which an
object’s contour is acquired by moving a tactile sensor along
the contour. The present method is based upon Ishikawa’s
method. In Ishikawa’s method, the error vector de defined
as the difference between the center of the sensor and the
edge is obtained and reduced to zero by means of feedback
control.

Figure 3 shows the principle of edge tracing. The system
specifies a direction of piecewise motion whenever the tactile
sensor acquires a frame of tactile image data. The feedback
control is performed by piecewise manipulator movement
dr. The manipulator movement dr is defined as the resultant
directional vector of edge dv and error vector de:

dr = dv + de. (7)

If the height of the edge is quite large, then it is easy to
obtain the directional vector of edge dv. For example, an
edge can be easily estimated with filtered contact pressure
distribution by a Laplacian filter in the case of a rather high
step height. The present neuron model is effective for fine step
heights measuring less than 200 µm. In the present neuron
model, however, the edge precision falls as the manipulator
approaches from direction dr to edge direction dv because
the number of excited neurons decreases.

Thus, at one point the robot scans two perpendicular X-
and Y-directions as shown in Fig. 4, and the unit vector of the
edge direction is obtained according to the scanning results.

Fig. 4. Fine-edge direction estimation.
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The components of dv are calculated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvx =

n∑
i=1

n∑
j=1

(zx)ij V dt

√√√√ n∑
i=1

n∑
j=1

[
(zx)2

ij + (zy)2
ij

]

dvy =

n∑
i=1

n∑
j=1

(zy)ijV dt

√√√√ n∑
i=1

n∑
j=1

[
(zx)2

ij + (zy)2
ij

]

, (8)

where V is the scanning velocity at the edge, and (zx)i j and
(zy)i j are the X- and Y-directional outputs of the neuron
model, respectively. Subscripts i and j are row and column
numbers of sensor cells, respectively. Since we intend to
differentiate between going up and down the step, instead of
φ(q) in Eq. (6) we use the three-value quantizing function
�(q) defined as follows:

�(q) =

⎧⎪⎨
⎪⎩

+1 (q > ε)

0 (−ε ≤ q ≤ ε)

−1 (q < ε)

, (9)

where ε is an appropriate threshold; we remove the sign of
absolute norm from Eq. (2) and assume h = 0 in Eq. (5).

V. SHAPE RECOGNITION MODULE

V.1. Associative memory model
As described in the Introduction, since tactile sensing is
restricted to acquiring proximal information such as the
contact condition between a finger and an object, it requires
a recalling function to be reminded of a whole shape from a
portion of an object. We utilized the Associatron introduced
by Nakano8 to enable a robot to recall an entire contour
from just one part of it. In the Associatron, information is
represented by a hyper vector x comprising elements whose
values are −1, 0, or +1:

x = (x1, x2, · · · , xN ), (10)

where N is the dimension of the hyper vector.
In the memorizing process, tensor products produced by

the vector and its transposition are stored in memory matrix
M:

M = xT
(1)x(1) + xT

(2)x(2) + · · · + xT
(k)x(k), (11)

where k is the number of stored items and the super subscript
T indicates transposition.

The total number of stored items depends on the
matrix dimension. The stored vectors should perpendicularly
intersect each other to enhance the discriminating capability.

In the recalling process, a recalled vector Z is calculated
from the matrix-vector product produced by the input vector
y and the memory matrix M:

Z = �{�(M)y}, (12)

where �(q) is defined in Eq. (9). According to this model,
even if the input vector y is not perfect, the perfect output
vector will be obtained.

V.2. Chain-symbolizing
To use the Associatron described in the previous section, the
trajectory of the robotic manipulator needs to be transformed
into the hyper-vector defined in Eq. (10). For example, for
simplicity it is plausible that the manipulator’s workspace
is represented as a two-dimensional mesh, like a digital
image, and that we put 1 or −1 as a coordinate on the
manipulator’s trajectory or 0 otherwise. However, if we select
this quantizing method, the length of the hyper-vector will
become impractically large; moreover, it will be difficult for
it to correspond to the rotation and translation of a contour
in the workspace.

Thus, we transform the manipulator trajectory to the hyper-
vector form according to chain-symbolizing,12,13 as shown in
Fig. 5. First, we divide 2π into m divisions, that is, intervals
[2π(i − 1)/m, 2π i/m], (i = 1, 2, . . . , m). Then, we count the
direction frequency of dr within each interval and obtain the
histogram shown in Fig. 5.

Next, the histogram is quantized to l levels by applying
thresholds to obtain a hyper-vector of m × l elements. The
value of the i +m(j − 1)-th element of the vector is +1 if the
frequency exceeds the threshold dj( j = 1, 2, . . . , l):

xi+m(j−1) =
{+1, f (i) ≥ dj

−1, f (i) < dj

(i = 1, 2, . . . , m; j = 1, 2, . . . , l) (13)

where f(i) is direction frequency of manipulator movement
dr.

According to the present chain codes, we can reduce
the memory capacity demanded by the memory matrix.
Additionally, the vector can easily correspond to the rotation
and translation of a contour, since even if a contour translates
in parallel, the histogram is invariant, thus the vector obtained
from the translated contour can coincide with the vector of a
not-translated contour.

If a contour rotates, the profile of the histogram shifts to
the left or right. Likewise, the element number of the hyper-
vector also shifts according to the rotational angle. Whenever
cyclic replacements of the i +m(j − 1)-th element to the
i + 1 + m(j − 1)-th and mj-th elements to the 1 + m(j − 1)-
th are performed in turn from i = 1 to i = m and from j = 1 to
j = l , the hyper-vector obtained by the replacement is input
to the Associatron to recall one of the memorized contours.
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Fig. 5. Chain codes.

Fig. 6. Robotic manipulator with a tactile sensor.

VI. EXPERIMENTAL PROCEDURE

VI.1. Robotic manipulator equipped with a tactile sensor
Figure 6 shows a robotic manipulator with five degrees of
freedom. The optical three-axis tactile sensor is mounted on
the end of the manipulator.14,15 The tactile sensor features an
array comprising tactile elements capable of sensing a three-
axis force. The size and pitch between two adjacent tactile
elements of the array are 10 × 13 and 3 mm, respectively.
Since we obtained a transform matrix from the force vector

Fig. 7. Scanning precision for a fine step height.

to the displacement vector, the sensor could measure the
displacement of the sensing element’s tip. In the present
experiment, we measured the vertical displacement of 6 × 6
sensing elements located at the center of the array.

VI.2. Edge direction experiment
To verify the system’s ability at detects edges of a fine
step, we made a specimen having such a structure. The
hatched region in Fig. 4 shows a fine convex portion. In
this experiment, the robot traces the edge of the fine step
height of δ = 50 µm along different edge directions θ = 0,
15, 30, 45, 60, 75, and 90◦.
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Fig. 8. Traceability of fine edges on figures. (a) Triangle. (b) Square. (c) Hexagon. (d) Circle. (e) Star.

VI.3. Shape recognition experiment
To verify ability of the associative memory, the robotic
manipulator touched and explored fine step heights meas-
uring δ = 200 µm, forming hexagonal, star-shaped, square,
triangular, and circular patterns (diameter of a circumscribed
circle of these figures: 90 mm). Motion control for the robotic
manipulator was point-to-point (PTP). Each piecewise sec-
tion of PTP motion was 3 mm, the same as the pitch between
two sensing feelers on the tactile sensor. Hyper vectors x or
y were obtained from a frame of the tactile image acquired in
each piecewise section. As for contour recognition, the five
specimen contours were first stored in the memory matrix.

Then, Eq. (12) was calculated during tracing of the specimen
to recall a stored contour. In this experiment, since number of
angular divisions m = 12 and the number of threshold levels
l = 4, number of elements per hyper-vector is 48.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

VII.1 Edge direction experiment
In estimating the precision of fine edge tracings using the
neuron model, Fig. 7 shows trajectories of the robot when it
traces a fine step height δ = 50 µm. The ordinate and abscissa
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Fig. 9. Remembered results. (a) Triangle. (b) Square. (c) Hexagon. (d) Circle. (e) Star

of the graph are the X- and Y-coordinates, respectively. The
values of correlation |r| for five of the lines are within the
range of 0.96 to 0.99. Therefore, the present system can
discriminate a difference of 15◦ and trace linearly a fine
edge, even if the step height is only 50 µm. However, since
some vibrations are present, except for θ = 0 and 90◦, we
chose 200 µm as the step height in the following sections.

VII.2. Contour tracing precision
Figure 8(a) ∼ (e) shows the trajectories of five contours traced
by the robot. In each figure, the ordinate and abscissa of the
graph represent the X- and Y-coordinates, respectively. Each
open square shows the dimension of sensing area. Therefore,
despite their different shapes, the robot can trace the contours
with satisfactory precision. If we examine the corner regions
of each figure, we see that the difference between the obtained
trajectory and desired trajectory becomes rather marked.
Since the ratio of the arc length at the corners to the whole

arc length is negligible, the disturbance at the corner does
not affect recognition precision.

VII.3. Shape recognition experiment
The remembered result for the square is shown in Fig. 9(a) ∼
(e). The abscissa of the figure denotes the position of the
sensor’s center using a normalized arc length, s, defined as
l/L, where l and L are the arc length of the manipulator
trajectory and the total manipulator trajectory, respectively.
The ordinate of the figure is correlation c and is calculated
as:

c = 1

N

N∑
i=1

xiZi, (14)

where xi and Zi are components of the stored vector
and output vector, respectively, and N is the number of
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components. The value of Eq. (14) becomes equal to unity
if all components of vector x coincide completely with all
components of vector Z. On the other hand, Eq. (14) becomes
zero if all vector components are completely different.
Correlation c indicates the degree of coincidence between
two vectors.

When we examine the remembered result for the triangle,
after s = 0.61 the value c for the triangle becomes the highest
among all the figures. This signifies that the triangle is almost
fully recalled if 61% of the remembering task is completed.
From Fig. 9 (e), which shows the remembered result for the
star, since we find that in the case of s < 0.66 the correlation
for the star has almost the same value as the correlation for
the circle, discrimination between the star and circle is the
most difficult. However, other cases such as the circle and
square are easily discriminated in the same manner as the
triangle and hexagon. Therefore, this method is efficient for
contour recognition using tactile sensing.

VIII. CONCLUSION
To ease the limitations that exist on tactile sensing, we
have developed an edge-tracing system using a neuron
model and an associative memory model. In the present
system, the neuron model, emulating the human tactile
sensation, is used for fine step-height measurement. First,
the direction vectors belonging to segments of the object
contour were obtained from an algorithm for fine step-height
detection. Secondly, the vectors were quantized by a chain-
symbolizing method and stored for use in a memory matrix
that accumulates matrix products between the vector and its
transposition.

To verify the present recognition system, we performed a
series of experiments using a robotic manipulator equipped
with a tactile sensor. In an edge detection experiment, the
robot scanned a fine edge of δ = 50 µm in different
edge directions. The results indicated that the present
system could discriminate difference to a margin of 15◦
and trace linearly the fine edge, even if the step height is
just 50 µm.

In the recalling process, complete vectors were recalled
even if the input vectors lacked some elements. In experi-
ments, a robotic manipulator equipped with a tactile sensor
traced five types of contours, including a circle, a square, a
triangle, a star, and a hexagon. After the robot memorized the

complete contours, it was able to recognize an entire contour
even by touching just a part of a contour.
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