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We study the partition of energy between waves and vortices in stratified turbulence,
with or without rotation, for a variety of parameters, focusing on the behaviour of
the waves and vortices in the inverse cascade of energy towards the large scales.
To this end, we use direct numerical simulations in a cubic box at a Reynolds
number Re ≈ 1000, with the ratio between the Brunt–Väisälä frequency N and the
inertial frequency f varying from 1/4 to 20, together with a purely stratified run.
The Froude number, measuring the strength of the stratification, varies within the
range 0.02 6 Fr 6 0.32. We find that the inverse cascade is dominated by the slow
quasi-geostrophic modes. Their energy spectra and fluxes exhibit characteristics of
an inverse cascade, even though their energy is not conserved. Surprisingly, the
slow vortices still dominate when the ratio N/f increases, also in the stratified case,
although less and less so. However, when N/f increases, the inverse cascade of the
slow modes becomes weaker and weaker, and it vanishes in the purely stratified case.
We discuss how the disappearance of the inverse cascade of energy with increasing
N/f can be interpreted in terms of the waves and vortices, and identify the main
effects that can explain this transition based on both inviscid invariants arguments
and viscous effects due to vertical shear.

Key words: internal waves, rotating turbulence, stratified turbulence

1. Introduction
The interaction between vortices and waves is a long-standing problem in fluid

turbulence. It can lead to a self-sustaining process that is dominant, for example in

† Email address for correspondence: corentin.herbert@weizmann.ac.il
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pipe flows, due to the strong wall-induced shear. A quasi-linear analysis around a
mean but unsteady flow allows for a prediction of large-scale coherent structures in
such flows (McKeon & Sharma 2010; Farrell & Ioannou 2012; Sharma & McKeon
2013), to the prediction of jets in baroclinic turbulence in the atmosphere of planets
(Farrell & Ioannou 2009), and it can also be used as a tool to control the onset
of turbulence using travelling waves (Moarref & Jovanović 2010). The dynamics of
geophysical flows involves complex interactions between nonlinear eddies and waves
due to the combination of planetary rotation and density stratification as well as
the formation of shear layers. Typical parameters for the atmosphere and the ocean
at large scales (larger than approximately 1000 km) are such that the dynamics of
the fast waves is slaved to that of the eddies, and this leads to a quasi-geostrophic
quasi-linear regime characterized by a balance between the pressure gradient and the
Coriolis and gravity forces (Charney 1971). Then, the eddy turnover time is much
larger than typical wave frequencies: the Brunt–Väisälä frequency N or the inertial
frequency f = 2Ω (with Ω the rotation rate). For instance, frequency spectra obtained
from in situ measurements in the ocean show distinct power laws for internal waves
in the [ f , N] band and geostrophic eddies at lower frequencies (Ferrari & Wunsch
2009). The quasi-geostrophic regime is well understood theoretically and provides a
good description of the large scales of the atmosphere and the ocean (Vallis 2006,
e.g.). However, the range of scales in these geophysical flows before dissipation
prevails at small scales is such that other scale-dependent regimes can arise in which
turbulence comes into play, with the eddy turnover time becoming comparable to the
Brunt–Väisälä frequency, the inertial frequency, or their combinations which arise in
the dispersion relation of internal waves. Lilly (1983), in particular, has underlined
the emergence of a regime, coined stratified turbulence, between quasi-geostrophic
turbulence and homogeneous isotropic turbulence (see also the scale analysis by Riley,
Metcalfe & Weissman (1981)), and its importance for the mesoscales (with horizontal
scales between 1 and 100 km, approximately) in the atmosphere. Indeed, the measured
horizontal spectra of kinetic and potential energy in the upper troposphere and lower
stratosphere (Nastrom, Gage & Jasperson 1984) has a long history of opposite
interpretations: some have claimed that this unambiguous k−5/3 range corresponds to
an inverse cascade of quasi-two-dimensional eddies (Gage 1979; Lilly 1983; Métais
et al. 1996), while others have argued that it was in fact a direct energy cascade
dominated by internal waves (Dewan 1979), or yet another type of turbulence
corresponding to a different scaling of the equations of motions (Lindborg 2006).
This example emphasizes the importance of analysing data – be it observational,
experimental or numerical – in terms of eddies or vortices on the one hand, and
waves on the other hand. In this paper, we shall try to disentangle these two types
of motion in the idealized context of direct numerical simulations of stratified flows
with and without rotation in a periodic box, focusing on the classical quantities
characterizing the statistical behaviour of nonlinear interactions in turbulent flows, in
particular energy spectra and transfer functions. Our main goal is to better understand
the fluid mechanics of rotating-stratified flows, motivated by geophysical flows.
However, due to the computational difficulties in reaching geophysical flow parameter
regimes (small Froude number and very large Reynolds number), we shall also
discuss viscous effects which do not arise in geophysical flows, but are relevant for
laboratory experiments such as those of Praud, Fincham & Sommeria (2005).

One way to distinguish between waves and eddies is through a decomposition
of the flow onto the normal modes of the linearized system (Bartello 1995, see
also below, § 3). Normal mode decomposition is a standard technique which has
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been used in a variety of theoretical (Errico 1984; Warn 1986; Lien & Müller
1992; Bartello 1995; Waite & Bartello 2004; Herbert, Pouquet & Marino 2014)
and numerical studies (Bartello 1995; Smith & Waleffe 2002; Waite & Bartello
2006a,b; Sukhatme & Smith 2008; Kitamura & Matsuda 2010; Kurien & Smith
2012; Brunner-Suzuki, Sundermeyer & Lelong 2014; Kurien & Smith 2014), for the
Boussinesq equations, which we shall investigate here, as well as for other dynamical
equations. Recently, another approach has been proposed (Bühler, Callies & Ferrari
2014), which relies on a few additional assumptions in order to be able to achieve a
similar decomposition without a complete knowledge of the dynamical fields. This is
particularly useful when working with observational data, such as ship track data or
aeroplane measurements. Callies, Ferrari & Bühler (2014) have used this method to
claim that observational data supported the internal wave interpretation of the forward
cascade of the atmospheric mesoscales, although Lindborg (2015) argues using a
similar technique that the forward cascade of energy could in fact be of another
type, corresponding to the scaling regime of stratified turbulence identified in Billant
& Chomaz (2001) (see also Lindborg 2006). Another interesting approach consists
of computing a full frequency-wavenumber energy spectrum in the four-dimensional
Fourier space (Clark di Leoni & Mininni (2015); see also Campagne et al. (2015)
for an analogous analysis in a laboratory experiment of rotating flow). This allows
one to directly assess how the energy is partitioned between modes which exhibit
phase coherence, like waves, and other modes. However, this is a computationally
expensive technique which requires a good time resolution in addition to a good
space resolution (and hence, a lot of disk space).

In this context, a pioneering analytical and numerical study of strongly rotating-
stratified turbulence in terms of normal modes was done by Bartello (1995). The link
between geostrophic adjustment at large scale and the inverse cascade of energy due
to the conservation of (linearized) potential vorticity is clearly established through
a decoupling of the (fast) wave modes and vortical (slow) modes. By truncating
the nonlinear interactions to some specific subsets of modes, as for example between
three slow modes that lead to the inverse cascade of energy (Charney 1971), dominant
effects can thus be identified. It is shown in particular that there are nonlinear
interactions using a slow mode as a catalyst to push the wave energy to small
scales (whereas triads involving three fast modes are negligible); furthermore, as the
rotation is increased, the energetic exchanges between the slow vortical modes and
the fast wave modes are weakened and such modes can be seen as actually being
progressively decoupled. It was noticed by Smith & Waleffe (2002) that, for long
times, the growth of large-scale energy is associated with geostrophic modes for
1/2 6 N/f 6 2 (in which domain three-wave resonances vanish completely), whereas
for large N/f , the vertically sheared horizontal flows (VSHF), with no variation in
the horizontal and no vertical velocity, are dominant. One should note that if the
forcing wavenumber is not well separated from the box overall dimension, finite-size
effects can develop that quench the possible (discrete) resonances, as already noted
in the context of water-wave turbulence (see e.g. Kartashova, Nazarenko & Rudenko
(2008) and references therein).

In the purely stratified case, it was found by Waite & Bartello (2004, 2006b)
that the vertical spectrum of the waves moves to larger vertical wavenumber as
stratification increases, in agreement with the argument found by Billant & Chomaz
(2001) that the characteristic scale in the vertical is proportional to U/N, with
U a typical large-scale velocity; at smaller scales the structures break down in a
nonlinear fashion, although isotropy may not be restored, depending on the buoyancy
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Reynolds number and whether the Ozmidov scale is resolved (see § 2.2 below for
definitions): the buoyancy scale LB=U/N must be sufficiently resolved for overturning
to take place. The case of comparable (but not identical) strengths for rotation and
stratification was analysed by Sukhatme & Smith (2008), where it is shown that there
is a transition in behaviour for N/f ≈ 1: for smaller values, large scales are dominated
by the vortical mode and small scales by wave modes, whereas for larger values of
N/f , the wave modes dominate at all scales smaller than the forcing.

The scaling behaviour of slow and fast modes for rotating-stratified flows is
analysed in Kurien & Smith (2012, 2014) for regimes where potential vorticity is
linear, for small aspect ratio of the domain size in the vertical (δ = L‖/L⊥ = 1/4),
but with a unit Burger number Bu = δN/f , using high-resolution direct numerical
simulations and hyper-viscosity. When compared to similar flows with δ = 1,
differences arise, as for example when examining the steepness of the wave
component of the energy spectrum, viewed as a signature of the layered structure of
the flow. The case δ 6= 1 was also examined for either purely rotating (Deusebio et al.
2014) or purely stratified flows (Sozza et al. 2015), where it is shown that the aspect
ratio can affect the strength of the inverse cascade of energy to large scales. The
combined effect of varying N/f and δ on the formation of characteristic structures
was further studied in Kurien & Smith (2014) for low Froude number (Fr = 0.002,
ensuring that potential vorticity is again linear, i.e. for low effective turbulence) and
varying either the Rossby number at fixed δ or vice versa (in which case, the choice
was made of N = f ). The layering of the flow is clearly dependent on the strength of
the rotation (Fr being fixed), and the wave and slow mode spectra are quite different
(when the total spectra are more difficult to distinguish). The inverse cascade of
energy is clearly associated with the vortical (slow) mode, as shown as well in
Brunner-Suzuki et al. (2014) for a variety of forcing functions in the context of
sub-mesoscale oceanic mixing. It is also shown in Brunner-Suzuki et al. (2014) that
small-scale (shear) layers do not directly modify the inverse cascade, although it could
strengthen it when bringing together nearby vortices through nonlinear advection when
they are sufficiently numerous. Recently, Whitehead & Wingate (2014) have studied
the energy transfers between slow and fast modes in the Boussinesq equations, in the
three asymptotic regimes of strong stratification/weak rotation, strong rotation/weak
stratification and the quasi-geostrophic regime. Their findings also point out the role
of the slow modes in the linear growth of kinetic energy.

Our study uses similar methods as the above-mentioned authors, but pursues a
slightly different goal: here, we focus on the possibility of an inverse cascade and its
relation with the inviscid invariants of the system. We are interested in understanding
the difference between the rotating-stratified case, for which an inverse cascade is
possible (Bartello 1995; Lindborg 2005; Aluie & Kurien 2011; Marino et al. 2013),
and the purely stratified case, where there is no such thing (Waite & Bartello 2004,
2006b), although there is some transfer of energy towards the large scale. This
difference has already been considered from the point of view of anisotropic energy
transfers (Marino et al. 2014); here we adopt a different point of view and we
investigate the role of vortices and waves in the inverse cascade (or lack thereof). We
also aim at characterizing the transition between these two regimes. Indeed, although
previous studies have established that, when an inverse cascade is present, it is due
to the slow vortices, it is not clear how this phenomenology breaks up. We shall
see that in the regime of parameters considered, we can identify three coexisting
inertial mechanisms. To do so, we examine data stemming from direct numerical
simulations of rotating-stratified turbulence, forced at small scales, for a variety of
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N/f ratios (and Froude and Rossby numbers) in cubic boxes at a Reynolds number
of 1000. Since geophysically relevant buoyancy Reynolds numbers are currently out
of reach for inverse cascade studies, the vertical shear associated with moderate
buoyancy Reynolds numbers leads to potentially important viscous effects which we
shall discuss in comparison to the inertial mechanisms. After describing the relevant
equations, the theoretical framework and the numerical simulations in § 2, we review
the normal mode decomposition in § 3, and analyse the numerical data in terms of the
normal modes in § 4. Viscous effects and the role of the buoyancy Reynolds number
are considered in § 5. In § 6, we discuss the results and present our conclusions.

2. Theoretical framework and numerical data
2.1. Equations of motion and direct numerical simulations

We consider incompressible flows in a reference frame rotating with angular velocity
Ω around axis ez (we note Ω = Ωez and f = 2Ω the Coriolis parameter). The
gravity field is anti-aligned with the direction of rotation: g=−gez. We work in the
Boussinesq approximation: the density is assumed constant, equal to ρ0 > 0, except in
the buoyancy force term, and we assume a linear background stratification: the density
field is given by ρ(x)= ρ0(1− (N2/g)z)+ ρ ′(x), with N the Brunt–Väisälä frequency.
Note that we are only considering the case of stably stratified flows. We introduce
the temperature field (with the dimension of a velocity) θ(x) = (g/Nρ0)ρ

′(x). The
velocity field is denoted by u. Given the assumptions mentioned above, the equations
governing the dynamics of the fields u, θ are as follows:

∂tu+ u · ∇u=−∇P+ ν1u− 2Ωez × u−Nθez +F, (2.1)
∂tθ + u · ∇θ =Nuz + κ1θ, (2.2)

∇ · u= 0, (2.3)

where P denotes the (rescaled) pressure field, fixed by the incompressibility condition,
ν the viscosity and κ the thermal diffusivity; we work with Prandtl number equal
to unity: Pr = ν/κ = 1. Finally, F is an isotropic forcing introduced only in the
momentum equation; it has a fixed amplitude in a prescribed narrow shell centred
on wavenumber kF, and random but constant in time phases. Note that, contrary to
other studies (Kurien & Smith 2012, 2014, for instance), there is no forcing in the
buoyancy equation, but the forcing has a vertical component (unlike, e.g. Waite &
Bartello (2004) or Sozza et al. (2015)) and does not satisfy balance relations, even at
the lowest order (unlike e.g. Waite & Bartello (2006b), where the forcing is only in
the slow modes). The projection of the forcing on the waves and slow modes (see § 3)
has the same magnitude; hence we are not favouring any of these modes a priori.

We integrate (2.1)–(2.3) numerically with a pseudo-spectral code, the geophysical
high-order suite for turbulence (GHOST) in a tri-periodic cubic domain of length
L = 2π. GHOST is parallelized using an hybrid MPI/OpenMP method and scales
linearly up to 105 compute cores on grids of up to 61443 points (Mininni et al.
2011). No model is used for subgrid scales, and dissipation occurs through standard
Laplacian terms. The runs considered here all have a resolution of 5123, with
forcing at wavenumber kF ∈ [22, 23], and therefore Reynolds numbers Re≈ 103. The
Rossby and Froude numbers vary as indicated in table 1; the runs can be grouped
in two series, one with constant Froude number (Fr = 0.04) and varying N/f (and
therefore Ro) and one with constant Rossby number (Ro = 0.08) and varying N/f
(and therefore Fr). The isotropic energy spectra and fluxes of the above runs have
already been analysed in Marino et al. (2013), providing evidence for the existence
of an inverse cascade of energy in the presence of rotation and stratification, but not
in the purely stratified case (see also Marino et al. 2014).
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TABLE 1. Model run parameters; names of runs at fixed Rossby number (respectively
fixed Froude number) begin with a R (respectively F), followed by its N/f value. np
is the number of grid points, N and f are the Brunt–Väisälä and the inertial frequency
(with f = 2Ω , Ω being the imposed rotation), Fr = U/[LN] and Ro = U/[Lf ] are the
Froude and Rossby numbers based on large-scale data, and the Burger number is defined
as Bu = N/f for a cubic box as used here; RB = ReFr2 and Rω = Re1/2Ro = ωrms/f
are, respectively, the buoyancy Reynolds number and the micro-Rossby number, and kF
is the forcing wavenumber. The runs belonging to the no-resonance zone have a shaded
background. The primed and starred runs in the last four lines are sensitivity tests with
respect to the buoyancy Reynolds number, described in § 5.2.

2.2. Characteristic scales
Rotating-stratified turbulence covers a wide range of physical regimes, which can be
characterized by three non-dimensional numbers, besides Pr. Given a characteristic
length scale L and a characteristic velocity U at that scale, we introduce as usual
the Reynolds number Re = UL/ν, the Rossby number Ro = U/( fL) and the Froude
number Fr = U/(NL). The Rossby and Froude numbers quantify the strength of the
Coriolis and buoyancy forces, respectively. They correspond to the ratio between a
wave period ( f−1 and N−1, respectively) and the eddy turnover time L/U.

A difficulty in rotating-stratified flows arises from the variety of characteristic scales
one can construct. To start with, the Froude number can be based on a characteristic
horizontal length scale or a vertical length scale. It is known that stratified turbulence
develops strong gradients in the vertical (leading to the ubiquitous layered structure
of the flow, see e.g. Herring & Métais (1989)), in such a way that the vertical Froude
number remains of order unity (Billant & Chomaz 2001; Lindborg 2006), even when
the horizontal Froude number is small. The corresponding vertical length scale is
the buoyancy scale, LB = U/N and can be identified readily in such flows (see e.g.
Rorai, Mininni & Pouquet 2014). In the presence of rotation, the layers are expected
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to be slanted (with respect to the horizontal). In that case, it was conjectured that
the characteristic length scale in the vertical also involves both N and f , like a
deformation radius, for which the effects of rotation and stratification balance each
other, with Nk⊥∼ fk‖ (Charney 1971). It was shown by Rosenberg et al. (2015) that a
Froude number based on a vertical Taylor scale involving vertical velocity gradients,
`z =

√〈u2
⊥〉/〈(∂zu⊥)2〉 (where the angular brackets denote spatial averaging) is also

very close to unity. Here, we define the Froude and Rossby numbers (as well as the
Reynolds number) based on the scale of the forcing, LF = 2π/kF. Since the forcing
is isotropic, there is no reason to distinguish between vertical and horizontal Froude
number with this definition, although anisotropies and different characteristic scales
in the horizontal and the vertical will of course develop spontaneously in the flow.
It follows that for the purpose of our study, at unit aspect ratio, the ratio of the
Rossby and Froude numbers Bu= Ro/Fr, referred to as the Burger number, reduces
to the ratio of the Brunt–Väisälä frequency and the Coriolis parameter: Bu = N/f .
The characteristic velocity U used to evaluate the non-dimensional numbers is the
rms velocity of the initial condition.

The recovery of isotropy should occur at a scale for which the eddy turnover time
and the wave period become comparable. This allows one to define an Ozmidov and a
Zeman scale (Zeman 1994; Mininni, Rosenberg & Pouquet 2012) written, respectively,
for purely stratified or purely rotating flows, assuming an isotropic Kolmogorov range,
EV(k)∼ ε2/3

V k−5/3 at small scale, as:

`Oz =
√
εV

N3
, `Ze =

√
εV

f 3
, (2.4a,b)

with εV = ν〈ω2〉 the kinetic energy dissipation rate. The Froude and Rossby numbers
measure the ratio of these scales to the characteristic scale: Fr = (`Oz/L)2/3, Ro =
(`Ze/L)2/3. Finally, if one wants to construct a measure of the actual development of
small scales in the flow, a buoyancy Reynolds number RB and a micro-Rossby number
Rω can be defined in the following way:

RB = Re Fr2, Rω = ωrms

f
= Re1/2 Ro, (2.5a,b)

so that R2
ω is the equivalent, for rotation, of the buoyancy Reynolds number. The

buoyancy Reynolds number RB corresponds to the ratio of vertical advection to
vertical diffusion (Riley & de Bruyn Kops 2003; Brethouwer et al. 2007), in the
scaling regime of Riley et al. (1981) and Billant & Chomaz (2001).

With these definitions, and recalling the Kolmogorov dissipation scale `η =
(ν3/εV)

1/4, one can show that RB = (`Oz/`η)
4/3. In other words, when one wants

to measure the intensity of stratified turbulence, the Ozmidov scale plays the role of
the integral scale and RB that of the Reynolds number. In particular, when RB is
of order one, like in most of the runs shown here (see table 1), the Ozmidov scale
coincides with the dissipation scale. Also note that, when Rω ≈ 1, the small-scale
turbulence is at least as vigorous as the imposed rotation frequency (see, e.g. Sagaut
& Cambon 2008). These non-dimensional numbers are computed in table 1. Some
references (e.g. Smyth & Moum 2000a,b) define the buoyancy Reynolds number as
εV/(νN2). The two definitions should coincide when the characteristic scales satisfy
the Taylor relationship εV = U3/L. For the runs under study here, this dimensional
estimate of the energy dissipation rate does not hold, and using the small-scale kinetic
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energy dissipation rate, the buoyancy Reynolds number computed with this alternative
definition differs from the one given in table 1 (for instance it is of the order of 10−2

for the strongly stratified runs with RB = 1.6). This is consistent with the idea that,
for strong stratification, the effective dissipation is related to the dimensional estimate
by a Fr factor.

One of the goals of this paper is to study how the respective role of waves and
vortices (see below) depends on the ratio N/f . Note that there is a range that can be
expected to have a special behaviour: when 1/2 6 N/f 6 2, there are no three-wave
resonances (the simple proof relies on the fact that the inertia–gravity wave frequency
σ(k), defined by (3.4), is bounded by f and N; see for instance Smith & Waleffe
(2002), § 6.1). Hence the no-resonance zone separates two regimes: N/f < 1/2 and
N/f > 2. Here we shall focus on the latter range. Note that these two regimes also
correspond to cases where the deformation length is respectively smaller and larger
than the forcing scale.

2.3. Potential vorticity
We define potential vorticity as usual:

Π = f ∂zθ −Nωz +ω · ∇θ, (2.6)

where ω=∇× u is the standard vorticity. Potential vorticity is a Lagrangian invariant
of ideal Boussinesq flows: in the absence of forcing and dissipation, it is conserved
along the trajectory of a fluid parcel, as expressed by the equation ∂tΠ + u · ∇Π = 0.
Hence, it is analogous to vertical vorticity in two-dimensional (2D) turbulence, a
fundamental difference being that potential vorticity is not a linear functional of the
dynamical fields, because of the quadratic term Π2=ω · ∇θ , in addition to the linear
term Π1 = f ∂zθ − Nωz. It follows that, unlike the 2D case, the L2 norm of potential
vorticity, referred to as potential enstrophy and denoted by Γ , is quartic and is not
necessarily conserved by the Fourier truncation (see, e.g. Aluie & Kurien 2011).
We show in figure 1 the time evolution of potential enstrophy in the two series
of runs presented here. In the series of runs at constant Froude number, potential
enstrophy decays to approximately 25 % of its initial value, then seems to remain
constant in time. The decay is faster for higher N/f ratios, but the final potential
enstrophy level is approximately the same for all the runs. In contrast, the series of
runs at constant Rossby number exhibits very different levels of potential enstrophy,
across approximately three orders of magnitude, and it increases with increasing
N/f , i.e. decreasing Froude number. We conclude from these two graphs that, in the
inverse cascade regime studied here, the value of potential enstrophy at late times
is a function of the Froude number only. Also, potential enstrophy conservation is
better satisfied when stratification is strong. We now introduce the quadratic, cubic
and quartic components of potential enstrophy, defined respectively as

Γ2 =
∫
Π 2

1 , (2.7)

Γ3 = 2
∫
Π1Π2, (2.8)

Γ4 =
∫
Π 2

2 , (2.9)
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FIGURE 1. (Colour online) Time evolution of the potential enstrophy for the series of
runs at constant Froude number (a) and at constant Rossby number (b) with various N/f .
The vertical scale is in logarithmic coordinates for the constant Rossby number series.

such that Γ = Γ2 + Γ3 + Γ4. Γ2, Γ3 and Γ4 are respectively quadratic, cubic and
quartic in the field variables, but they all have the same physical dimension, that of
frequency square or square vorticity. The ratio Γ2/Γ is shown in figure 2. Note that
this ratio can exceed unity, since the cubic component of total potential enstrophy
is not positive definite (it measures correlations between the linear part of potential
vorticity and the nonlinear part). This figure shows that, in all the runs, total potential
enstrophy is well approximated by its quadratic part, in agreement with the findings
of Kurien & Smith (2014), although it is less and less the case as rotation decreases
(constant Froude series of runs) or in the N/f = 1/4 (weak stratification) case, which
also has the highest buoyancy Reynolds number of approximately 100 and the smaller
deformation length (see table 1). Waite (2013) has argued that in the large-N/f case,
total potential enstrophy is dominated by its quadratic part due to viscous effects in
the small buoyancy Reynolds number regime. We further discuss the role of viscosity
and buoyancy Reynolds number in § 5.

In 2D turbulence, enstrophy conservation has very important consequences: it
is ultimately responsible for the inverse cascade. It is a legitimate question to
ask whether potential enstrophy conservation places such a strong constraint on
rotating-stratified flows. Another important aim of this paper is to show that this
constraint is strongly dependent on whether there is rotation or not.

2.4. Inviscid invariants and the direction of the energy cascade
A framework which is quite robust for understanding direct and inverse cascades,
introduced by Lee (1952) and Kraichnan (1967), is that of the inviscid invariants
of the system. More precisely, the existence of a second definite positive invariant,
often quadratic, in addition to energy, may prevent the downscale cascade of energy
and lead to an inverse cascade. This is what happens in 2D turbulence (Kraichnan
& Montgomery 1980). In stratified turbulence, with or without rotation, there is such
a second inviscid invariant, though not quadratic in principle: potential enstrophy Γ
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FIGURE 2. (Colour online) Time evolution of the ratio of quadratic potential enstrophy
to total potential enstrophy, for the series of runs at constant Froude number (a) and at
constant Rossby number (b) with various N/f .

(see § 2.3). Although this invariant exists regardless of whether there is rotation or
not, the phenomenology is not the same: numerical evidence has accumulated over
the years (Métais, Riley & Lesieur 1994; Bartello 1995; Métais et al. 1996; Lilly
et al. 1998; Smith & Waleffe 2002; Lindborg 2005; Waite & Bartello 2006b; Aluie &
Kurien 2011; Marino et al. 2013) to show that an inverse cascade in stably stratified
flows is only possible when there is sufficient rotation, even though the parameter
controlling the transition remains unclear. A subtlety here is that the second invariant
has constant sign (it is always positive), but is not definite: some combinations
of the fields make potential vorticity vanish. Such combinations correspond to the
wave modes (see § 3). Hence, a natural way of thinking is to say that if waves and
slow modes did not exchange energy, the wave and slow mode energy would be
separately conserved, and slow modes would have invariants similar to 2D turbulence,
while waves would have invariants similar to 3D homogeneous isotropic turbulence.
Therefore, in that case one should expect an inverse cascade of slow mode energy
and a direct cascade of wave energy. This idea was formulated in pioneering studies
such as those of Warn (1986), Bartello (1995) and Waite & Bartello (2004).

However, in the purely stratified case, this reasoning does not hold since then,
potential enstrophy is still degenerate even when we restrict it to the slow modes.
Indeed, in the non-rotating case, only slow modes with k⊥ 6= 0 contribute to potential
enstrophy (see § 3.3). This peculiarity was used in a statistical mechanics argument
(Herbert et al. 2014) in order to explain why the two cases have opposite cascade
directions in spite of having the same inviscid invariants. From this point of view, it
could also be because of the presence of the vertically sheared horizontal flow modes
that stratified turbulence does not have an inverse cascade.

A major goal of this work is to study how the roles played by slow modes
and waves in the inverse cascade, inferred from the above reasoning on the
inviscid invariants, evolve when non-dimensional parameters vary, and how the
mechanisms described in this section come into play to break the inverse cascade
when stratification dominates.
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3. Waves and vortices: normal mode decomposition
3.1. The linear dynamics

Inertia–gravity wave dynamics has been studied for a long time (see for example
Hasselmann 1966; Garrett & Munk 1979; Müller et al. 1986; Bartello 1995; Staquet
& Sommeria 2002) and is summarized very briefly here in order to recall essential
concepts and to define notations. Indeed, the linear terms introduced by the Coriolis
force and the buoyancy force in (2.1)–(2.3) allow for the propagation of dispersive
waves. The linearized inviscid and unforced dynamics reads:

∂tu=−∇P− f ez × u−Nθez, (3.1)
∂tθ =Nuz, (3.2)
∇ · u= 0. (3.3)

This set of equations corresponds to the low-Froude-number limit (Fr→ 0) of the
Boussinesq equations, if we assume that the time scale is the buoyancy time scale
N−1 (Lilly 1983). The above equations admit travelling wave solutions of the form
uj(x, t) = Ujei(k·x−σ(k)t), θ(x, t) = Θei(k·x−σ(k)t), P = P0ei(k·x−σ(k)t), for arbitrary wave
vector k, with relations between the complex amplitudes Uj, Θ,P0 fixed by the above
equations, and with the dispersion relation

σ(k)=
√

f 2k2
‖/k2 +N2k2

⊥/k2. (3.4)

Such waves are called inertia–gravity waves (and include, of course, waves travelling
in the −k direction). Note that although the Coriolis parameter only appears in
the evolution equation for the horizontal velocity, and the Brunt–Väisälä frequency
only for the vertical velocity and temperature, inertia–gravity waves couple the four
dynamical fields because of the incompressibility condition. Without pressure, we
would simply have inertial oscillations, at frequency f , for the horizontal velocity,
decoupled from gravity waves of frequency N acting on the vertical velocity and the
temperature.

The nonlinear term introduces a coupling between waves with different wave
vectors. A possible approach is to treat the dynamical fields as a wave field with
slow nonlinear evolution of the magnitude of each wave mode, using a perturbative
approach. Resonant interactions (Longuet-Higgins, Gill & Kenyon 1967; Newell
1969) offer a natural way to close the hierarchy of moments. This is a first kind
of turbulence, referred to as wave turbulence (Zakharov, Lvov & Falkovich 1992;
Nazarenko 2010; Newell & Rumpf 2011).

Now, the set of linearized equations also admits stationary solutions, where the
right-hand side of (3.1)–(3.2) vanishes. These solutions have no vertical velocity
(uz = 0), and the pressure gradient balances at the same time the Coriolis force
(geostrophic balance, ∇⊥P = −f ez × u) and the buoyancy force (hydrostatic balance,
∂zP = −Nθez). In other words, rotation and stratification act to maintain horizontal
motion. This kind of balanced motion can also be seen as a low-Froude-number
limit (Fr→ 0) solution of the Boussinesq equations, assuming that Bu = 1 and that
the time scale is the eddy turnover time (Lilly 1983). It corresponds to eddies of
typical aspect ratio f /N, which are advected by the horizontal velocity field, much
like vortices in 2D turbulence. Hence, another kind of turbulence, referred to as
geostrophic turbulence, is encapsulated in the Boussinesq equations.
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3.2. The normal mode decomposition in Fourier space
The two kinds of motion, waves and vortices, described above, correspond to normal
modes of the linearized Boussinesq equations. Although they are coupled in the
nonlinear dynamics, they provide a useful framework for analysing the full system.
Here, we shall try to disentangle the behaviour of these two contributions in the
simulated fields. To separate the two contributions, it is convenient to express them
in Fourier space (Bartello 1995, see also Herbert et al. 2014): we introduce B = Z3

the set of wave vectors, and for each wave vector k ∈B, the vectors

Z0(k)=M(k)

0
1
0

 , Z−(k)=M(k)

1
0
0

 , and Z+(k)=M(k)

0
0
1

 , (3.5a−c)

where the expression of the matrix M(k) is given by:

M(k)=



1√
2kk⊥σ(k)


fk2k‖ − ik1k‖σ(k) −√2Nk2k⊥ fk2k‖ + ik1k‖σ(k)
−fk1k‖ − ik2k‖σ(k)

√
2Nk1k⊥ −fk1k‖ + ik2k‖σ(k)

ik2
⊥σ(k) 0 −ik2

⊥σ(k)
−Nk2

⊥ −√2fk‖k⊥ −Nk2
⊥

 if k⊥ 6= 0,

1√
2


i 0 −i
1 0 1
0 0 0
0 −√2 0

 if k⊥ = 0.

(3.6)
The vectors Z0(k),Z−(k) and Z+(k) are mutually orthogonal, and normalized to unity:

Zr(k)†Zs(k)= δrs, (3.7)

where † denotes the transpose and complex conjugation. Although the matrix M(k)
is rectangular, it satisfies the hermitian identity M(k)†M(k)= I3. They are the normal
modes of the linearized dynamics: their evolution in the linearized dynamics is given
by

L(k)Z0(k)= 0, (3.8)
L(k)Z+(k)= iσ(k)Z+(k), (3.9)

L(k)Z−(k)=−iσ(k)Z−(k), (3.10)

where L(k) is the linear operator in Fourier space associated to the linearized dynamics
give by (3.1)–(3.3). We see that the mode Z0(k) is conserved by the linear dynamics,
while the modes Z±(k), corresponding to the inertia–gravity waves, propagate with
frequency σ(k). Therefore, Z0, whose characteristic evolution time is the eddy turnover
time, is referred to as the slow mode. The normal modes can be used as a basis for
the Fourier modes of the dynamical fields. Introducing the Fourier decomposition of
the velocity and temperature fields

ui(x)=
∑
k∈B

ûi(k)eik·x, (3.11)

θ(x)=
∑
k∈B

θ̂ (k)eik·x, (3.12)
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and denoting X(k)= t(û1(k), û2(k), û3(k), θ̂ (k)) the Fourier coefficients for wave vector
k, they can be expressed as a linear combination of the normal modes:

X(k) = A0(k)Z0(k)+ A−(k)Z−(k)+ A+(k)Z+(k), (3.13)

= M(k)

A−(k)
A0(k)
A+(k)


︸ ︷︷ ︸

A(k)

. (3.14)

Introducing the projectors P0(k) = Z0(k)Z0(k)† and PW(k) = Z−(k)Z−(k)† + Z+(k)
Z+(k)†, we have of course P0(k)X(k) = A0(k)Z0(k) and PW(k)X(k) = A−(k)Z−(k) +
A+(k)Z+(k), and the two projectors are mutually orthogonal, so that P0(k)⊕ PW(k)=
I4. Denoting F : (u1, u2, u3, θ) 7→ (û1, û2, û3, θ̂ ), with x̂ : k ∈ B 7→ x̂(k) ∈ C, the
Fourier transform, and P̂0 : (û1, û2, û3, θ̂ ) 7→ (k 7→ P0(k)X(k)), P̂W : (û1, û2, û3, θ̂ ) 7→
(k 7→ PW(k)X(k)), the operators P0 =F−1 ◦ P̂0 ◦F and PW =F−1 ◦ P̂W ◦F are
mutually orthogonal projectors acting on the set of dynamical fields:

P2
0 =P0, P2

W =PW, (3.15a,b)

P0PW =PWP0 = 0, P0 ⊕PW = Id. (3.16a,b)

Hence, we may write u = u0 + uW and θ = θ0 + θW , with (u1
0, u2

0, u3
0, θ0) =

P0(u1, u2, u3, θ), and (u1
W, u2

W, u3
W, θW) = PW(u1, u2, u3, θ). It is easily checked

that the projection on the slow modes defined above has vanishing vertical velocity:
u3

0 = 0, and is divergence free: ∇ · u0 = ∇⊥ · u0 = 0. The explicit expression in real
space of the projection operators introduced above is given by Whitehead & Wingate
(2014). They also describe the projection operators on the slow manifolds obtained
in the limit of rapid rotation and weak stratification on the one hand, and strong
stratification and weak rotation on the other hand.

It follows from the above that the total energy

ET = 1
2

∫
(u2 + θ 2)= 1

2

∑
k∈B

X(k)†X(k)= 1
2

∑
k∈B

A(k)†A(k) (3.17)

breaks up in two pieces: ET = E0+ EW , where E0 is the energy in the slow modes:

E0 = 1
2

∫
(u2

0 + θ 2
0 )=

1
2

∑
k∈B
|A0(k)|2 = 1

2

∑
k∈B

E0(k), (3.18)

and EW the energy in the wave modes:

EW = 1
2

∫
(u2

W + θ 2
W)=

1
2

∑
k∈B
[|A−(k)|2 + |A+(k)|2] = 1

2

∑
k∈B

EW(k). (3.19)

Note that, due to the orthogonality property of the projections, the cross-terms in
physical space cancel out:

∫
u0 · uW +

∫
θ0θW = 0. However, these terms do not

vanish individually. In other words, the vector (u0, θ0) is indeed orthogonal to the
vector (uw, θw), but this does not imply that the vector u0 is orthogonal to uw, where
orthogonality refers to the canonical scalar product in each of these two Hilbert spaces.
A consequence is that care should be taken when trying to mix decomposition of the
energy in terms of kinetic/potential energy and in terms of vortical/wave modes. Here,
we shall avoid altogether distinguishing between kinetic and potential energy.
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3.3. Normal mode decomposition, balance and potential vorticity

As can be checked explicitly (Herbert et al. 2014, e.g.), in the linear framework, the
slow modes satisfy balance relations: in the presence of rotation, they are in both
geostrophic and hydrostatic balance. By contrast, for purely stratified flows, the slow
modes are not in hydrostatic balance, except for purely vertical wave vectors, i.e. for
horizontally homogeneous modes (the VSHF modes, see § 4.3). Of course, nonlinear
effects break these relations, and a flow initialized in the image of the projector P0

(i.e. containing no wave modes initially) will eventually lose balance and radiate
inertia–gravity waves. If one is interested in maintaining the balance relations, as
much as possible, without generating such oscillations, the initial state should contain
a wave component designed to compensate the nonlinear effects; such nonlinear
initialization procedures have been designed in numerical weather prediction (Baer
& Tribbia 1977; Leith 1980). Alternatively, balanced models, where the dynamics
of the waves is slaved to that of the slow modes, can be written to remain on a
slow manifold in phase space (Warn et al. 1995; Vanneste 2013). For the sake of
simplicity, we shall be content here with projecting the data on the vector space
spanned by the slow modes (which can be seen geometrically as a tangent subspace
for the slow manifold, or as a zeroth-order approximation to the slow manifold) and
its orthogonal subspace, spanned by the wave modes, as defined above. This means
that although the normal modes introduced above are always well defined, care should
be taken when interpreting the projections in terms of balance relations.

The normal modes are also related to potential vorticity. An argument due in
particular to Smith & Waleffe (2002) relies on the fact that in the linear dynamics,
Π1 is a point-wise invariant: ∂tΠ1 = 0. It follows, by applying the Fourier transform
in both space and time, that σΠ̂1(k, σ ) = 0, where σ is the time frequency. Hence,
wave modes, for which σ(k) 6= 0 must have Π̂1(k, σ ) = 0, while vortical modes
(i.e. by definition, those for which Π̂1(k, σ ) 6= 0) must have zero frequency. In fact,
it is easily shown that, in general, the identity Π̂1(k, t)=−ikσ(k)A0(k, t) holds, and
therefore (Bartello 1995; Herbert et al. 2014):

Γ2 =
∑
k∈B

k2σ(k)2|A0(k)|2. (3.20)

It follows that, even when considering the full nonlinear dynamics, waves do not carry
any linear potential vorticity. Similarly, we know that in the presence of rotation, all
the slow modes contribute to linear potential vorticity. In the purely stratified case,
however, the slow component of the VSHF modes (k⊥=0) contributes neither to linear
potential vorticity, nor, therefore, to quadratic potential enstrophy Γ2. All the other
slow modes still carry linear potential vorticity.

The fact that the connection between slow modes and vortical modes (i.e. modes
which contribute to linear potential vorticity) does not depend on whether we are
considering the linear or the full nonlinear dynamics, while the connection between
slow modes and balanced modes does, is due to the kinematic nature of the connection
between linear potential vorticity and the dynamical fields. By contrast, the notion of
balance is dynamical in the sense that it involves pressure, which is determined by
the equations of motion. When including the nonlinear term in the dynamics, another
component of pressure appears, which breaks the balance relations.
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FIGURE 3. (Colour online) Time evolution of the wave (dashed lines) and vortical (solid
lines) parts of the total energy for the series of runs at constant Froude number (a) and
at constant Rossby number (b) with various N/f . Runs within the no-resonance zone
have been excluded for clarity. Note that the curves corresponding to the decay of the
wave energy almost collapse onto a single curve: see figure 5 for a figure in logarithmic
coordinates where they can be distinguished.

4. Partition of energy between slow and wave modes
4.1. Time evolution of global quantities

The time evolution of the two energy components, wave and vortical, is shown in
figure 3 (see also figure 5) for the series of runs at constant Froude number (a) and at
constant Rossby number (b), excluding the runs for which the three-wave resonances
are suppressed. Although the initial conditions all have approximately the same energy
in each component, we see that, in all the runs, the wave energy decays very fast
and the slow modes dominate, even for the runs that do not undergo a strong inverse
cascade (in the purely stratified case, there is no inverse cascade at all). This is also
true for the runs in the series at constant Rossby number (figure 3b) and in the no-
resonance zone (not shown). After an initial phase, we observe in the runs for which
N/f is small enough (N/f 6 10) a linear growth of the energy in the slow modes,
characteristic of an inverse cascade. For N/f > 2, the growth rate appears to be a
decreasing function of N/f , and this is confirmed by plotting the time average of the
time derivative of the energy in the slow modes (figure 4a). This figure also confirms
that the growth rate vanishes at N/f = 20 or in the purely stratified case (see also
Marino et al. (2014)). There is also a linear growth of the energy in the slow modes
for the runs in the no-resonance zone in the series at constant Froude and for all the
runs in the series at constant Rossby. For both series of runs, the growth rate appears
to reach a maximum located inside the no-resonance zone (figure 4a). In addition,
the growth rate seems to depend primarily on N/f rather than the Froude and Rossby
numbers. These conclusions are consistent with the analysis of the time evolution of
the kinetic energy obtained earlier (Marino et al. 2013). Figure 4(b) summarizes how
the fraction of energy in the slow modes, averaged in time (over all the snapshots
following the peak of enstrophy), evolves as a function of N/f . Surprisingly, the case
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FIGURE 4. (Colour online) (a) Time-averaged growth rate of the energy in the slow modes
as a function of N/f , for the two series of runs, at constant Froude number (circles) and
at constant Rossby number (squares), respectively. (b) Time-averaged fraction of energy
in the slow modes as a function of N/f , for the two series of runs, at constant Froude
number (circles) and at constant Rossby number (squares), respectively. The no-resonance
zone is the shaded area.

where this fraction attains its minimum value, although it is still approximately 0.9, is
not the purely stratified case, but the rotation-dominated case N/f = 1/4, which also
has the highest RB and the smallest deformation length. One should keep in mind,
however, that the ratio will keep increasing towards unit value for all the runs which
exhibit a growth of E0. Many of the runs are already very close to this limit value, and
for the runs which do not exhibit such a growth of E0, the ratio would not change
with longer integration times. Since figure 3 does not allow one to distinguish the
different curves for the wave energy at various N/f ratios, we show this quantity in
logarithmic scale in figure 5. For values of N/f above 7 (this is also true for the case
N/f = 1/4), we see a decay phase followed by a regime where the level of energy in
the waves stays constant. For the other N/f values, the wave energy drops suddenly
at the end of the decay phase, then increases back to more or less its value before
the drop, and seems to stay constant afterwards. Although the time resolution is not
sufficient for precise measurements, the decay seems to follow roughly a power law,
and it is steeper for smaller N/f ratios (except for the N/f = 1/4 and N/f = 1/2 cases,
at substantially higher RB).

4.2. Spectral analysis
We show in figure 6 the isotropic spectra of energy in the wave and slow modes,
denoted respectively EW(k) and E0(k), for the series of runs at constant Froude number.
The isotropic spectra are defined, as usual, as integrals over spherical shells in Fourier
space:

E0(k)=
∫
‖k‖=k
|A0(k)|2 dk, EW(k)=

∫
‖k‖=k
[|A+(k)|2 + |A−(k)|2] dk. (4.1a,b)

For all the runs, at early times (t= 1.5, before the peak of enstrophy), the slow mode
component dominates at large scales while the wave component dominates at small
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FIGURE 5. (Colour online) Time evolution of the wave component of the total energy
in logarithmic coordinates, for the series of runs at constant Froude number (a) and at
constant Rossby number (b) with various N/f .

scales. Note that the wavenumber at which the two spectra cross increases with N/f .
When the turbulence develops, the wave energy spectrum decays rapidly, including
at small scales, and the slow mode spectrum dominates at all scales. However, the
wave energy at small scales increases when N/f increases. The other salient feature
of the isotropic energy spectra is the growth of the slow mode energy at scales larger
than the forcing scale. In most of the runs, up to approximately N/f = 7, this growth
takes the form of an inverse cascade, with a spectral slope that is consistent with k−5/3.
However, the inverse cascade of the slow modes weakens as N/f increases, as already
found from the analysis of global quantities. Already, at N/f = 7, the spectrum at the
final time of the simulation has a narrow k−5/3 range, and at N/f = 10, the energy in
the slow modes seems to saturate at large scale with a flat spectrum k0. Note that we
cannot rule out completely the possibility that the −5/3 range would extend further
towards large scales with a larger integration time. However, it should be noted that
the growth rate of the energy in the slow modes for these values of N/f is very small
(see figure 4) and that the slow mode energy spectrum has not evolved much between
t= 22.5 and t= 30. This indicates that even if the −5/3 range was to extend towards
larger scales, it would require a very long integration time. Besides, the growth does
not seem to be self-similar, since the spectral slope at scales larger than the −5/3
range becomes shallower (almost flat), unlike traditional inverse cascade phenomena.
The flat spectrum for slow mode energy at large scales is the only notable feature of
the N/f = 20 run, and it is also present in the purely stratified run, although in that
case there is an accumulation of energy in the k= 1 modes. Such a flat spectrum has
already been observed for kinetic energy in Smith & Waleffe (2002) for N/f = 10 (see
also Kimura & Herring (2012) and Marino et al. (2013, 2014)).

The transition between these two scenarios is further described in figure 10, which
shows the spectral slope α of the isotropic energy spectrum of the slow modes at large
scale, defined by E0(k)∼ kα for k 6 kF, and computed numerically by a least-squares
fit, as a function of N/f . This figure shows that the transition appears to be continuous,
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FIGURE 6. (Colour online) Isotropic energy spectra of the wave (solid lines) and slow
mode (dashed lines) for the series of runs with constant Froude number (Fr= 0.04) and
varying N/f . The times shown are indicated in the legend at the bottom, going from purple
to blue, green, yellow and red in increasing order. Two different spectral laws are indicated
as well for comparison.

although the specific values of the spectral slopes lack in accuracy since the inertial
range is rather short (remember that kF ∈ [22, 23]), and since they may depend on the
details of the least-squares fitting procedure: choice of snapshot, excluding the k= 1
modes to get rid of the formation of a possible condensate at the largest scale, . . . .
In particular, no time averaging has been performed here. Higher resolutions would
also provide improvements in accuracy. Another caveat is that, as noted above, the
intermediate values (e.g. N/f = 7 or 10) may move closer to −5/3 with a larger
integration time.

The inverse cascade of the slow mode energy spectrum is also seen in the series of
runs at constant Rossby number (figure 7). Interestingly, for the runs with small N/f
ratios (N/f = 1/4 or 1/2), i.e. the runs with the highest Froude numbers, the waves
dominate at small scales even at late times, when these scales seem to have attained
stationarity. This is probably a consequence of the higher buoyancy Reynolds number,
rather than the Burger number or the deformation length (see the discussion in § 5.2).
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FIGURE 7. (Colour online) Isotropic spectra of the wave and slow mode components of
energy for the series of runs with constant Rossby number (Ro= 0.08) and varying N/f .
The symbols are the same as in figure 6.

In addition to the isotropic spectrum, obtained by summing over spherical shells
in Fourier space, it is always relevant for anisotropic flows to compute the so-called
reduced spectra, where the summation is done either on cylinders (fixed k⊥) or
planes (fixed k‖) in Fourier space (see e.g. Godeferd & Staquet 2003; Sagaut &
Cambon 2008; Mininni 2011; Mininni et al. 2012; Marino et al. 2014). Introducing
the axisymmetric spectra e0(k⊥, k‖), eW(k⊥, k‖) defined by
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FIGURE 8. (Colour online) Perpendicular spectra of the wave and slow mode components
of energy for selected values of the parameters. Scaling laws are represented only for
reference. Line encoding and colours are similar to the two preceding figures.

e0(k⊥, k‖)=
∫ 2π

0
|A0(k⊥ cos φex + k⊥ sin φey + k‖ez)|2k⊥ dφ, (4.2)

eW(k⊥, k‖) =
∫ 2π

0
[|A+(k⊥ cos φex + k⊥ sin φey + k‖ez)|2

+|A−(k⊥ cos φex + k⊥ sin φey + k‖ez)|2 ] k⊥ dφ, (4.3)

the perpendicular and parallel spectra are defined as follows for each type of mode,
s= 0,W:

Es(k⊥)=
∫ kmax

0
es(k⊥, k‖) dk‖, Es(k‖)=

∫ kmax

0
es(k⊥, k‖) dk⊥. (4.4a,b)

Figure 8 shows the perpendicular spectrum of energy in the wave (EW(k⊥)) and slow
modes (E0(k⊥)); again, except for the runs with the highest Froude number (Fr =
0.32 and Fr= 0.16, not shown) and, therefore, buoyancy Reynolds number, the slow
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modes dominate at all horizontal scales after the peak of enstrophy. In all cases, the
perpendicular spectrum of the slow modes undergoes a growth of energy in horizontal
scales larger than the forcing scale (note, however, that since the forcing acts on a
spherical shell in Fourier space, there is some injection of energy at all the horizontal
scales such that 0 6 k⊥ 6 kF). As for the isotropic spectrum, this growth appears to
be self-similar for N/f ratios smaller than 10. As N/f increases, the perpendicular
spectrum saturates at large horizontal scales; see for instance the purely stratified case
in figure 8. The spectral slope in this range varies depending on the non-dimensional
parameters, and it is difficult to provide precise values here. Nevertheless, it appears
that the perpendicular spectrum becomes shallower as N/f increases. The spectral
index α⊥, defined by E0(k⊥)∼ kα⊥⊥ for k⊥ 6 kF, and computed numerically by a least-
squares fit, is represented as a function of N/f in figure 10. The caveats mentioned
above regarding accuracy of this spectral index still apply here. For instance, a slightly
steeper spectral slope might have been obtained in the purely stratified case if we
had chosen a range of wavenumbers closer to the forcing wavenumber: Marino et al.
(2014) find that the kinetic energy (here we are showing the slow mode energy) has
a −5/3 slope in this range. The perpendicular wave spectrum differs markedly in the
rotation-dominated, weakly stratified case and in the strongly stratified cases. In the
former case, more energy remains at small horizontal scales, while in the latter case
it falls off sharply at scales smaller than the forcing scales, and it is shallow or flat
at scales larger than the forcing scales. Note that steep horizontal spectra such as
those we observe at scales smaller than the forcing scale have been reported before
and related to viscous effects (Laval, McWilliams & Dubrulle 2003; Brethouwer et al.
2007).

Similarly, the parallel spectra EW(k‖),E0(k‖) of energy in the wave and slow modes,
respectively, are shown in figure 9. Again, once the turbulence sets in, the slow modes
dominate at all vertical scales, except in the two cases with high buoyancy Reynolds
numbers, where the waves dominate at small scales (for the case N/f =1/4, the waves
dominate roughly at all the vertical scales smaller than the forcing scale kF, although
the energy in these scales decay extremely fast). Overall, the energy in the small
scales increases as we move from the rotation-dominated case (where the spectrum is
very steep) to the purely stratified case (note the different vertical scales on the panels
of figure 9). This statement also holds for the wave component of the energy: while
the waves have most of their energy at large scales for rotation-dominated cases or
cases where rotation and stratification are comparable (i.e. relatively low N/f ratios),
they become mostly small scale when stratification prevails. The build-up of slow
mode energy at large vertical scales occurs differently from the perpendicular spectra:
already at very early times, the parallel spectrum of the slow modes is more or less
flat at scales larger than the forcing scale. Besides, for the lowest N/f ratio (1/4),
there is relatively little change in the slow mode parallel spectrum at large scales. As
for the perpendicular spectra, there does not seem to be a universal scaling law in
this range: the spectral slope α‖ (defined by E0(k‖)∼ kα‖‖ for k‖ 6 kF) varies between
approximately −2 and −5/3 until N/f = 4 (see figure 10), then the spectrum becomes
much shallower at large scales, and it is almost flat for the purely stratified case and
for the case with N/f = 20. Note that shallow or flat vertical spectra (and steep
horizontal spectra) have been observed in previous studies (e.g. Waite & Bartello
2004), and is associated with rapid decay of vertical velocity correlation functions
due to the decoupling of horizontal layers in the limit of strong stratification. Unlike
previous studies, this behaviour occurs here for scales larger than the forcing scale.
Hence a possible interpretation of the non-universal large-scale vertical spectrum is
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FIGURE 9. (Colour online) Parallel spectra of the wave and slow mode components
of energy for selected values of the parameters. Scaling laws are represented only for
reference. Line encoding and colours are similar to the three preceding figures.

that it results from a competition between the scrambling effect of the forcing and
the build-up of large-scale vertical correlations by inertial effects when rotation is
strong enough.

4.3. Role of the VSHF modes
Several studies of stratified flows have underlined the role of horizontally homogeneous
modes: Herring & Métais (1989) and Staquet & Godeferd (1998) have reported a
tendency towards layering, while Smith & Waleffe (2002, see also Godeferd &
Cambon (1994) for an EDQNM perspective) have shown that at very long time,
energy accumulates in the horizontally homogeneous modes (defined by k⊥= 0), with
a peak at some value of k‖ which defines the number of horizontal layers in the
vertical, hence the name vertically sheared horizontal flows (VSHF). Our numerical
simulations are stopped earlier in order to avoid the accumulation of energy in the
gravest mode of the system that is inherent to all inverse cascade phenomena (see
e.g. Boffetta & Ecke (2012) for a recent review in 2D). Asymptotic analysis has also
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FIGURE 10. (Colour online) Spectral indices for the isotropic (solid lines), perpendicular
(dashed lines) and parallel (dash-dotted lines) vortical energy spectra at scales larger than
the forcing, as a function of N/f , for the two series of runs: constant Froude number (star,
× and + symbols), and constant Rossby number (circle, square and diamond symbols).
The no-resonance zone is the shaded area.

established that the VSHF modes contribute to the slow component of the limiting
dynamics in the low-Froude-number, finite-Rossby-number limit (Babin et al. 1997;
Embid & Majda 1998). This provides an incentive for looking at these modes in the
direct numerical simulations carried out here.

By definition, the VSHF modes are horizontally homogeneous, but may depend
on the vertical coordinate. In general, they have an inertial wave component (whose
frequency is the Coriolis frequency f ) corresponding to an oscillation of the horizontal
components of velocity, with vanishing vertical velocity, and a slow mode component
that is proportional to temperature fluctuations. Hence, their wave component is purely
kinetic and their slow mode component is purely potential. When rotation vanishes,
the dispersion relation also vanishes and there is no longer an oscillatory component.

The ratio of energy in these VSHF modes is shown in figure 11, as a function of
N/f for the two series of runs. It is striking that it remains of the same order of
magnitude (and relatively small; it is in fact negligible compared to the waves for
instance, see figure 5) for all finite values of N/f ; it is only when we move to the
strictly non-rotating case that the energy in the VSHF modes jumps by approximately
two orders of magnitude. Then, the energy in the k⊥= 0 modes becomes comparable
to the energy in waves with any other wave vector. Smith & Waleffe (2002) and Waite
& Bartello (2006b) also observed an increase of the energy transfer to the VSHF
modes when rotation decreases, but here the transition seems to be more abrupt, and
the energy fraction in the VSHF modes is also at least an order of magnitude smaller
here. However, energy transfers to the VSHF modes is known to occur on very long
time scales, and this may simply be a matter of integration time.

Note that, although we do not have enough runs at high buoyancy Reynolds number
for a systematic study, it does not seem to be a relevant parameter as far as this issue
is concerned, since the two runs with higher buoyancy Reynolds have a similar level
of energy in the VSHF modes as the other runs.
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7 10 200 1 2 3 4 5

FIGURE 11. (Colour online) Fraction of energy in the vertically sheared horizontal modes
(k⊥ = 0 modes) as a function of N/f , for the two series of runs. The no-resonance zone
is the shaded area.

4.4. Energy fluxes
Let us now turn to the fluxes of energy in the different modes. We first define the
transfer functions T0(k) and TW(k):

T0(k)=Re

[
X0(k)†

∑
p+q=k

ikjûj(p)X(q)

]
, (4.5)

TW(k)=Re

[
XW(k)†

∑
p+q=k

ikjûj(p)X(q)

]
, (4.6)

where we have introduced the projections X0(k)=P0(k)X(k) and XW(k)=PW(k)X(k).
The evolution of the energy in the slow and wave modes at wave vector k is simply
governed by

(∂t + 2νk2)E0(k)= T0(k), (4.7)
(∂t + 2νk2)EW(k)= TW(k). (4.8)

As usual, we can define the isotropic, perpendicular and parallel transfer functions
Ts(k), Ts(k⊥) and Ts(k‖) (with s= 0,W) by integrating over a spherical shell, a plane
or a cylinder in Fourier space. Then we introduce the fluxes:

Π0(k)=
∫ kmax

k
T0(k) dk, (4.9)

ΠW(k)=
∫ kmax

k
TW(k) dk, (4.10)

and similarly for the perpendicular and parallel fluxes Πs(k⊥) and Πs(k‖).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.581


Waves, vortices, and the inverse cascade of rotating-stratified turbulence 189

1 10 100

(a) (b)

(c) (d)

–5

5

10

0

–5

5

10

0

1 10 100

1 10 100

1.0

0.8

0.6

0.4

0.2

0

1.0

0.5

0

1 10 100

FIGURE 12. (Colour online) Isotropic fluxes of energy for the slow modes (a,b) and
for the wave modes (c,d) for the series of runs at constant Froude number (a,c) and at
constant Rossby number (b,d) with various N/f . Note the different scale (they differ by
a factor of 10) for Π0 and ΠW .

The isotropic energy fluxes for the slow modes and for the waves are shown in
figure 12 for the latest time (t= 30). We see that for all N/f ratios, the energy fluxes
for the slow modes are negative, and more or less independent of k, at scales larger
than the forcing. Furthermore, the magnitude of this negative flux seems to be larger
for relatively small values of N/f (the runs with N/f = 2, 3, 4 have approximately
the same magnitude), while it is reduced when stratification prevails. In contrast, the
fluxes are positive at scales smaller than the forcing. In this range, the positive flux
is an increasing function of N/f . On the other hand, the energy fluxes for the wave
modes do not change sign at the forcing scale: they are always positive. The absence
of a range with constant small-scale fluxes can be attributed to the small size of the
k> kF wavenumber range, a problem remedied when using higher resolutions and/or
lower forcing wavenumber (Pouquet & Marino 2013; Marino, Pouquet & Rosenberg
2015), or a parametrization scheme (Pouquet et al. 2013). Note that, unlike the
traditional (total) energy fluxes, we need not have Πs(0) = 0, because E0 and EW
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FIGURE 13. (Colour online) Total energy flux from the slow modes to the wave modes
as a function of N/f .

are not independently conserved (only their sum is). This means that care should
be taken when interpreting fluxes, since the value of the flux for one given mode
(slow or wave) at k is not only the amount of energy transferred from wavenumbers
smaller than k to wavenumbers larger than k, but also includes the contributions from
the other mode. The total flux of energy from the slow modes to the waves Π0→W ,
which coincides with ΠW(0), or equivalently −Π0(0) (up to numerical errors), is
shown as a function of N/f in figure 13. Such global energy exchanges between
slow and fast modes have been considered in more details (including the partition
of energy into kinetic and potential components) by Whitehead & Wingate (2014);
here we use the global flux to interpret the spectral distribution of the energy fluxes.
Π0→W is small when N/f is small (up to N/f = 4) and then increases almost linearly
with N/f . For all values of N/f larger than unity, the energy flux for the wave modes
(figure 12) is never significantly larger than Π0→W , which means that the transfer
of wave energy is dominated by the leakage from slow modes. However, note that
for the two cases N/f = 1/4 and N/f = 1/2, the flux at scales smaller than the
forcing scale is much larger than Π0→W , meaning that, in those cases, there is a
significant transfer of energy towards the small scales from the waves themselves.
This interpretation is consistent with the fact that in the N/f = 1/4 case the energy
in the wave modes is significantly larger than in any other case, and these two
cases are those for which the waves dominate at small scales (see figure 7), and for
which the buoyancy Reynolds number is significantly larger. Similarly, the negative
flux at scales larger than the forcing scales for the slow modes is of the order of
Π0→W when N/f > 7. This means that the negative flux alone does not allow one to
claim with certainty that we have an inverse cascade of slow modes. For instance,
slow energy in the stratified case has a negative flux, while we have seen above
that it lacks some characteristics of the inverse cascade. What is more meaningful
is the fact that, in the range of scales between the forcing scale and the plateau of
the flux at the largest scales, the flux decreases with k and goes below the level
of Π0→W , all the more so that N/f is small, consistently with the above analysis.
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FIGURE 14. (Colour online) Perpendicular fluxes of energy for the slow modes (a,b) and
for the wave modes (c,d) for the series of runs at constant Froude number (a,c) and at
constant Rossby number (b,d) with various N/f .

For the runs with N/f 6 4, the interpretation of the negative flux of slow energy
is much easier: the magnitude of the more or less constant flux over scales larger
than the forcing scales is much larger than Π0→W , which means that it can safely be
attributed to an inverse cascade of slow mode energy.

In figure 14, we show the perpendicular fluxes of energy in the slow modes and
in the waves, Π0(k⊥) and ΠW(k⊥). For the slow modes, the fluxes are similar to the
isotropic fluxes, with a notable difference: the negative fluxes at scales larger than
the forcing scale are enhanced. In particular, now all the runs have a wide range of
scales (larger than the forcing scale) for which the flux has larger magnitude than
Π0→W . That means that, regardless of N/f , slow mode energy tends to be transferred
towards large horizontal scales. This is known to be true even for purely stratified
flows or flows strongly dominated by rotation, which tend to form uniform layers
(Riley & Lelong 2000). As a matter of fact, runs dominated by stratification have
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a (negative) peak in the slow mode energy flux whose magnitude increases with N/f .
The fluxes indicate, however, that for stratification-dominated runs (e.g. N/f = 20 or
∞), this transfer of slow energy is arrested at some horizontal scales (like kinetic
energy; see Marino et al. 2014), while it continues all the way to the largest scales
when stratification is weaker (e.g. N/f = 2, 3, 4 or even 7 and 10). In contrast, the
energy fluxes in the wave modes are always smaller than Π0→W and, contrary to the
isotropic fluxes, they do not have any range of constant value. This indicates that
the transfer of energy from the slow modes to the waves probably occurs at large
horizontal scales (we cannot in principle draw definitive conclusions since there might
be cancellations between energy transfer from slow to wave modes and transfer across
scales of wave modes, but it does not seem very plausible that they are of different
signs). Note that the forcing scale is difficult to identify from this figure alone. It
should be emphasized that, since we are forcing in a spherical shell in Fourier space,
energy is actually injected in the full range k⊥ ∈ [0, kF] (the same goes for k‖ of
course). Hence a caveat in the interpretation of anisotropic fluxes is that the forcing
scale is not so well defined. However, in almost all cases, except the above-mentioned,
the forcing scale can still be identified unambiguously in Πs(k⊥) and Πs(k‖), which
gives us confidence that the forcing is not contaminating the results too much. Finally,
the perpendicular fluxes of wave energy for the two cases N/f = 1/4 and N/f =
1/2 are very similar to the isotropic fluxes, which means that, in those cases, the
near-inertial waves tend to transfer their energy towards small horizontal scales.

Now, we turn to the examination of the parallel flux of energy in the slow modes
and in the wave modes (figure 15). The most notable results are that runs with
N/f > 7 have positive fluxes of slow energy across the whole range of vertical scales,
corresponding to the maintenance of horizontal layers, whose thickness decreases
with N/f . This process is less clear when stratification is weaker, since the parallel
flux then remains negative at the very large scales. For all the runs with N/f > 2, the
parallel flux of wave energy is identical to the isotropic flux, indicating that vertical
transfers dominate, although interpretation is still polluted by the exchange with slow
modes. When N/f = 1/4 or N/f = 1/2, it is interesting to note that there is a peak at
vertical scales larger than the forcing scale (this is another case where the isotropic
forcing scale does not appear clearly), although its magnitude is relatively small. This
peak does not correspond to any identifiable feature in the isotropic fluxes.

5. Viscous dissipation due to vertical shearing and the role of the buoyancy
Reynolds number

5.1. Impact of viscous effects on spectral energy budgets
As mentioned in § 2.2, the non-dimensional parameters characterizing the numerical
simulations being studied here correspond to a regime where vertical diffusion
terms are of the order of vertical advection (Billant & Chomaz 2001; Godoy-Diana,
Chomaz & Billant 2004; Brethouwer et al. 2007). In this regime, viscous dissipation
can affect the large horizontal scales through vertical shearing of the layers (the
so-called ‘pancakes’) formed by the dynamics. Following the work of Brethouwer
et al. (2007) – see their (4.1) and figure 10 – for purely stratified flows, we check
this effect explicitly by considering the ratio of the dissipation due to vertical shear
εS to the total dissipation ε. These two quantities are given by:

εS = ν
∫
[(∂zux)

2 + (∂zuy)
2], (5.1)

ε = ν
∫
(∂iuj)(∂

iuj). (5.2)
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FIGURE 15. (Colour online) Parallel fluxes of energy for the slow modes (a,b) and for the
wave modes (c,d) for the series of runs at constant Froude number (a,c) and at constant
Rossby number (b,d) with various N/f .

The ratio εS/ε is represented as a function of N/f in figure 16, for both series of
runs. For low N/f , this ratio is very small and, as expected, it increases when thinner
horizontal layers form which allow vertical dissipation to act, until reaching values
for N/f = 20 or N/f =∞ similar to the stratified runs of Brethouwer et al. (2007) at
similar RB, for which the major part of dissipation is due to these large-scale viscous
effects.

Now, we would like to know what part this large-scale dissipation mechanism
potentially plays in preventing the energy transfers towards the large scales when
N/f varies. To do so, we would like to compare the dissipation rate in a given range
of scales to the flux of energy transferred by the nonlinear term in the same range.
Hence, we introduce the following integrals of the viscous term:

D<(k)= 2ν
∫ k

0
p2E(p) dp, D>(k)= 2ν

∫ kmax

k
p2E(p) dp, (5.3a,b)
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FIGURE 16. (Colour online) Fraction of the kinetic energy dissipation rate due to vertical
shearing of the horizontal velocity field.

D<(k⊥)= 2ν
∫

p⊥6k⊥
p2E(p) dp, D>(k⊥)= 2ν

∫
p⊥>k⊥

p2E(p) dp, (5.4a,b)

D<(k‖)= 2ν
∫

p‖6k‖
p2E(p) dp, D>(k‖)= 2ν

∫
p‖>k‖

p2E(p) dp, (5.5a,b)

and we similarly define the fluxes Π<, Π> by integrating the transfer functions. Note
that Π< =−Π> (because the integral of the transfer functions over all wave vectors
vanishes), but of course there is no analogous property for the dissipation term, which
is positive definite. Now we can write integrated energy budgets for large and small
scales:

d
dt

∫ k

0
E(p) dp=Π<(k)−D<(k) for k< kf , (5.6)

d
dt

∫ kmax

k
E(p) dp=Π>(k)−D>(k) for k> kf . (5.7)

We can proceed analogously for the perpendicular and the parallel directions, with
the caveat that, for the type of forcing considered here, there is an additional energy
injection term in the large-scale budget, due to the projection of the forcing term
in the spherical shell of radius kf on horizontal and vertical wavenumbers in the
interval [0, kf ]. In figure 17, we show the two terms on the right-hand side of the
large-scale energy budget, for isotropic and horizontal scales, for the four highest
values of N/f . For isotropic scales larger than the forcing scale, the small flux
of energy towards large scale which exists near kf in the purely stratified case is
annihilated by dissipation. As N/f decreases, both the value of the flux of energy
towards large scales and the range where it is positive grow, as has already been
reported (Marino et al. 2013, 2014). In addition, the difference between the energy
flux and dissipation also grows at all scales k < kf , although the large-scale energy
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FIGURE 17. (Colour online) Isotropic (a) and perpendicular (b) fluxes of kinetic energy
into the large scales (solid lines), −Π<(k) and −Π<(k⊥), respectively, and rate of
kinetic energy dissipation by viscosity at large scales (dashed lines), D<(k) and D<(k⊥),
respectively. Only the scales larger than the forcing scale are shown. Note the different
vertical scale for the two plots.

dissipation itself increases when N/f decreases. This shows that, in the parameter
regime considered here (RB ∼ 1), the disappearance of the inverse cascade when
N/f increases is due to the combination of two effects. First of all, the nonlinear
term does not transfer energy to the large scale as efficiently. Besides, the small
amount of energy which is still transferred to large isotropic scales is damped by
viscous dissipation due to vertical shearing. The situation is slightly different when
considering perpendicular scales. While the behaviour of the energy flux when N/f
varies as been described above, the energy dissipation at large horizontal scales
increases with N/f , for all k⊥ < kf and more markedly for k⊥ closer to kf . It should
be noted that for stratification-dominated flows (here the runs with N/f = 20 or ∞
for instance), dissipation is larger than energy flux at all horizontal scales larger than
the forcing scale. As N/f decreases, the energy flux starts prevailing at the largest
scales, and the crossing scale decreases with N/f . This explains how the blob in
the energy flux towards large horizontal scales in the stratified case does not lead to
accumulation of energy at large scales.

The integrated budget for large parallel scales (not shown) exhibits yet another
scenario: there, nonlinear transfer and viscous dissipation act together to remove
energy from large parallel scales. The source of energy at k‖ < kf is the projection
of the forcing, and the major part of this input is transferred towards small vertical
scales by the nonlinear term, the remaining energy being damped by viscosity. The
ratio of the energy flux towards small vertical scales and the viscous dissipation
increases as N/f increases, indicating the trend for stratification-dominated flows to
form thinner layers.

In all the runs considered here, the small-scale integrated energy budget exhibits
an exact balance between nonlinear energy transfers and dissipation (not shown), in
agreement with the fact that those scales are in a steady state. This holds for isotropic,
perpendicular and parallel scales alike.
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5.2. Impact of the buoyancy Reynolds number
As pointed out by several authors (Brethouwer et al. 2007; Ivey, Winters & Koseff
2008; Bartello & Tobias 2013; Waite 2013), the buoyancy Reynolds number RB
plays an important role in stratified turbulence, and it is likely doing so as well
when rotation is included. In particular, the regime of low buoyancy Reynolds
number corresponds to a case where horizontal layers are viscously coupled. It
is characterized by a vertical scale set by the viscous scale

√
νLh/U rather than

the buoyancy scale U/N (Riley & de Bruyn Kops 2003; Godoy-Diana et al. 2004;
Brethouwer et al. 2007; Rorai et al. 2014), a small vertical Froude number (in
contrast, at high buoyancy Reynolds number, the vertical Froude number remains of
order unity (Billant & Chomaz 2001)) and a potential enstrophy which is dominated
by its quadratic component (Waite 2013). The runs commented upon so far fall within
this parameter regime and, as explained in the previous section, viscous dissipation
due to vertical shearing has to be taken into account to understand the energy budget,
even at large (horizontal) scales. Nevertheless, the results presented here tend to show
that in this regime, the system relaxes to a balanced state where the velocity field is
almost horizontal (the slow modes have vanishing vertical velocity), and slow mode
energy is cascaded upscale provided rotation is strong enough.

It is a natural question to ask how both the inertial and viscous mechanisms outlined
above, which account for the collapse of the inverse cascade when N/f increases,
are affected when the buoyancy Reynolds number moves closer to a regime relevant
for geophysical flows. One expects that when RB becomes large, the viscous effects
should disappear, the non-quadratic components of potential enstrophy will grow and
the transfer of energy to the waves will also be larger. However, it remains unclear
whether these transitions all occur at the same time or if some of those effects
vanish before the others. A systematic study of the effect of the buoyancy Reynolds
number across a wide range of N/f such as the one studied here would be extremely
expensive computationally speaking. Indeed, two incompatible conditions are required:
on the one hand a reasonable scale separation between the forcing scale and the box
scale is needed to discuss the inverse cascade regime, which reduces the Reynolds
number, but on the other hand a very large Reynolds number is needed to reach
a high RB. In addition, the option of decreasing the forcing wavenumber suffers
from another limit: in the purely stratified case, when kF is too low, we observe an
accumulation of energy at the forcing scale. A possible explanation for this behaviour
is that the number of modes excited does not suffice to spread the energy across the
whole spectrum of scales.

To get a rough idea of how the results obtained above in the low RB regime change
when RB increases, we have carried out four additional simulations (see table 1). One
purely stratified run and one with N/f = 20 were carried out at 5123 resolution and
kF= 11. The last two have a 10243 resolution and kF= 22, again with N/f = 20 or ∞.
In all these cases, the buoyancy Reynolds number is twice the value of the original
runs.

Many features of these runs are similar to the ones already analysed. In particular,
the isotropic and parallel spectra are all more or less flat at scales larger than the
forcing scale. However, there are also notable differences. First of all, run F′20
undergoes a linear growth of slow energy, unlike run F20. However, this growth
of energy does not correspond to a self-similar growth of the spectrum, which
remains relatively shallow. The purely stratified runs F?20 and F?∞ both exhibit
a slow decay of slow energy and a corresponding growth of wave energy, which
ultimately dominates at the latest stages of run F?20, indicating that the transfer
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of energy towards waves is much larger at larger RB. Besides, in all the runs and
as anticipated above, waves dominate at small scales, especially at small horizontal
scales. Regarding potential vorticity, Γ2/Γ is approximately 0.975 in the N/f = 20
case, a value which is close to that observed in figure 2. In the purely stratified case,
this ratio is around 0.92 and keeps increasing slowly in time until the end of the
run. The run with kF = 11 and the 10243 run agree reasonably well on this value,
which is slightly lower than in the low-RB case (see figure 2). Perhaps the most
interesting thing to compare with the low-RB runs is the large-scale energy budget
as described in § 5.2. It is represented in figure 18. While the effect of large-scale
dissipation is as expected slightly lower than in the lower-RB case, the most notable
difference is in the nonlinear energy transfer. Indeed, in the purely stratified case, the
contribution of the nonlinear term to the energy budget of the (isotropic) scales larger
than the forcing scale is negative, at variance with the lower-RB case. It is slightly
smaller (though still positive when N/f =∞) when looking at the horizontal scales,
and becomes negative for k⊥ closer to kF when N/f = 20. In the case N/f = 20, the
nonlinear energy transfers overcome viscous dissipation in the isotropic large-scale
budget. This explains the linear growth of energy mentioned above.

6. Conclusion
We have studied the partition of energy in terms of waves and vortices, defined

through the normal modes of the linearized equations, in stratified flows with or
without rotation. We have focused on the inverse cascade regime, which appears
when rotation is sufficiently strong but not when stratification dominates. Using
numerical simulations covering a wide range of N/f ratios, we have characterized
this transition in terms of the waves and vortices. To sum up, §§ 4.1–4.4 have
established that in all the runs shown here:

(i) The total energy is dominated by the slow mode component, even when
stratification is strong, although the fraction of energy in the waves increases
when N/f > 2 increases. This happens in spite of the fact that the forcing has
roughly equal projections on the slow and wave modes. The increase in wave
energy with N/f is consistent with the observed total flux of energy from the
slow modes to the wave modes, which also increases with N/f .

(ii) The slow mode component dominates at all scales, except in the two runs with
higher buoyancy Reynolds number (those with N/f = 1/4 and 1/2), where they
only dominate at large scale, similarly to the large-scale forcing case (Sukhatme
& Smith 2008; Kurien & Smith 2012, 2014). This also holds when distinguishing
horizontal and vertical scales.

(iii) When N/f is small enough (roughly N/f 6 7, although the specific value may
depend on the details of the set-up, and, in particular, the buoyancy Reynolds
number and the strength of the waves due to rotation and/or stratification), the
slow mode component has all the characteristics of an inverse cascade of energy:
linear growth of their global energy, self-similar growth of their energy at scales
larger than the forcing scales, and negative and constant fluxes at scales larger
than the forcing scale. This is consistent with the results obtained in different
set-ups in previous studies (Brunner-Suzuki et al. 2014; Kurien & Smith 2014;
Whitehead & Wingate 2014).

(iv) When N/f is higher (here because rotation is decreased), this inverse cascade of
slow energy is arrested. When stratification prevails, slow modes still dominate
the total energy, and there is some transfer of these modes towards the large
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FIGURE 18. (Colour online) Impact of the buoyancy Reynolds number on the large-scale
energy budgets. The curves are similar to figure 17.

scales, but it does not take the form of an inverse cascade: it saturates with a
flat spectrum at large isotropic and vertical scales (like the full spectrum (Smith
& Waleffe 2002; Waite & Bartello 2004; Kimura & Herring 2012)), and there is
no significant negative flux of energy for those scales. The spectrum is not flat at
large horizontal scales, consistent with the presence of significant negative flux of
slow mode energy, but it is still much shallower than in the presence of rotation.
Note that the inverse cascade starts vanishing at a value of N/f for which the
deformation scale becomes comparable to the box size. This can be interpreted
intuitively as the fact that rotation is not directly felt at any of the resolved scales.

(v) As long as rotation is present, the fraction of energy in horizontally homogeneous
modes (VSHF modes, satisfying k⊥ = 0) does not vary much with N/f , and this
fraction is always much lower than the energy in the waves, which is itself
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much lower than the energy in the slow modes. In contrast, in the purely
stratified case, the VSHF modes reach a level of energy comparable with the
waves. Interestingly, this transition appears to be pretty sharp, in contrast to all
the other properties of the flows we have studied here (e.g. global partition of
energy between waves and slow modes, growth rate of the slow mode energy
and spectral indices), which seem to have a smoother transition as N/f increases.

The above results add up to those of Smith & Waleffe (2002) in an effort to better
understand the role of vortices and waves in the inverse cascade of rotating-stratified
flows, and more generally, to the above-mentioned studies in the wider context of
geophysical flows. They also shed light on a paradox regarding the fundamental fluid
mechanics of such flows. Indeed, the idea that the inverse cascade observed in the
presence of rotation collapses when N/f increases has been in the literature for a
while (Métais et al. 1994; Bartello 1995; Lilly et al. 1998; Smith & Waleffe 2002;
Lindborg 2005; Waite & Bartello 2006b; Aluie & Kurien 2011). However, from a
theoretical point of view, this may come as a surprise because the inviscid invariants,
which are traditionally reliable indicators of the direction of the energy cascade, are
the same regardless of the N/f ratio (including in the purely stratified case). Here,
we have attempted to reconcile these two facts. A major ingredient is that the second
invariant (in addition to energy), potential enstrophy, is degenerate. A similar situation
occurs in homogeneous isotropic turbulence, where helicity is not sign-definite in
general (in our case the sign of potential enstrophy is constant; it vanishes for wave
modes and, in the non-rotating case, for VSHF modes). When one decimates the
system by keeping only helical modes of a given sign, helicity becomes sign-definite
and an inverse cascade results, as observed numerically (Biferale, Musacchio &
Toschi 2012) and in agreement with statistical mechanics arguments (Herbert 2014;
Zhu, Yang & Zhu 2014). But when one starts reintroducing in the dynamics a fraction
of the modes which destroy sign-definiteness of the invariant, the inverse cascade
collapses very soon (Sahoo, Bonaccorso & Biferale 2015), which again seems in
agreement with the statistical mechanics prediction (Herbert 2014) and the behaviour
of purely stratified flows described above. An alternative constraint which leads to
the reversal of the energy flux is confinement: when the aspect ratio of the domain is
small, enstrophy production is inhibited at scales larger than the layer thickness, even
in the presence of stratification (Smith, Chasnov & Waleffe 1996; Celani, Musacchio
& Vincenzi 2010; Sozza et al. 2015).

Based on the inviscid invariants (Herbert et al. 2014), we have identified three
inertial mechanisms which can account for the collapse of the inverse cascade
of slow modes, and which the numerical simulations proved to be simultaneously at
play: first of all, although vortices dominate in all cases, the total flux of energy from
slow modes to waves increases as N/f increases (see figure 13), and consequently
the fraction of energy in the waves also increases (see figure 5). Besides, in the
purely stratified case, there is an accumulation of energy in the VSHF modes, which
do not contribute to quadratic potential enstrophy (see figure 11). Finally, as N/f
increases, the approximation of potential enstrophy by its quadratic part, on which the
inviscid invariants argument is based, becomes less and less accurate (see figure 2).
In addition to these inertial mechanisms, viscous effects also play a part at low
buoyancy Reynolds number: in the purely stratified case, the energy transfer by the
nonlinear term towards large scales (in particular horizontal scales) is sufficiently
small to be completely dissipated by viscous effects at large horizontal scales due to
vertical shearing.
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When the buoyancy Reynolds number increases, it is expected that such viscous
effects should vanish, but the other mechanisms described above should be affected
as well. Our preliminary sensitivity tests give a first indication that, while viscous
effects are indeed reduced, the larger transfer of energy towards wave modes (which
dominate at small scales) will probably play a major part. This is bound to happen
when the Ozmidov scale is resolved, since then isotropy is recovered and there is
no longer any reason for the velocity field to be mostly horizontal: since the vertical
velocity in the normal mode decomposition framework is entirely accounted for by
the wave modes, their contribution has to be larger at these scales. In this regime,
the nonlinear components of potential vorticity are also stronger. To add further
complication, numerical simulations have shown that in this high-RB regime, both
an inverse and a direct cascade of energy could exist simultaneously (Pouquet &
Marino 2013; Marino et al. 2015). From the point of view of the inviscid invariants
of the system, this is a puzzling result since inverse cascades usually arise when a
second invariant prevents the direct cascade (see § 2.4). The key to this phenomenon
presumably also lies in the fact that the energy breaks up into a wave component
(not constrained by potential enstrophy conservation) and a vortical component
(constrained by potential enstrophy conservation), even though, in this regime, more
energy is transferred from the slow modes to the waves. Given that geophysical flows,
which are a major motivation for better understanding the role of internal waves and
vortices in rotating-stratified flows, fall within this high-RB regime, more efforts
should be devoted to studying such questions in future research.
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