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The initial development of a jet caused by fluid,
body and free-surface interaction. Part 2.

An impulsively moved plate
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The free-surface deformation and flow field caused by the impulsive horizontal motion
of a rigid vertical plate into a horizontal strip of inviscid incompressible fluid, initially
at rest, is studied in the small time limit using the method of matched asymptotic
expansions. It is found that three different asymptotic regions are necessary to describe
the flow. There is a main, O(1) sized, outer region in which the flow is singular at the
point where the free surface meets the plate. This leads to an inner region, centred
on the point where the free surface initially meets the plate, with size of O(−t log t).
To resolve the singularities that arise in this inner region, it is necessary to analyse
further the flow in an inner-inner region, with size of O(t), again centred upon the
wetting point of the nascent rising jet. The solutions of the boundary value problems
in the two largest regions are obtained analytically. The solution of the parameter-free
nonlinear boundary value problem that arises in the inner-inner region is obtained
numerically.

1. Introduction
In King & Needham (1994), the topic of jet development caused by the interaction of

moving boundaries and fluids with a free surface was reviewed and further developed.
It was noted that this type of flow is rather different from the wedge-entry problems
studied by Cointe & Armand (1987), Cointe (1989), Greenhow & Lin (1983), and
Howison, Ockendon & Wilson (1991), as it is not self-similar. The solution for a
vertical plate accelerated into a stationary horizontal strip of inviscid incompressible
fluid was derived and critically compared with previous studies of this problem. This
analysis was performed in the small time limit. All the boundary value problems
that arise were solved analytically, and expressions for the height that the fluid rises
up the plate and the free-surface gradient at the plate were given. In an age when
sophisticated computer codes can attempt to solve this problem, the utility of these
results is in both providing a test of the accuracy of these codes and giving insights
into the structure of the initially evolving flow field. In the case of an accelerating
plate, the flow near the point where the free surface meets the plate is dominated by
a region of dimension O(−t2 log t), in which the main feature is the uniform vertical
translation of a block of fluid to form the root of any subsequent jet. Corrections to
this main primary flow feature determine that the gradient of the free surface where

† Professor King died in January 2005.
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68 D. J. Needham, J. Billingham and A. C. King

it meets the plate is O(1/ log t). Some support for these conclusions can be found in
the experimental study of Yong & Chwang (1992).

In this paper we extend our previous work to the case of a plate that moves into
an initially stationary strip of fluid with constant velocity U > 0. Since the plate is
moving with constant velocity when t > 0, Galilean invariance allows the results to
be interpreted in terms of the problem associated with a slab of fluid impacting
upon a stationary plate, with the slab of fluid having velocity U when t = 0. In our
presentation, however, we will address the problem in terms of the plate impulsively
advancing into the initially static slab of fluid when t = 0. This flow is rather more
violent than in the case of an accelerating plate, and consequently more difficult to
analyse. We find that the impulsive boundary motion produces an immediate pressure
impulse in the fluid, in contrast to the uniformly accelerating situation. This is singular
at the point where the free surface meets the plate at t =0+. To resolve this singularity
it is necessary to consider regions of size O(−t log t) and then O(t) about this point
in order to find a boundary value problem that captures the dynamics of the free
surface close to the plate, and is spatially non-singular when t > 0 at the point where
the free surface meets the plate. The final boundary value problem is nonlinear and
parameter-free. As such, it can be calculated with a single computation, which is
carried out using the boundary integral method, to find the flow field and free surface
near the tip of the nascent jet. Results of this computation are presented and some
limitations and applications of this type of analysis are discussed.

The problem of the initial impulsive motion of a plate, treated in this paper, has
distinct structural differences, both mathematical and physical, from that of the initial
uniformly accelerating motion of the plate, as described in King & Needham (1994),
detailed above. This is our primary motivation for studying this classical problem.
For initial plate motions with velocity of O(tα) as t → 0+, with α > 0, which are not
impulsive, we expect the main structure to be more closely aligned with that of the
uniformly accelerating plate solution, α = 1, rather than that of the impulsive plate
solution, α = 0, studied here. The details in these cases have yet to be worked out,
but this is not the purpose of the present investigation. We remark, as in King &
Needham (1994), that a possible application of the present analysis is to the situation
arising close to the bow of a ship of narrow angle, moving at constant speed into an
otherwise stationary fluid; in particular, to the structure of the flow close to the line
where the free surface meets the bow of the ship.

2. Equations of motion
We analyse the equations of motion appropriate to the situation when a rigid

vertical plate is moved impulsively with constant velocity U into a strip of inviscid
incompressible fluid of uniform depth h, that is initially at rest. Since we are interested
in the violent flow induced by the impulsive motion of the plate, we will neglect the
effects of surface tension but include the gravitational restoring force. Initially the
system is at rest, as illustrated in figure 1, where the Cartesian coordinates (x, y) have
an origin that is fixed in space for all t � 0, and lies at the point where the plate meets
the undisturbed free surface at time t =0.

When t > 0 the plate moves into the fluid with constant velocity, and hence lies at
x = Ut , and drives a free-surface disturbance, y = η(x, t). This is shown in figure 2.
We will consider this system in the small time limit and therefore express the
dependent variables as asymptotic expansions in the small parameter t . Since the
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Figure 1. Configuration at rest, t = 0.
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Figure 2. Configuration for t > 0.

flow is irrotational, it is convenient to work with a velocity potential φ, which leads
to the usual kinematic and Bernoulli equations on the free surface.

We non-dimensionalize the equations using

x̄ =
x

h
, ȳ =

y

h
, φ̄ =

φ

Uh
, η̄ =

η

h
, t̄ =

tU

h
, (2.1)

after which, with the bars dropped for convenience, the mass conservation equation
in the fluid is Laplace’s equation

φxx + φyy = 0. (2.2)

On the plate, which is moving with unit speed, we have

φx(t, y, t) = 1. (2.3)

The no-flux condition normal to the bed takes the form

φy(x, −1, t) = 0, (2.4)

and the free-surface conditions applied on y = η(x, t) are

φy = ηt + φxηx (kinematic), (2.5)

φt +
1

2

(
φ2

x + φ2
y

)
+

η

F 2
= 0 (Bernoulli). (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

49
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007004983
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Here F = U/
√

gh, is the Froude number. The far-field conditions are

|∇φ|, η → 0 as x → ∞. (2.7)

3. Asymptotic structure as t → 0+

3.1. Outer region

The change in velocity of the plate from zero to unity over an infinitesimal time
interval causes a pressure impulse in the fluid (see, for example, Batchelor 1967,
p. 471). Once this impulse is created, the flow and free-surface deformation begin
when t = 0+. To determine this impulse, we let t → 0+ in the equations of motion and
boundary conditions (where there are time derivatives in an equation we integrate
from t = 0− to t =0+ and use this to establish conditions at t = 0+). We define
Π(x, y) =φ(x, y, 0+), after which it is straightforward to show that

∇2Π = 0 in − 1 < y < 0, x > 0, (3.1)

Πx(0, y) = 1 for − 1 � y � 0, (3.2)

Πy(x, −1) = 0 for x > 0, (3.3)

Π(x, 0) = 0 for x > 0, (3.4)

|∇Π(x, y)| → 0 as x → ∞, −1 � y � 0. (3.5)

This problem was solved exactly by D. H. Peregrine (1972, unpublished notes)
and further investigated by King & Needham (1994). Introducing standard polar
coordinates (r, θ) with respect to the Cartesian coordinates (x, y), the form of Π(r, θ)
as r → 0, is given by

Π(r, θ) = − 2

π
r sin θ log r +

2

π

(
1 + log

4

π

)
r sin θ − 2

π
rθ cos θ + o(r) (3.6)

as r → 0 with π/2 � θ � 0. For t > 0 we now expand the velocity potential and free-
surface elevation as φ = Π + tφ1 + . . . and η = tη1 + t2η2 + . . . with x, y = O(1) as
t → 0+. The correction to the impulse potential, φ1, and the leading-order free-surface
elevation, η1, and its correction, η2, satisfy

∇2φ1 = 0 in − 1 < y < 0, x > 0, (3.7)

φ1,x = −Πxx on x = 0, −1 � y � 0, (3.8)

φ1, y = 0 on y = −1, x > 0, (3.9)

φ1 = − 1
2

(
Π2

x + Π2
y

)
on y = 0, x > 0, (3.10)

η1 = Πy(x, 0) for x > 0, (3.11)

2η2 = η1Πyy(x, 0) + φ1y(x, 0) − Πx(x, 0)η1x(x, 0) for x > 0, (3.12)

|∇φ1| → 0 as x → ∞, −1 � y � 0, (3.13)

η1, η2 → 0 as x → ∞. (3.14)

From (3.11), following King & Needham (1994), we immediately find that

η1 ∼ 2

π
log

(
4

πx

)
as x → 0. (3.15)

Since we are principally interested in the solutions near the corner point, x = y =0,
we will investigate (3.7)–(3.10) locally at the corner. In the polar coordinate system
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introduced above, we need to consider the boundary value problem

∇2φ1 = 0, −π

2
< θ < 0, 0 < r � 1, (3.16)

∂φ1

∂θ
=

2

π
on θ = −π

2
, 0 < r � 1, (3.17)

φ1 = − 2

π2

(
log

4

π
− log r

)2

on θ = 0, 0 < r � 1, (3.18)

where conditions (3.17) and (3.18) are obtained using (3.6), (3.8) and (3.10). We now
solve the boundary value problem (3.16)–(3.18) in terms of the expansion

φ1 = A1(θ) log2 r+A2(θ) log r+A3(θ)+A4(θ)r log2 r+A5(θ)r log r+A6(θ)r+o(r2 log2 r)

as r → 0, −π/2 � θ � 0. From this we obtain a sequence of boundary value problems,
which are readily soluble to give

A1 = − 2

π2
, A2 =

4

π2
log

4

π
, A3 =

2θ2

π2
+

4θ

π
− 2

π2
log2 4

π
,

A4 = 0, A5 = 0, A6 = k sin θ. (3.19)

The term A6 = k sin θ represents a non-singular eigensolution to this problem, and the
indeterminacy of k arises from the fact that the analysis is local to r =0. However, this
is not important here, because the singular terms in the equation are fully determined.
On using (3.6), (3.12) and (3.15) and (3.19) we can determine that η2 ∼ 2/(πx)+k/2 as
x → 0. To summarize, close to the spatial origin, the expansions in this outer region
take the form

φ(r, θ, t) =

[
− 2

π
r sin θ log r +

2

π

(
1 + log

4

π

)
r sin θ − 2θ

π
r cos θ + O(r3)

]

+ t

[
− 2

π2
log2 r +

4

π2
log

4

π
log r +

2θ2

π2
+

4θ

π
− 2

π2
log2 4

π

+ kr sin θ + O(r2 log r)

]
+ O(t2), (3.20)

η(x, t) = t

(
2

π
log

4

πx
+ O(x)

)
+ t2

(
2

πx
+

k

2
+ O(x)

)
+ O(t3) (3.21)

as t → 0+ with 0 < r, x � 1.
On comparing the terms (−(2/π)r log r sin θ . . .) and t(−(2/π2) log2 r . . .) in the

above expansion of the potential, it is clear that these are of the same order when
r = O (−t log r). This can be used iteratively to deduce that there is a non-uniformity
in the expansions (3.20), (3.21) when r = O (−t log t).

3.2. Inner region

We now consider an inner region in which r̄ = r/(−t log t) and r̄ = O(1) as t → 0+. In
terms of this new coordinate, the expansions (3.20), (3.21) in the outer region, which
provide matching conditions for the inner region as r̄ , x̄ → ∞, take the form
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φ(r̄ , θ, t) ∼ t log2 t

(
2

π
r̄ sin θ − 2

π2

)
+ t log t log(− log t)

(
2

π
r̄ sin θ − 4

π2

)

+ t log t

(
2

π
r̄ log r̄ sin θ − 2

π

(
1 + log

4

π

)
r̄ sin θ +

2θ

π
r̄ cos θ +

4

π2
log

4

πr̄

)

− 2

π2
t log2(− log t) +

4

π2
t log(− log t) log

4

πr̄

+ t

(
− 2

π2
log2 r̄ +

4

π2
log

4

π2
log

4

π
log r̄ +

2θ2

π2
+

4θ

π
− 2

π2
log2 4

π

)
+ O(t2 log2 t), (3.22)

η(x̄, t) ∼ − 2

π
t log t − 2

π
t log(− log t) +

2

π
t log

4

πx̄
+ O

(
t

log t

)
, (3.23)

with x̄ = r̄ cos θ and ȳ = r̄ sin θ . In the scaled Cartesian coordinates (whose origin
coincides with that of the outer coordinates (x, y)), the full problem in the inner
region becomes

φx̄x̄ + φȳȳ = 0 in x̄ > − 1

log t
,

1

t log t
< ȳ < − η

t log t
, (3.24)

φx̄ = −t log t on x̄ = − 1

log t
for

1

t log t
< ȳ < − η

t log t
, (3.25)

−φȳ = ηt t log t − x̄(1 + log t)ηx̄ +
φx̄ηx̄

t log t
on ȳ = − η

t log t
for x̄ > − 1

log t
,

(3.26)

φt − x̄(1 + log t)

t log t
φx̄ − ȳ(1 + log t)

t log t
φȳ +

1

2t2 log2 t

(
φ2

x̄ + φ2
ȳ

)
+

η

F 2
= 0

on ȳ = − η

t log t
for x̄ > − 1

log t
. (3.27)

It is worth noting from (3.25) that in the inner region, the plate is located at
x̄ = −1/ log t , which, at leading order as t → 0, is at x̄ =0. Motivated by the form of
(3.22) and (3.23), we now develop expansions in the inner region of the form

φ(r̄, φ, t) = t log2 t

(
2

π
r̄ sin θ − 2

π2

)
+ t log t log(− log t)

(
2

π
r̄ sin θ − 4

π2

)
+ Φ1t log t

+ Φ2t log2(− log t) + Φ3t log(− log t) + Φ4t + Φ5t
2 log2 t

+ O(t2 log t log(− log t)), (3.28)

η(x̄, t) = − 2

π
t log t +η1t log2(− log t)+η2t log(− log t)+η3t +η4

t

log t
+O(t2), (3.29)

as t → 0+ with x̄, r̄ = O(1). The free surface is now located at

ȳ =
2

π
− η1 log2(− log t)

log t
− η2 log(− log t)

log t
− η3

log t
− η4

log2 t
+ O

(
t

log t

)
(3.30)

as t → 0+ with x̄ = O(1). Note that the above expansions must be taken to this order
to deal with the switchback that occurs between the logarithmic terms. The functions
Φ1, . . . Φ5 are all harmonic in the quarter-plane x̄ > 0, ȳ < 2/π. The leading-order
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kinematic condition is

η1 − x̄η1x̄ = 0 on ȳ =
2

π
, x̄ > 0. (3.31)

The plate condition becomes Φ1x̄ = −1 at x̄ = 0, ȳ < 2/π and the leading-order
Bernoulli condition is

Φ1 − x̄Φ1x̄ = 0 on ȳ =
2

π
, x̄ > 0. (3.32)

It is now convenient to shift the ȳ-coordinate, so that the leading-order free surface
is located at y ′ ≡ ȳ − 2/π = 0. Using r̄2 = x̄2 + (y ′+2/π)2 and θ = tan−1((y ′ + 2/π)/x̄),
the matching condition for large r̄ becomes (via (3.22))

Φ1 ∼ y ′

π
log

(
x̄2 +

(
y ′ +

2

π

)2)
− 2y ′

π

(
1 + log

4

π

)
− 4

π2
+

2x̄

π
tan−1

(
y ′ + 2

π

x̄

)
+ o(1)

as x̄, −y ′ → ∞. (3.33)

This matching condition enables an immediate simplification of boundary condition
(3.32). Integrating (3.32) gives φ1 = Ax̄ on y ′ =0 in x̄ > 0, for some constant A.
However, it follows from (3.33) on y ′ = 0 that φ1 = o(1) as x̄ → ∞, and hence that we
must have A= 0. Thus the boundary condition (3.32) can be replaced by φ1 = 0 on
y ′ = 0 for x̄ > 0.

We next introduce polar coordinates based on the shifted origin, so that x̄ = r̂ cos θ̂ ,
y ′ = r̂ sin θ̂ . In terms of these polar coordinates, the matching condition (3.33) becomes

Φ1(r̂ , θ) ∼ 2

π
r̂

{
sin θ̂ log r̂ + θ̂ cos θ̂ −

[
1 + log

4

π

]
sin θ̂

}

+ o(1) as r̂ → ∞, −π

2
< θ̂ < 0. (3.34)

This condition is given only to o(1) as r̂ → ∞ to be consistent with the o(1) truncation
in the matching condition (3.33). The boundary value problem satisfied by Φ1 is now
given by

∇2Φ1 = 0, r̂ > 0, −π

2
< θ̂ < 0,

together with the conditions

Φ1 = 0 on θ̂ = 0, r̂ > 0,
1

r̂
Φ1θ̂ = − 1 on θ = −π

2
, r̂ > 0,

and the far-field condition, (3.34). It is readily shown that this harmonic problem has
a unique solution that has φ1 bounded as r̂ → 0, and hence the solution must be

Φ1(r̂ , θ̂) =
2

π

(
r̂ sin θ̂ log r̂ + r̂ θ̂ cos θ̂ −

(
1 + log

4

π

)
r̂ sin θ̂

)
, r̂ � 0, −π

2
� θ̂ � 0.

The free-surface elevation η1 is given by the kinematic condition at O(t log t), which is
(3.31), and this gives, on using the matching condition (3.23) as x̄ → ∞, that η1(x̄) = 0
for x̄ > 0. By solving a similar problem to the one for Φ1, it can be shown that
Φ2 = −2/π2 and η2 = −2/π. At the next order, the boundary value problem that
determines Φ3 is

∇2Φ3 = 0, x̄ > 0, y ′ < 0, (3.35)

Φ3y ′ +
2

π
Φ1y ′y ′ = 0 on y ′ = 0, x̄ > 0, (3.36)

Φ3 − x̄Φ3x̄ − 2

π
x̄Φ1x̄y ′ +

2

π
Φ1y ′ = 0 on y ′ = 0, x̄ > 0, (3.37)
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Φ3x̄ = 0 on x̄ = 0, y ′ < 0, (3.38)

Φ3 ∼ 4

π2
log

4

πr̂
as r̂ → ∞. (3.39)

We can use the solution for Φ1 to establish that Φ3 = (4/π2) (log 4/π−log r̂) is the least
singular solution that satisfies (3.35)–(3.39). In a similar manner, we can determine
η3, then Φ4 and η4. The expansions in the inner region can be summarized as

φ(r̂ , θ̂ , t) = t log2 t

(
2

π
r̂ sin θ̂ +

2

π2

)
+ t log t log(− log t)

(
2

π
r̂ sin θ̂

)

+ t log t

(
2

π
r̂ sin θ̂ log r̂ +

2

π
r̂ θ̂ cos θ̂ − 2

π

(
1 + log +

4

π

)
r̂ sin θ̂

)

− 2

π2
t log2(− log t) +

4

π2

(
log

4

πr̂

)
t log(− log t)

+ t

(
− 2

π2

(
log r̂ − log

(
4

π

))2

+
2

π2
θ̂2 +

4

π
θ̂

)
+ O(t2 log2 t), (3.40)

η(x̄, t) = − 2

π
t log t − 2

π
t log(− log t) +

2

π
t

(
log

4

π
− log x̄

)
− 2

πx̄

t

log t
+ O(t2) (3.41)

as t → 0+ with r̂ , x̄ = O(1). With the solution now complete in the inner region, we can
see what it tells us about the physical problem. The leading-order term has changed
from the pressure impulse to a purely vertical flow with speed of O(− log t) and we
are starting to see the fast vertical motion of the root of the nascent jet.

We now observe, via (3.41), that the free-surface elevation is still unbounded as
x̄ → 0. This suggests that a further region will be required to produce a bounded
solution.

3.3. Inner-inner region

A careful inspection of the structure of the equations of motion in the previous
regions reveals that we neglected a term in the kinematic condition of O(t log tΦ1ȳ) =
O(t log t log r̂) and retained a term of O(t log t log(− log t)). When r̂ → 0 these balance
when r̂ = O(1/ log t) and so we introduce an inner-inner region in terms of the new
variables r̃ =(−r̂ log t), θ̃ = θ̂ . This gives the matching conditions from the inner
region for r̃ , x̃ 
 1 as

φ(r̃ , θ̃ , t) ∼ 2

π2
t log2 t − 2

π
ỹt log t + t

(
− 2

π
r̃ sin θ̃ log r̃ − 2

π
r̃ θ̃ cos θ̃

+
2

π
r̃ sin θ̃

(
1 + log

4

π

)
− 2

π2

(
log r̃ − log

4

π

)2

+
2

π2
θ̃2 +

4

π
θ̃

)
+O(t2 log2 t),

(3.42)

η(x̃, t) ∼ − 2

π
t log t +

2

π
t

(
log

4

π
− log x̃ +

1

x̃

)
+ O

(
t

log t

)
(3.43)

as t → 0+. Here x̃ = r̃ cos θ̃ , ỹ = r̃ sin θ̃ . In the inner-inner region the full equations
and boundary conditions are

∇2φ = 0 in x̃ > 1,
2

π
log t − 1

t
< ỹ <

η

t
+

2

π
log t, (3.44)

φx̃ = t on x̃ = 1,
2

π
log t − 1

t
< ỹ <

η

t
+

2

π
log t, (3.45)
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φỹ = tηt − x̃ηx̃ +
1

t
φx̃ηx̃ on ỹ =

η

t
+

2

π
log t, x̃ > 1, (3.46)

φt =
x̃

t
φx̃ +

ỹ

t
φỹ − 2

πt
(1 + log t)φỹ − 1

2t2

(
φ2

x̃ + φ2
ỹ

)
− η

F 2
at ỹ =

η

t
+

2

π
log t,

x̃ > 1. (3.47)

The matching conditions (3.42) and (3.43) lead us to the following expansions in the
inner-inner region:

φ(x̃, ỹ, t) =
2

π2
t log2 t − 2

π
ỹt log t + Φ1t + O(t2 log2 t), (3.48)

η(x̃, t) = − 2

π
t log t + η1t + O(t/ log t) (3.49)

as t → 0+. On substitution from (3.48), (3.49) into (3.42)–(3.47) we obtain the leading-
order problem, which determines Φ1 and η1, as

∇2Φ1 = 0 in x̃ > 1, −∞ < ỹ < η1, (3.50)

Φ1x̃ = 1 on x̃ = 1, −∞ < ỹ < η1, (3.51)

− 2

π
η1 + Φ1 − x̃Φ1x̃ − η1Φ1ỹ +

2

π
Φ1ỹ +

1

2

(
Φ2

1x̃ + Φ2
1y

)
= 0

on ỹ = η1, x̃ > 1 (3.52)

Φ1,ỹ = − 2

π
+ η1 − x̃η1x̃ + Φ1x̃η1x̃ on ỹ = η1, x̃ > 1, (3.53)

Φ1 ∼ Φ∞ = − 2

π
r̃ sin θ̃ log r̃ +

2r̃

π
sin θ̃

(
1 + log

4

π

)
− 2

π
r̃ θ̃ cos θ̃

− 2

π2

(
log r̃ − log

4

π

)2

+
2

π2
θ̃2 +

4

π
θ̃ as r̃ → ∞, −π

2
< θ̃ < 0, (3.54)

η1 ∼ η∞ =
2

π

(
− log x̃ + log

4

π
+

1

x̃

)
as x̃ → ∞. (3.55)

This problem is a fully nonlinear free boundary problem, so its solution must be
determined by numerical methods. Since it contains no parameters, it only has to
be computed once. Of course if the solution is singular at the point where the free
surface meets the plate, we would require further asymptotic regions. However a local
analysis of the flow and free surface reveal this not to be the case. In fact, (3.50)–(3.55)
has a local solution in which η1(x̃) has a finite limit as x̃ → 1, and which touches the
plate at x̃ = 1 tangentially, namely†

η1(x̃) ∼ k0 − k1 (x̃ − 1)2/3 as x̃ → 1, (3.56)

where k0 and k1 are positive constants that cannot be determined locally. Moreover,
Φ1(x̃, ỹ) is regular at this contact point, and so ∇Φ1(x̃, ỹ) is bounded there. In
particular, we find that

Φ1(x̃, ỹ) ∼ 1

2

(
k2

0 +
4

π2
+ 1

)
−

(
k0 − 2

π

)
(k0 − ỹ) + (x̃ − 1) as (x̃, ỹ) → (1, k0).

(3.57)

† Note that there is also a local solution with the free surface perpendicular to the wall at the
contact point, but our numerical investigation of the problem indicates that this is not the local
structure appropriate to the solution of the full problem.
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y
t

O(t)

O(t)

O(t)
O[–t log t]

O[–t log t]

x
0

–1

II

III

I

– – t log t2
π

Figure 3. Asymptotic structure as t → 0+. I is the outer region, II is the inner region, III is
the inner-inner region.

0 10 20 30 40 50
–3

–2

–1

0

1

2

3

4

x

η1

Figure 4. The numerically calculated solution in the inner-inner region. Note that the value
η1(0) ≈ 4.3 is obtained by extrapolation from unconverged numerical solutions. The solution
shown has an arclength of 50 and is calculated using 1080 boundary elements.

The asymptotic structure as t → 0+ is now complete, and is illustrated in figure 3. The
solution of the nonlinear free boundary problem (3.50)–(3.55) is shown in figures 4 and
5. The numerical techniques that we used to obtain it are discussed in the Appendix.
Specifically, the numerical solution determines that k0 ≈ 4.3 and k1 ≈ 4 × 10−3.

4. Conclusions
The impulsive flow caused by a vertical plate moving into a stationary strip of

inviscid incompressible fluid has been studied in the small time limit. The structure
of the flow field is revealed using the method of matched asymptotic expansions.
It is found that three asymptotic regions are necessary to describe the flow. After
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–4

–2

0

2

4

6

8

s

Φ1

Φ1y

Φ1x

Figure 5. The potential on the free surface and its derivatives for the numerically calculated
solution in the inner-inner region.

analysing an O(1) outer region, in which the free-surface elevation and velocities are
unbounded at the point where the free surface meets the plate, an inner region of
size O(−t log t) centred at the point where the free surface initially meets the plate
must be introduced. Since there are still singularities, albeit weaker than in the O(1)
region, this is augmented by an inner-inner region of size O(t), centred on a nascent
jet rising vertically up the plate in response to the impulsive horizontal motion. The
equations that govern the motion in this region are nonlinear and parameter free,
and a numerical solution is shown in figures 4 and 5.

In the neighbourhood of the point where the free surface meets the plate, when
x̃ = 1 + o(1) and ỹ = k0 + o(1) (that is x = t + o(t) and y = −(2/π)t log t + k0t + o(t))
as t → 0+, we have, from (3.48) and (3.49) together with (3.56) and (3.57), that,

η(x̃, t) = − 2

π
t log t +

{
k0 − k1(x̃ − 1)2/3 + o

(
(x̃ − 1)2/3

)}
t + O

(
t

log t

)
, (4.1)

and

φx(x̃, ỹ, t) = {1 + O ((x̃ − 1), (ỹ − k0))} + O(t log2 t), (4.2)

φy(x̃, ỹ, t) = − 2

π
log t +

{(
k0 − 2

π

)
+ O ((x̃ − 1), (ỹ − k0))

}
+ O(t log2 t) (4.3)

as t → 0+, with (x̃ − 1, ỹ − k0) = o(1) and k0 ≈ 4.3, k1 ≈ 4 × 10−3, these constants being
determined numerically (see the Appendix). It should be noted from (4.1) that the
free surface leaves the plate tangentially at x̃ = 1, and from (4.2) and (4.3) that the
fluid velocity is finite at this tangency point between the free surface and the plate,
when t > 0, as required, becoming singular only as t → 0+.

In physical terms, the structure in the inner-inner region, where x = O(t) and
y = −(2/π)t log t + O(t), is that of a predominantly vertical jet with flow speed
−(2/π) log t + O(1) and thickness O(t) with height −(2/π)t log t + k0t + o(1). This
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jet is accommodated into the more passive flow in the outer region, where the flow
speed is O(1) as t → 0, via a transition within the thicker inner region, where
(x, y) =O(−t log t). It should be noted that any numerical scheme developed to solve
the full initial-boundary value problem (2.2)–(2.7) must be able to adapt to the O(t)
and O(t log t) length scales in the inner-inner and inner regions as t → 0+, if it is
to resolve accurately the structure of the flow near the point where the free surface
meets the plate.

It is worth concluding by contrasting our results with those for the case of a plate
moving into the stationary strip of fluid with constant acceleration, as studied in detail
by King & Needham (1994). In this situation, no inner-inner region is required, and
a predominantly vertical jet develops in the inner region, where (x, y) = O(−t2 log t).
The flow speed in the jet is −(8σ/π)t log t + O(t) and the jet thickness is O(−t2 log t)
with height −(4σ/π)t2 log t + O(t2). Here, σ is the dimensionless initial acceleration
of the plate. Thus whilst the momentum flux in the jet formed by a plate moving at
constant speed is O(t log2 t), that formed by a plate moving with constant acceleration
has momentum flux O(t4 log3 t) as t → 0+. The jet formed is therefore significantly
more violent for the impulsively started plate than for the smoothly accelerated
plate, as we would expect. We also note that for the smoothly accelerated plate, the
free surface meets the plate at a finite angle, rather than tangentially, with slope of
O(1/ log t) (King & Needham 1994).

Finally, we note that, to the order we have developed the expansions in each of the
outer, inner and inner-inner regions, the effect of gravity, through the Froude number
F , does not appear. At early times, gravity therefore plays no significant role in the
formation of the jet.

Appendix. Numerical solution of the inner-inner problem
The inner-inner problem given by (3.50)–(3.55) is a nonlinear free boundary

problem, and contains no parameters. Since the field equation is Laplace’s equation,
it makes sense to reduce this two-dimensional boundary value problem to a one-
dimensional set of ordinary differential equations coupled to an integral equation by
using the boundary integral method. We begin by reformulating the problem into a
more convenient form.

A.1. Reformulation

Our first step is to define the position of the free surface parametrically in terms of
arclength, s, as η1 = Ỹ (s), x̃ = X̃(s), with s = 0 at the point where the free surface meets
the plate and s increasing along the free surface. In order to simplify our notation,
we also define φ̃ ≡ Φ1(x̃, ỹ) and the potential on the free surface, Φ̃ ≡ φ̃(X̃(s), Ỹ (s)).
Our second step is to shift the ỹ-axis to the wall and subtract the velocity of the wall
by defining x ≡ x̃ − 1, y ≡ ỹ, X ≡ X̃ − 1, Y ≡ Ỹ , φ ≡ φ̃ − x, Φ ≡ Φ̃ − X. Note that these
variables are not to be confused with the original variables used in the outer region.

We now have a boundary value problem for Laplace’s equation with ∂φ/∂x = 0 at
x = 0. The problem in x > 0, y <Y is therefore equivalent to a problem in −∞ <x < ∞,
y <Y with symmetry about the y-axis. In terms of these new variables, we must solve

∇2φ = 0 in −∞ < x < ∞, y < Y , (A 1)

subject to

1

2
Φ ′2 −

(
XX′ + YY ′ − 2

π
Y ′

)
Φ ′ + Φ − 2

π
Y − 1

2
− 1

2

(
X′Y − Y ′X − 2

π
X′

)2

= 0

on x = X(s), y = Y (s), (A 2)
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x

y
R∞

θ∞

n∞

n

Figure 6. The domain of solution for the reformulated inner-inner problem.

n · ∇φ = YX′ − XY ′ − 2

π
X′ on x = X(s), y = Y (s), (A 3)

where a prime denotes d/ds and n is the outward unit normal. The far-field conditions
are

φ ∼ φ∞ ≡ −2y

π

{
log

(
πr

4

)
− 1

}
− x

(
1 +

2θ

π

)
− 2

π2

{
log

(
πr

4

)}2

+
2θ

π

(
1 +

θ

π

)
+ o(1) as r → ∞, −π < θ < 0 (A 4)

Y = − 2

π
log

(
π |X|

4

)
+ o

(
1

X

)
as |X| → ∞, (A 5)

where (r, θ) are polar coordinates centred at the origin. We also have symmetry about
the y-axis. Finally, the arclength condition is

X′2 + Y ′2 = 1. (A 6)

Since we know that the local solution on the free surface close to the y-axis takes the
form given by (3.56), we find that we must solve Laplace’s equation in a semi-infinite
domain with a cusp at x =0, y = Y (0).

A.2. Numerical method

In order to use the boundary integral method, we truncate the domain of solution
with an arc of the circle centred at the origin that passes through (X(s∞), Y (s∞)) and,
by symmetry, (X(−s∞), Y (−s∞)) = (−X(s∞), Y (s∞)), for some suitably large positive
constant s∞. We denote the radius of this circle by R∞, and the angle that a line
from the origin to the point (X(s∞), Y (s∞)) makes with the x-axis by θ∞, as illustrated
in figure 6. On this truncated domain, we can replace Laplace’s equation by the
boundary integral representation

Φ(s0) = − 1

π

∫ s∞

−s∞

{
log ρ(s, s0)n · ∇φ(s) +

n · (x0 − x)

ρ2(s, s0)
Φ(s)

}
ds + I∞, (A 7)

where

I∞ ≡ −R∞

π

∫ −π+θ∞

−θ∞

{
log R(θ, s0)

∂φ∞

∂r
(R∞, θ)+

n∞(θ) · (x0 − x∞)

R2(θ, s0)
φ∞(R∞, θ)

}
dθ, (A 8)
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and

x ≡ (X(s), Y (s)), x0 ≡ (X(s0), Y (s0)), x∞ ≡ (R∞ cos θ, R∞ sin θ),

ρ(s, s0) ≡ |x − x0| , R(θ, s0) ≡ |x∞ − x0| , n∞ ≡ (cos θ, sin θ), n ≡ (−Y ′, X′).

Note that I∞, the contribution from the arc at infinity, does not vanish as R∞ → ∞,
and must be approximated numerically, as discussed below.

We must now solve (A 7), with n · ∇φ given by (A 3), along with the ordinary
differential equations (A 2) and (A 6), subject to the far-field conditions (A 4) and
(A 5), symmetry and X(0) = 0. We represent the free surface in x > 0 with N − 1
straight line segments, which meet at the N nodes (Xi, Yi) ≡ (X(si), Y (si)) for i =1,
2, . . . , N with s1 = 0 and sN = s∞. We represent the potential at the free surface, Φ ,
with Φ = Φi at s = si , and assume that Φ varies linearly between the nodes. This gives
us 3N unknowns. For these linear elements, the integral in (A 7) can be evaluated
analytically, taking the symmetry of the problem into account. Collocating at the
N − 1 midpoints of the elements, s0 = 1

2
(si + si−1) for i = 1, 2, . . . , N − 1, this leads to

N − 1 nonlinear algebraic equations.
Evaluating the integral on each element analytically has two advantages over

approximate evaluation of the integral, for example using Gaussian quadrature.
Firstly, the weak, logarithmic singularity in the integral is dealt with explicitly.
Moreover, when the collocation point is close to the y-axis, which it will be for a
large number of elements because of the cusp in the free surface, there will also
be an almost singular integral associated with the image of the collocation point
in the y-axis. This is dealt with exactly by the analytical evaluation of the integral.
Secondly, when we come to solve our final system of nonlinear algebraic equations
using Newton’s method, we can calculate the Jacobian of the system analytically. If
we were to use an approximate method to evaluate the integral, we would need to
obtain the Jacobian by finite differences. This takes far longer, certainly an order of
magnitude longer, than the time spent on inverting the Jacobian, and would then be
the main, severely restrictive, bottleneck in the numerical calculation.

We evaluate the integral I∞ by subdividing the range of integration and using
two, point Gaussian quadrature on each of these subintervals. At the end of the
arc close to the point (X(s∞), Y (s∞)), we subdivide an interval of arclength 10 ds∞
into 100 subintervals, where ds∞ ≡ sN − sN−1 is the node spacing at the end of the
free surface. This is essential, in order to resolve the rapid variation of the far field
when the collocation point is nearby. The remainder of the range of integration is
divided into subintervals of length approximately

√
ds∞, exploiting the high accuracy

of Gaussian quadrature to evaluate the integral efficiently. Note that, when we use
Newton’s method, we evaluate the part of the Jacobian that arises from I∞ using
finite differences, since it is not tractable to do this analytically. This can be done
efficiently as it only depends upon XN and YN .

We solve (A 2) at the N − 2 interior nodes, evaluating the first derivatives using a
four-point finite difference approximation. It has been found previously that the more
obvious three-point approximation leads to a numerical instability (Billingham &
King 2005). We solve (A 6) on each of the N − 1 linear elements, which basically
ensures that the length of each element is as specified by the difference of the
prescribed values of s = si at the end points of each node. This gives us 3N − 4
nonlinear algebraic equations for the 3N unknowns. The remaining four equations
are given by the conditions (A 4) and (A 5) on the far-field potential and free-surface
position respectively, along with X(s1) = X′(s1) = 0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

49
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007004983


Jet caused by fluid, body and free-surface interaction. Part 2 81

To solve these nonlinear algebraic equations, we use Newton’s method. However,
in order to proceed, we need an initial guess of the solution. There are no parameters
in these equations, and no obvious initial guess with which to start our calculation.
In order to reach the solution, we introduce three artificial continuation parameters,
σ , ε and α, and modify (A 3), (A 4), (A 5) and one of the boundary conditions at the
plate, so that

n · ∇φ = YX′ − XY ′ − 2

π
X′ + σ (X′Y ′′ − Y ′X′′), on x = X(s), y = Y (s), (A 9)

φ(s∞) = (1 − ε)

[
− 2Y (s∞)

π
+

2

π2
+

1

2

]
+ ε

[
−2Y

π

{
log

(
πR∞

4

)
− 1

}

− X

(
1 − 2θ∞

π

)
− 2

π2

{
log

(
πR∞

4

)}2

− 2θ∞

π

(
1 − θ∞

π

)]
, (A 10)

Y (s∞) = −2ε

π
log

(
πX

4

)
, (A 11)

Y ′(s1) cosα = X′(s1) sinα. (A 12)

Now, when α = 0 and ε = 0, there is a simple solution for any σ , namely

Y = 0, X = s, φ = −2y

π
+

2

π2
+

1

2
.

This is the starting point for our continuation method. The inclusion of the extra
term in (A 9) is inspired by the diffusive term introduced into the kinematic boundary
condition by Cokelet & Longuet-Higgins (1976) to stabilize their method of solving
the unsteady water wave equations. By introducing this term into our kinematic
condition, we are able to impose a contact angle condition through (A 12). When
ε = 1, σ = 0 and α = −π/2, we recover the boundary value problem that we are
interested in. We proceed in three stages. First, with σ > 0, typically σ = 0.1, and
α = 0, we increase ε from 0 to 1 in small steps, using the solution from the preceding
value of ε as the initial guess for the new solution. We then decrease α from 0 to
−π/2, in steps that decrease as −π/2 is approached. Finally, we gradually decrease σ

to zero, until we have a solution of the boundary value problem we are interested in.
We space the nodes in a non-uniform manner, with the node spacings, �si ≡ si+1 − si ,
varying from a small value close to s = 0 up to a larger value as s approaches s∞.

Unfortunately, we find that there is a weak numerical instability using this method,
which manifests itself as a grid-scale oscillation in the four or five nodes closest to
s = 0, the point where the free surface meets the wall. However, we find that by taking
σ small, we can obtain a smooth, converged solution, and extrapolate to find the
position of the tip when σ =0.

A.3. Results

In the following results, the node spacing is 10−2 close to s = 0, and increases to 0.1
as s approaches s∞ = 25, with N =317. Figure 7 shows how the free surface close to
the contact point changes as α decreases. We can see that the solution approaches
the expected cusp, with the solution away from the immediate neighbourhood of the
contact point unaffected. In order to estimate Y (0), the position of the contact point,
we fit a curve of the form y =Y (0) − k1x

2/3 to the solution close to the contact point.
A typical example is shown in figure 7.
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Figure 7. The calculated free surface as α varies, with σ = 0.01 and α = 0, −π/6, −π/4, −3π/8,
−π/2 + 0.1 and −π/2. The broken line is the curve fitted to the solution with α = −π/2, from
which we deduce Y (0). Note the large difference in scales between the x and y axes.
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Figure 8. The calculated value of Y (0) as dsmin varies, with s∞ = 25, along with
the best fit straight line.

In order to investigate the convergence of the numerical solution as we reduce the
node spacing, we begin with the solution for σ = 10−2 and successively, uniformly
shrink the nodal distribution, adding extra nodes to keep s∞ = 25, and also reduce σ ,
taking σ = s2 − s1. We do this since we expect, and indeed find, that the size of the
region close to the contact point, where the solution is not of the correct form, scales
with σ , and we can make this smaller as the grid spacing decreases. Figure 8 shows
how the calculated value of Y (0) varies with the smallest nodal spacing, dsmin ≡ s2 −s1.
As we would expect for linear boundary elements, Y (0) varies linearly with dsmin.
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Figure 9. The calculated value of Y (0) as s∞ varies, along with the best-fit straight lines
for dsmin = 0.01, 0.0075 and 0.005.
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Figure 10. The calculated value of Y (0) as s∞ → ∞ for dsmin = 0.1, 0.075 and 0.05, along
with the best-fit straight line.

Finally, to test the convergence of the solution as s∞ grows, we again start from
the solution with σ = 10−2 and successively increase s∞, keeping the spacing of the
new nodes constant at 0.1. We find that the position of the tip varies approximately
linearly with 1/s∞, as shown in figure 9, as we would expect, since this is the order
of the error incurred by evaluating I∞ at finite s∞. The best-fit straight line can
be extrapolated to find our best estimate of Y (0) as s∞ → ∞. We repeat this with
initial node spacings scaled by 0.75 and 0.5, also shown in figure 9. This gives us the
estimates of Y (0) shown in figure 10, which we then extrapolate (cf. figure 8) to give
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our final estimate, Y (0) ≈ 4.3. The solution shown in figure 4 and 5 has s∞ = 50 and
dsmin =0.005.
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