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Abstract

In electron beams where space charge plays an important role in the beam transport, the
beams’ transverse and longitudinal properties will become coupled. One example of this is
the transverse–longitudinal correlation produced in a current-modulated beam generated in
a DC electron gun, formed through the competition between the time-dependent radial
space charge force and the time-independent radial focusing force. This correlation will
cause both the slice radius and divergence of the beam extracted from the gun to depend
on the slice current. Here we consider the transport of such a beam in a linearly tapered sol-
enoid focusing channel. Transport performance was generally improved with longer taper
lengths, minimal initial correlation between slice divergence and slice current, and moderate
degrees of initial correlation between initial slice radius and slice current. Performance was
also generally improved with lower slice emittances, although surprisingly transport was
improved by slightly increasing the assumed slice emittance in certain limited circumstances.

Introduction

In many beams, the impact of space charge must be taken into account. One of the important
consequences of this is that the beam’s transverse and longitudinal dynamics become coupled,
which can happen in a number of ways (Reiser, 2008). For example, space charge exerts both
transverse and longitudinal forces which push charge from regions of higher concentration to
regions of lower concentration. In the transverse direction, this causes radial beam expansion,
which is generally opposed by transverse focusing, while in the longitudinal direction this can
cause beam lengthening, generation of space charge waves, and changes in the beam frequency
content (Harris et al., 2007b; Hoff et al., 2017). Since beam current is a function of longitu-
dinal position along the beam due to temporal structure imposed on the beam current
pulse either deliberately (Li and Lewellen, 2008; Poursaleh, 2013) or as a natural result of time-
varying fields in the beam source (Mohsen et al., 2018), the strength of space charge-driven
effects will also vary along its length. Changes in beam radius affect the propagation of longi-
tudinal space charge waves (Harris et al., 2007a; Reiser, 2008), while the propagation and inter-
ference of those longitudinal space charge waves can drive changes in beam current leading to
transverse effects such as mismatch oscillations and halo formation (Harris et al., 2007b;
Poole et al., 2009), potentially leading to beam loss.

A complete treatment of a beam’s dynamics when space charge is important therefore
requires full coupling of the transverse and longitudinal beam dynamics. However, the longi-
tudinal evolution of space charge-dominated beams generally occurs much more slowly than
their transverse evolution, allowing the longitudinal variation in current along a beam pulse to
be initially approximated as fixed, while the transverse evolution of each slice of the beam will
depend on its initial conditions, the current in that slice, and the nature of the transverse
focusing. In doing this, we consider the impact of the longitudinal current variation in the
transverse dynamics, but not the impact of the transverse dynamics on the longitudinal cur-
rent variation.

We have previously used this approach to consider several aspects of space charge-
dominated electron beam transport, with the transverse dynamics calculated using the trans-
verse envelope equation (Reiser, 2008). However, to do this correctly, the correlation between
the beam’s transverse initial conditions (radius and divergence) and the beam current must be
taken into account. This correlation arises through a competition between the time-dependent
radial space charge force and the time-independent radial focusing force in the gun. Numerical
simulations of DC electron guns indicated that the initial radius and divergence of such a beam
could be approximated as linear functions of the slice current, provided that the longitudinal
variation in beam current was slower than the transit time across the gun (Harris et al., 2012).
The transport of these beams through transverse focusing channels of varying types was then
considered. In Harris et al. (2013), beams launched with the initial conditions found through
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simulation in Harris et al. (2012) were injected through a match-
ing solenoid into a uniform solenoid focusing channel. We con-
figured the channels for matched transport of the peak current
slice and considered the remaining slices to be “well confined”
if their radii were less than or equal to the radius of the peak cur-
rent slice at all locations along the transport channel (Fig. 1). It
was found that the range of matching solenoid locations for
which well-confined transport could be found depended strongly
on the nature of the initial transverse–longitudinal correlation.

The use of “well-confined” beams as a metric is intended to
flag any mismatch oscillations or transport instabilities that are
large enough to be of concern for beam loss in a system designed
for the transport of the peak current slice, without needing to
actually specify a particular beam pipe size. The results of such
beam loss would be similar to the introduction of apertures
(Ein-Gal, 2009; Stancari et al., 2011), which can lead to unwanted
radiation production (Peterson, 2011), changes in the transverse
density profile of a beam (Bernal et al., 1999a; 2002), and alter-
ations in the nature of the transverse–longitudinal correlation
on the beam (Harris and Lewellen, 2010a; 2010b). However,
slowly growing instabilities may not be flagged by this approach
if the radius of the reduced-current slice does not exceed that of
the peak current slice except at distances much longer than con-
sidered in the calculation. In these situations, though, the long
path length necessary for the slice to become not well confined
according to this calculation likely requires the longitudinal evo-
lution of the beam to be taken into consideration, thus violating
a fundamental assumption of the calculation.

In Harris et al. (2017), we attempted to further generalize this
study. The linear dependence of initial slice radius and the diver-
gence on slice current was retained, but the coefficients of that
dependence were treated as free parameters, constrained only by
the assumption that the peak current slice was emitted at the
channel design radius and with zero initial divergence [i.e., the
beam was assumed to be launched from an idealized Pierce gun

(Pierce, 1940)]. No matching section was used, and instead, the
beam was directly injected into a uniform or periodic solenoid
channel, with the channel strength adjusted for matched transport
of the peak current slice. Consistent with Harris et al. (2013), it
was found that the correct choice of initial transverse–longitudi-
nal correlation greatly improved transport through the channels,
with the preferred configurations having a relatively strong corre-
lation between the initial slice radius and slice current, but min-
imal correlation between the initial slice divergence and slice
current. Transport was also improved with decreasing gap length
between solenoid lenses, consistent with observations in Bernal
et al. (2006), that a higher fill factor of focusing elements in a
transport channel enabled transport of beams with a wider
range of initial conditions.

A key question remaining from that work was, to what extent
does the insight gained from studying that particular transport
channel configuration apply to other transport channel configura-
tions? Were these general results, or were they a result of the spe-
cific channel type used in that paper? To test this, it is necessary
to repeat the same general calculation, but with a significantly dif-
ferent channel configuration.

The observation of Bernal et al. (2006), taken to its extreme,
suggests the use of a continuous focusing channel, such as that
formed by a long solenoid. However, these channels are not gen-
erally convenient for changing the beam size. In periodic focusing
channels, this is often done by focusing the beam through a waist
and then using a second focusing element to check its divergence
when it has reached the desired radius; note that in intense beams
with time-varying current, this can only be done for a single slice
of the beam. The closest analog in a continuous focusing channel
would involve a longitudinal taper in the channel focusing
strength. Axially tapered magnetic fields of this type are used in
some electron-beam devices, including micro- and millimeter
wave sources (Leupold et al., 1992), and in certain flat-beam elec-
tron source concepts (Brinkmann et al., 2001; Efthymiopoulos

Fig. 1. Initial transverse–longitudinal correlations and well-
confined beams. (a) An electron beam is generated with a cur-
rent which varies along its length, from “zero current” at the
beam ends (blue) to a peak current somewhere between
those ends (red). (b) The competition between transverse
space charge and focusing forces in the gun introduces a corre-
lation between the radius, divergence, and current in each slice
of the beam. (c) With longitudinal evolution in the beam
neglected, each slice of the beam independently evolves in
radius and divergence as it propagates along the transport
channel [here, a thin-lens periodic solenoid channel rather
than the uniform focusing channel of Harris et al. (2013)]. (d)
In this case, the “zero current” slice is strongly mismatched
to the channel, so that its radius eventually exceeds that of
the peak-current slice. The “zero current” slice, and therefore
the overall beam, are considered “not well-confined,” while
the remaining slices are all “well-confined.”
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et al., 2013; Floettmann, 2004; James et al., 1991; Leupold, 1987;
1993; Leupold et al., 1992; McDonald et al., 2014; Sayed and Berg,
2014).

Our present objective is therefore to extend Harris et al.
(2017b) by considering the case of transport in continuous sole-
noidal focusing channels where the channel strength varies over
its length. Channels with a linear taper in focusing strength are
considered, as are the effects of changes in slice emittance.
Performance was generally improved with longer taper lengths,
minimal initial correlation between slice divergence and slice cur-
rent, and moderate degrees of initial correlation between initial
slice radius and slice current. Performance was also generally
improved with lower slice emittances, with the dependence on
slice emittance being largest for long, strong tapers, and with
transverse–longitudinal correlation strengths which generally
optimized beam transport. Under very limited conditions, trans-
port was found to be improved by slightly larger values of slice
emittance than the standard 1 μm value used here.

Approach

Envelope calculations and initial conditions

Our approach will be similar to that used in Harris et al. (2017b)
but altered to reduce calculation time and simplify the presenta-
tion of the results. The initial slice radius and divergence will be
assumed to depend on the slice current according to

r(I) = R+ a1(I − Imax) (1)

r′(I) = b1(I − Imax), (2)

with the linearity coefficients a1 and b1 defining the strength and
nature of the correlation (Fig. 2). These initial conditions incorpo-
rate the assumption that the electron gun produces a beam with
radius R and zero divergence for the peak current slice (current
Imax). The value of R and the initial strength of the focusing chan-
nel will be chosen so that the peak current slice will be matched to
the channel when the channel strength is not tapered (C = 1).
Beam transport in the channel is calculated using the envelope
equation (Reiser, 2008)

r′′ + k20r −
K
r
− 12

r3
= 0 (3)

Here r(z) is the slice radius, primes denote differentiation with
respect to the direction of travel of the beam (z), k0 = |qB(z)|/
2mcβγ defines the strength of the applied focusing produced by
the axial magnetic field B(z), K = 2I/I0γ

3β3 is the generalized per-
veance, I0 is 17 kA for electrons, ε is the unnormalized slice emit-
tance, m and q are the mass and charge of the electron, and γ and
β are the relativistic parameters. The beam is assumed to be gen-
erated with zero canonical angular momentum. Following Harris
et al. (2017b), a slice emittance of 1 µm was used in most cases,
although it turned out that in a small number of cases, this was
not sufficient to ensure proper treatment of the zero current slices
at waists in these calculations; with zero space charge, waist for-
mation is determined by the emittance term in Eq. (3), and emit-
tance values that are too small may lead to very small waist radii
which are not handled correctly in MathCad for the step size

used, leading to unphysical negative radii. A beam energy of
10 keV, channel design radius R of 5 mm, and a peak current of
100 mA were assumed, corresponding closely to the parameters
of the University of Maryland Electron Ring (Bernal et al.,
2016). The envelopes of 21 slices, varying in current from 0 to
100 mA in 5 mA increments, were then calculated using a
MathCAD spreadsheet over a channel length of 5 m, with 3 ×
105 integration steps. This calculation was performed for a1 values
of 0, 0.01, 0.02, 0.03, 0.04, and 0.05 m/A, and for values of b1 of 0,
0.02, 0.04, and 0.06 A−1. Note that b1 is varied less here than in
Harris et al. (2017b), which reflects the recognition that large val-
ues of that parameter are generally expected to be detrimental to
good transport.

Channel configurations

The channel configuration considered here involved a linear taper
of the form

k(z) = kM + kM
(C − 1)
(B− A) (z − A) for A ≤ z ≤ B

C kM for z . B

⎧⎨
⎩ , (4)

where C is the ratio of the starting and ending focusing strength,
which will be referred to as the taper strength, while C/(B − A)
defines the taper rate (Fig. 3). The quantity kM is the focusing
strength required for matched transport of the peak current
beam in an untapered channel (7.739 m−1). The taper starting
position A will always be zero in the calculations discussed here
but is included in Eq. (4) for completeness. Note that a linear
taper in channel strength does not yield a linear taper in beam

Fig. 2. Relationship of slice initial conditions to the parameters a1 and b1. (a) A
current-modulated beam consists of multiple slices, each of which is thin enough
to be approximated as having a single current. This current varies from “zero” at
the ends (blue) to a maximum value somewhere else in the beam (red). Each slice
is assumed to be injected into the channel with a radius and divergence which is lin-
early dependent on that slice’s current. In this paper, the beam is assumed to be cre-
ated from an idealized Pierce gun, which always provides an initial radius of 5 mm
and zero divergence for the peak current slice. (b) a1 = b1 = 0, providing no variation
of initial radius or divergence on slice current. (c) a1 = 0, b1 > 0, providing no depen-
dence of initial radius on slice current, but some dependence of initial divergence on
slice current. (d) a1 > 0, b1 = 0, providing some dependence of initial radius on slice
current, but no dependence of initial divergence on slice current. (e) a1 > 0, b1 > 0,
providing some dependence of both initial radius and divergence on slice current.
The values of a1 and b1 can also be considered to define the magnitude of projected
emittance in the injected beam, as described in Harris et al. (2013)
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radius, as the matched radius (in the limit of small emittance) var-
ies inversely with the channel strength:

Rm =
��
K

√

k0
. (5)

Several cases of the linear tapered channel were also run with
changes in beam emittance. In these cases, the matched channel
strength kM was not recalculated to properly match the beam
with the increased emittance.

In all cases, the channel taper start A will be set to zero, the
channel entrance. The parameter space to be explored will there-
fore consist of the following five parameters: (1) channel taper
length (B); (2) channel taper strength (C); (3) degree of initial cor-
relation between slice current and radius (a1); (4) degree of initial
correlation between slice current and divergence (b1); and (5) slice
emittance (ε).

Results matrix

For each combination of a1 and b1, the envelope of each of the 21
beam slices is compared to the envelope of the peak current slice
to determine whether it is well confined or not, providing a
“score” for that particular combination. In particular, at each of
the 3 × 105 integration steps, the difference between the radius
of the peak-current slice and the radius of each reduced-current
slice is computed. If this difference is less than zero at any point
along the 5 m focusing channel, that reduced-current slice is
flagged as not well confined, and is assigned a score of zero,
while if the slice is flagged as well confined, it is assigned a score
of 1. These scores are summed over all of the 21 slices of the
beam, forming an overall score for that particular combination
of channel configuration, emittance, a1, and b1. For example, the
simple five-slice configuration shown in Figure 1 would have a
score of 4, as four of the five slices are well confined. These scores
provide the values of Ni,j used to populate a results matrix of the form

with each channel configuration and emittance (B, C, ε) having its
own results matrix. Note that the minimum value of any Ni,j is 1,
as the peak-current slice is, by definition, well confined, while the
maximum is 21.

These results can be presented in several ways. First, all the ele-
ments of the matrix can be summed to provide a single, overall
effectiveness score for the transport channel, with higher scores
indicating improved transport of beams with initial transverse–
longitudinal correlation. This overall score will be referred to as
the “matrix sum”; this sum will range from a minimum of 24
to a maximum of 504.

A second approach is to sum over the elements in each of the
columns, providing four effectiveness scores for each channel con-
figuration. This can be used to study how the effectiveness of the
channel improves or degrades as the value of b1 (initial correlation
between slice divergence and current) is changed. This score will
be referred to as the “column sum”; this sum will range from a
minimum of 6 to a maximum of 126.

A third approach is to sum over the elements in each of the
rows, providing six effectiveness scores for each channel configu-
ration. This can be used to study how the effectiveness of the
channel improves or degrades as the value of a1 (initial correlation
between slice radius and current) is changed. This score will be
referred to as the “row sum”; this sum will range from a minimum
of 4 to a maximum of 84.

For each channel configuration, we will present these scores as
a function of channel taper strength C and taper length B, in some
cases, slice emittance ε.

Motivations and limitations

This approach incorporates several attempts to increase the speed
of calculation and simplify the presentation of the resulting data
compared to that used in Harris et al. (2017b). First, we have
reduced the number of values of a1 and b1 that are used: here
we use a 6 × 4 matrix, while in Harris et al. (2017b), we used a
26 × 21 matrix. Second, for every value of (a1,b1), we calculate
21 slices of varying current here, while in Harris et al. (2017b),
we calculated 101 slices. Third, we are presenting matrix, column,
or row sums rather than presenting the entire results matrix. This
loses the granularity of the previous presentation but enables pre-
sentation of results from a much larger set of test configurations
to aid in recognizing trends in the data. Understanding these
trends is our primary objective, rather than a detailed analysis
of any given configuration, for which more sophisticated tech-
niques such as particle-in-cell codes, which incorporate more
physics, are better suited.

Because it relies on the transverse envelope equation, our
approach necessarily leaves out a large number of potentially
interesting effects. Most importantly, as discussed above, it does
not incorporate longitudinal evolution of the beam. Similarly, it

Fig. 3. Focusing channel strength [km(z)] as a function of position z downstream in
the channel (left), and the resulting local matched beam radius as a function of posi-
tion for a 100 mA, 10 keV electron beam (right), for the linear taper with A = 0 m and
B = 2.5 m, and taper strengths C of 2 (dash), 1 (solid), and 0.5 (dotted).

b1 = 0A−1 b1 = 0.02A−1 b1 = 0.04A−1 b1 = 0.06A−1

a1 = 0m/A N0,0 N0,1 N0,2 N0,3

a1 = 0.01m/A N1,0 N1,1 N1,2 N1,3

a1 = 0.02m/A N2,0 N2,1 N2,2 N2,3

a1 = 0.03m/A N3,0 N3,1 N3,2 N3,3

a1 = 0.04m/A N4,0 N4,1 N4,1 N4,1

a1 = 0.05m/A N5,0 N5,1 N5,2 N5,3

, (6)
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assumes no transverse variation in current across the beam, which
can occur due to variations in cathode temperature, variations in
electric field due to cathode edge effects (Umstattd and
Luginsland, 2001), and control grid effects (Spangenberg, 1948),
due to changes in cathode properties over time (Harris et al.,
2017a), or through beam-dynamical effects (Bernal et al.,
1999b). It also does not take into account nonlinear focusing
and the resulting aberrations which are known to be produced
by solenoid magnets (Biswas, 2013; Lund, 2015). We also assume
a direct injection of the beam into the entrance of the solenoid
channel, implicitly assuming a hard-edge solenoid model at the
upstream end which is known to introduce issues (Biswas,
2013) and is unrealistic for most practical purposes. The latter
assumption was incorporated to further reduce the complexity
of the problem. Additionally, our objective here was not to opti-
mize the transport of beams with varying initial conditions in
tapered transport channels, but rather as a simple model for
exploring the consequences of initial transverse–longitudinal cor-
relations in intense beams.

Additionally, our assumption of zero divergence injection of
the peak current slice and our definition of “well-confined” trans-
port as being relative to the envelope of the peak-current slice are
not the only possible choices, and other choices may be more
appropriate in certain circumstances. For example, if a beam
were required to pass through a particular beam tunnel of
known radius, that radius would be a more appropriate reference
standard. In other cases, a composite reference radius could be
produced by taking the largest radius at each location of (for
example) the five slices with the highest current. The general
approach used here, then, can be tailored to focus on different
aspects of the problem which are most important in any given
case.

Results

Linear taper with fixed emittance

Figure 4 shows an example of the beam envelopes calculated for a
tapered channel of taper length 2.5 m and taper strength 2, for
three combinations of a1 and b1. This figure emphasizes the
role played by reducing the initial radii of slices with lower slice
currents. As they are injected initially closer to their matched
radii, the amount of radial kinetic energy carried by these slices
is lower, resulting in lower mismatch amplitudes, which are there-
fore less likely to exceed the radius of the peak current slice.

Figure 5 shows the matrix sum as a function of the taper
strength C, for several values of taper length B; in this figure,
data from each value of B is shown in a different color. As men-
tioned above, the matrix sum is equal to the total number of well-
confined slices summed over all combinations of (a1, b1) and has
a maximum value of 504 (=21 values of current × 6 values of a1 ×
4 values of b1). The 1 µm emittance was not sufficient to ensure
proper transport of the zero current slices at the maximum
value of a1 (which would start the zero current slice with an unre-
alistic radius of zero and, for b1 > 0, with a negative divergence),
and so, the maximum value actually attained was 500. The
taper begins at zero (A = 0 m) in all cases. As the taper is made
more abrupt (smaller B), performance generally worsens. From
C = 0.1 to 0.9, the matrix sum is maximized for the more gentle
tapers, and degraded performance is seen for the more abrupt
tapers, with the worst performance occurring around C = 0.5.
From approximately C = 0.9 to 1.1, qualitatively similar

performance exists for all taper lengths, with performance
decreasing rapidly as C = 1 is approached from below, and then
more slowly after that. This region is detailed in the inset.
Above approximately C = 1.1, performance continues to decrease,
with faster decreases for faster ramp rates C/(B− A).

Figure 6 shows the column sums as a function of taper
strength C, for the various values of taper length B; in this figure,
the data point colors correspond to the different values of b1, as
indicated at the top of the figure. As discussed above, taking the
column sums from Eq. (6) is a way of assessing the effect of
changing b1, the strength of correlation between slice current

Fig. 4. Example of beam transport in a tapered channel. Beam envelopes for 10 keV
electron beams injected with currents of 100 mA (red); 75, 50, and 25 mA (black); and
0 mA (blue) into a linearly tapered solenoidal focusing channel with parameters
A = 0 m, B = 2.5 m, and C = 2. The beam slices are injected with initial correlations
between slice current, radius, and divergence of (0 m/A, 0 A−1) (top), (0.03 m/A,
0 A−1) (middle), and (0.03 m/A, 0.04 A−1) (bottom). The cases with increased initial
correlation between slice radius and slice current have much-improved transport
and are well confined over the 5 m channel length.

Fig. 5. Linear taper results. Matrix sum as a function of taper strength (C) for several
values of taper length (B).
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and initial slice divergence on entering the channel. In general,
the value of b1 had little effect on the number of well-confined
slices transported through the channel. The primary exceptions
to this occurred in the transition region about C = 1, where per-
formance improved for smaller values of b1. This improvement
was generally larger for the most gentle tapers, although a quali-
tatively distinct behavior emerges at B = 0.1 m, which again favors
smaller values of b1. In all cases, C = 1 and b1 = 0 A−1 provide the
maximum number of well-confined slices, and there is an abrupt
transition once C > 1.

This abrupt transition can be explained as follows. For C = 1,
the channel is simply a uniform focusing channel, so changes
in the value of B do not affect system performance. With b1 =
0 A−1, the initial divergence of each slice is zero, so we need
only consider the radial potential energy associated with each
slice’s initial radius. For the case of a1 = 0 m/A, each slice is
injected at the same radius, which will be its maximum radius,

and therefore no slice will exceed the radius of the peak current
slice (Fig. 7, top). For larger values of a1, the reduced-current
slices are injected at smaller initial radii and may expand some-
what, but not enough to exceed the peak current slice (Fig. 7, mid-
dle). Increasing the channel taper slightly now to C = 1.001, we
find similar results, except that all of the reduced-current slices
for a1 = 0 m/A are no longer well confined, which is the cause
of the sudden drop at C = 1 shown in Figure 6. This is only evi-
dent in the envelope figures by zooming in closely, so that the
very small excursions of the reduced-current slice radii beyond
that of the peak current slice are apparent (Fig. 7, bottom).

The other interesting area is the notch that forms for values of
C around 0.5. To investigate this, we considered the b1 = 0 A−1, C
= 0.5 cases for B = 5 and 0.1 m. In the former case, all slices
except the zero current slice for a1 = 0 m/A were well confined.
In the latter case, all slices for a1 = 0.02, 0.03, and 0.04 m/A
were well confined, while all slices (except the peak current

Fig. 6. Linear taper results. Column sum as a function
of taper strength (C) for several values of taper length
(B) and initial divergence–current correlation (b1). The
maximum indicated value of the column sum is 125,
slightly less than the theoretical maximum value of
126 (21 values of current × 6 values of a1). This differ-
ence is due to incorrect handling of the zero current
slice in the a1 = 0.05 m/A case, as discussed in the text.
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slice) for a1 = 0.05 m/A were not well confined, all the slices
between 40 and 85 mA were not well confined for a1 = 0.01 m/
A, and all slices but 5, 10, 15, and 100 mA are not well confined
for a1 = 0 m/A. This suggests a preference for a1 values around
0.03 m/A, which we will see again later. It also indicates that in
this region, higher currents are more susceptible to being not
well confined. In the case of B = 5 m, the peak current slice
increases in radius gradually without noticeable high-spatial fre-
quency mismatch oscillations, while the reduced current slices
do undergo high-spatial frequency mismatch oscillations but do
not exceed the radius of the peak current slice. In the case of
B = 0.1 m (Fig. 8, top), both the peak and reduced-current slices
undergo high-spatial frequency mismatch oscillations which
tend to dephase over time, such that the reduced current slices
become not well confined at the locations of the peak current
slice waists. For values of a1 near 0.03 m/A, the mismatch oscilla-
tions are initially more closely in phase, requiring the beam to
travel longer distances before their dephasing leads to the onset
of non well-confined behavior, and those distances are larger
than the 5 m channel length considered here (Fig. 8, middle).
For lower values of a1, the peaks of the reduced current slice mis-
match oscillations gradually slip ahead of those of the peak cur-
rent slice (Fig. 8, top), while in the case of higher values of a1,
they gradually slip backwards (Fig. 8, bottom). For values of a1
near 0.03 m/A, the phase slip is minimized for the higher current
slices, while the lower current slices’ radii are lower than the peak
current slice’s waist radii preventing a non well-confined scenario.

Figure 9 shows the row sums from Eq. (6), as a function of
taper strength C, for various values of B; in this figure, the data
point colors correspond to different values of a1, as indicated in
the right of the figure. Taking the row sums from Eq. (6) is a
way of assessing the effect of changing a1, the strength of correla-
tion between slice current and initial slice radius on entering the
channel. Unlike b1, there is an overall pronounced improvement
from choosing the correct value of a1, with dramatically improved
performance obtained from using a1 values between 0.02 and
0.04 m/A. This improvement was most pronounced in the case

of the longer tapers. In almost every case, the worst performance
was achieved from using a value of 0 m/A, in which no correlation
was assumed.

These results are consistent with observations from previous
work that properly constructed initial transverse–longitudinal
correlations aid in beam transport, with some initial correlation
between slice current and radius being desired, but with correla-
tion between slice current and divergence generally being
detrimental.

Linear taper with emittance varied

A question raised by the peer reviewers of Harris et al. (2017b)
was, what would be the impact of changes in beam emittance
on transport through the focusing channel? To consider this in
the context of the linearly tapered channel, six sets of calculations
were performed. Linear tapers of length 5 and 0.1 m were used,
with the taper strength C varied as before. For each of these
taper lengths, three values of slice emittance were used: 1, 5,
and 10 µm. No change in the channel strength was made to
account for these higher emittances. The results are shown in
Figures 10–12, where the data point color refers to slice emittance
and the data point shape refers to taper length B, as indicated to
the right of each figure.

Figure 10 shows the matrix sum for the calculated cases, with
taper lengths B of 5 m denoted by solid circles and 0.1 m denoted
by hollow squares, and with slice emittances of 1, 5, and 10 µm
shown with blue, red, and black, respectively. The general behav-
ior of the B = 5 and B = 0.1 m cases are as shown previously.
There is some dependence on slice emittance, which is generally
relatively weak except for the longer taper at larger values of taper
strength.

Figure 11 shows the data broken out by different values of b1.
The general trends are exactly as shown in Figure 10, with higher
values of emittance providing slightly worse transport, and with
this effect being most pronounced for the long, 5 m taper at
large values of taper strength.

Figure 12 shows the data broken out by different values of a1.
Here, we see several very clear trends. First, the long taper again

Fig. 7. Slice envelopes for three transport conditions near C = 1.

Fig. 8. Slice envelopes for three transport conditions near C = 0.5.
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provides generally better transport over a wider range of taper
strengths (C) than does the short taper. We again see that as
the value of a1 is increased, good transport occurs over a wider
range of taper strengths, with best transport occurring around
a1 = 0.03 m/A. Continuing to increase a1 beyond that point causes
the beam transport to degrade. This behavior is most pronounced
in the long taper but is also present on the short taper. For the

long taper, there is also a clear difference in transport effectiveness
which depends on emittance, with improved transport generally
occurring with lower emittance, and with the effect of emittance
on the transport being maximized near a1 = 0.03 m/A.

Surprisingly, for a1 = 0.04 m/A, for taper strengths between
about 2.5 and 5, higher slice emittance actually provides improved
transport in the long taper case. This implies that optimal

Fig. 9. Linear taper results. Row sum as a function of taper
strength (C) for several values of taper length (B) and initial
radius–current correlation (a1). Values of 0.03 and 0.04 m/A
are preferred over the entire range of channel taper values C,
with 0.03 m/A generally being preferred but with 0.04 m/A
being preferred for intermediate values of B at very high values
of C.

Fig. 10. Effect of beam emittance. Matrix sum as a function of
linear taper strength C for taper lengths B of 5 m (solid circles)
and 0.1 m (hollow squares), for slice emittances of 1 µm (blue),
5 µm (red), and 10 µm (black).

Fig. 11. Effect of beam emittance. Each panel shows the col-
umn sum from Eq. (6) corresponding to a single value of b1.
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performance, per our definition of well-confined transport,
requires not only the proper settings of a1 and b1 but also the
proper value of slice emittance.

To investigate this further, we will consider how the number
of well-confined slices varies as the slice emittance is changed
from 1 to 25 µm in the long linear taper case (B = 5 m) with
a1 = 0.04 m/A, and how this depends on values of b1.
Figure 13 shows four panels, each of which corresponds to a sin-
gle value of b1. In each panel, several sets of data are plotted,
which correspond to different values of the taper strength C.
These show that, particularly for taper strengths of 3–5, the
number of well-confined slices is maximized when the emittance
is slightly higher than 1 µm, and that the prominence of this
effect increases as b1 increases.

A particularly strong effect was evident in the b1 = 0.04 A−1,
C = 4 case. Figure 14 shows the behavior in this case for each of
the 21 slice currents, on the vertical scale, as the slice emittance
is increased from 1 to 25 µm, on the horizontal scale. Slices
which are well confined for a given slice emittance are indicated
in green while slices which are not well confined for a given
slice emittance are indicated in red. The existence of an optimal

value of slice emittance is evidently due to the competing impacts
of an initial improving transport of high-current slices at low val-
ues of emittance and an increasingly poor transport beginning in

Fig. 12. Effect of beam emittance. Each panel shows the row
sum from Eq. (6) corresponding to a single value of a1.

Fig. 13. Number of well-confined slices as a function of slice
emittance and taper strength for the long linearly tapered
channel, with a1 = 0.04 m/A.

Fig. 14. Impact of slice current and slice emittance on transport effectiveness for the
conditions indicated at right. Green indicates well-confined transport, while red indi-
cates non-well-confined transport.
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the 40 mA slice and spreading from there towards both the high-
current and low-current slices as emittance passes 7 µm.

This can also be seen from the envelopes for various slices as
shown in Figure 15. Increasing slice emittance increases the
average radius of all slices at the end of the channel, but this
effect is stronger for smaller slice currents. At 1 µm emittance,
the lower-current slice radii are generally well below that of
the peak current slice (a). An exception is the 75 mA slice,
which has a somewhat smaller average radius, but whose mis-
match oscillations are out of phase with those of the peak cur-
rent slice (b), leading to a non-well-confined condition at the
end of the channel (c). As the emittance increases to 12 µm,
the local maximum radii at the end of the channel for the
75 mA slice are closer to those of the peak current slice, but
this is compensated for because the two slices’ mismatch oscil-
lations, which are initially out of phase, come approximately
into phase by the end of the channel (d). This improves trans-
port for the 75 mA, and other high-current slices, as defined
by our metric. Continuing to increase the slice emittance, as
shown with the envelopes for 16 µm, follows through with this
phase-slippage process for the high-current slices, such that
they are now beginning to slip out of phase with respect to
the peak current slice (g). Meanwhile, the relatively greater effect
of increased emittance on the lower-current slices has caused
their local maximum radii for more of these slices to exceed
the local minimum radius of the peak current slice (h), thus

increasing the number of relatively lower current slices which
become non-well-confined.

The optimal value of emittance is therefore seen to be due to
the combined effects of the relatively stronger impact on lower-
current slices from increasing slice emittance, and from the
emittance-driven changes in mismatch period, particularly for
the higher current slices.

Summary

Here we considered the transport of space charge-dominated
electron beams through tapered solenoid channels having
linear dependences of the focusing strength on axial position.
The beams were assumed to be created from an idealized
Pierce-type gun providing a beam with zero initial divergence at
full current, and otherwise having a linear dependence of the ini-
tial slice divergence and radius on the slice current. No longitudi-
nal evolution of the beam was incorporated. A slice emittance of
1 µm was used in most cases, but the effect of slice emittance on
transport effectiveness was also investigated. A total of 21 beam
slices with currents varying from 0 to 100 mA were considered,
and the transport effectiveness was quantified by the number of
slices whose radii were always less than or equal to that of the
100 mA slice. Longer taper lengths generally provided improved
transport, as did minimizing the initial correlation between slice
divergence and slice current, and providing a moderate degree

Fig. 15. Impact of slice current and slice emittance on transport effectiveness for the conditions indicated at right. (a) Average radius of lower-current slices is
generally significantly less than that of the peak-current slice in the 1 µm case. (b) This is not true for the 75 mA, and other higher current slices, whose mismatch
oscillations are out of phase with that of the peak current slice. (c) These facts combine to enable non well-confined transport for the higher current slices at 1 mm,
although the excursions beyond the peak current slice radius are very small. (d) When the emittance is increased to 12 µm, the higher current slices are now more
closely in phase with the peak current slice, reducing the opportunity for non well-confined transport, and accounting for the initial improvement in transport
indicated in Figure 14 as emittance is increased. (e) Increasing emittance has also caused the mid-current slices to both shift phase and to increase their average
radii, causing them to become non well confined. (f) At 12 µm, the lower current slices still have radii which are smaller than the waists of the peak current slice, so
their transport is initially still well confined. (g) Moving to still higher emittances, the higher current slices have now continued their phase shifting relative to the
peak current slice, to the point where they are beginning to experience non well-confined transport. (h) Increasing values of emittance also now lead to larger
average radii for the lower-current slices, opening the opportunity for non well-confined transport with them as well.
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of initial correlation between initial slice radius and slice current.
The latter two dependences are consistent with our previous stud-
ies of transport in other channel configurations and therefore
appear to be widely applicable. Lower slice emittances were also
generally preferred, with the dependence on slice emittance
being largest for long, strong tapers and degrees of transverse–
longitudinal correlation which optimized beam transport.
Unexpectedly, the transport was actually improved by slightly
larger values of slice emittance under certain limited conditions.
Finally, we note that the optimum values of a1 were found to
be around 0.03 m/A. Of the tested values of a1, this most closely
approximates a scaling of r(I) � ��

I
√

(Fig. 16), which, if fully met
could enable simultaneous matched transport for all slices in
the beam (Fig. 17) and is a feature of the highly sought 3D ellip-
soidal beam distribution (Li and Lewellen, 2008; Limborg-Deprey
and Bolton, 2006).

References

Bernal S, Kishek RA, Reiser M and Haber I (1999a) Observations and sim-
ulations of particle-density oscillations in an apertured, space-charge dom-
inated electron beam. Proceedings of the 1999 Particle Accelerator
Conference (Cat. No. 99CH36366), 1749–1751. New York: IEEE.

Bernal S, Kishek RA, Reiser M and Haber I (1999b) Observations and sim-
ulations of transverse density waves in a collimated space-charge dominated
electron beam. Physical Review Letters 82, 4002.

Bernal S, Quinn B, Reiser M and O’Shea PG (2002) Edge imaging in
intense beams. Physical Review Special Topics – Accelerators and Beams 5,
064202.

Bernal S, Li H, Kishek RA, Quinn B, Walter M, Reiser M, O’Shea PG and
Allen CK (2006) RMS envelope matching of electron beams from “zero”
current to extreme space charge in a fixed lattice of short magnets.
Physical Review Special Topics –Accelerators and Beams 9, 064202.

Bernal S, Beaudoin B, Haber I, Koeth T, Mo Y, Montgomery E, Rezaei KP,
Ruisard K, Stern W, Sutter D, Zang H and Kishek RA (2016) Nonlinear
dynamics with space-charge in a small electron recirculator. AIP Conference
Proceedings 1777, 100003.

Biswas B (2013) A model of field and spherical aberration in soft/hard edge
solenoid magnets. Review of Scientific Instruments 84, 103301.

Brinkmann R, Derbenev Y and Flottmann K (2001) A low emittance, flat-
beam electron source for linear colliders. Physical Review Special Topics
– Accelerators and Beams 4, 053501.

Efthymiopoulos L, Gilardoni S, Hansen OM and Prior G (2013) A simpli-
fied magnetic field tapering and target optimisation for the neutrino factory
capture system. Proceedings of the 2013 International Particle Accelerator
Conference, 1370–1372. Available at: https://accelconf.web.cern.ch/accel-
conf/IPAC2013/papers/tupfi018.pdf

Ein-Gal M (2009) Adjustable aperture collimator. U.S. Patent 7,489,764,
February 10.

Floettmann K (2004) Positron source options for linear colliders. Proceedings
of the 2004 European Particle Accelerator Conference, 69–73. Available at:
https://accelconf.web.cern.ch/accelconf/e04/PAPERS/TUZACH01.PDF

Harris JR and Lewellen JW (2010a) Transmission of intense electron beams
through apertures. Physics of Plasmas 17, 043101.

Harris JR and Lewellen JW (2010b) Suppression of current fluctuations in an
intense electron beam. Journal of Applied Physics 108, 083301.

Harris JR, Feldman RB and O’Shea PG (2007a) Transverse-longitudinal cou-
pling in an intense electron beam. Proceedings of the 2007 Particle
Accelerator Conference, 3597–3599. New York: IEEE.

Harris JR, Neumann JG, Tian K and O’Shea PG (2007b) Longitudinal den-
sity modulation and energy conversion in intense beams. Physical Review E
76, 026402.

Harris JR, Lewellen JW and Poole BR (2012) Transverse-longitudinal corre-
lations in electron guns. Journal of Applied Physics 112, 023304.

Harris JR, Lewellen JW and Poole BR (2013) Transport of electron beams
with initial transverse-longitudinal correlation. Journal of Applied Physics
114, 063304.

Harris JR, Jensen KL, Maestas S, Tang W and Shiffler DA (2017a) Practical
considerations in the modeling of field emitter arrays with line charge dis-
tributions. Journal of Applied Physics 121, 203303.

Harris JR, Poole BR and Lewellen JW (2017b) Solenoid transport of beams
with current-dependent initial conditions. Journal of Applied Physics 122,
093302.

Hoff BW, French D.M, Simon DS, Lepell PD, Montoya T and Heidger SL
(2017) High current nonlinear transmission line based electron beam
driver. Physical Review Accelerators and Beams 20, 100401.

James MB, Donahue RJ, Miller RH and Nelson WR (1991) A new target
design and capture strategy for high-yield positron production in electron
linear colliders. Nuclear Instruments and Methods A 307, 207–212.

Leupold HA (1987) Leakage-free, linearly varying axial permanent magnet
field source. U.S. Patent 4,701,737, October 20.

Leupold HA (1993) Magnetic field sources for producing high-intensity var-
iable fields. U.S. Patent 5,216,400, June 1.

Leupold HA, Tilak AS and Potenziani E (1992) Tapered fields in cylindrical
and spherical spaces. IEEE Transactions on Magnetics 28, 3045–3047.

Fig. 16. Comparison of linear and ellipsoidal correlations between slice current and
slice radius for different values of a1, according to Eq. (1). Note that values of 0.03 m/
A generally provide the best match between the linear model and the ellipsoidal
model, but under more extreme values of reduced current, values closer to
0.04 m/A may be preferred. This mirrors the results of row sum calculations where
0.03 m/A is generally preferred but in extreme cases, 0.04 m/A is preferred. Note
also the greatly improved performance in Figure 8 for a1 = 0.03 m/A.

Fig. 17. (Top) Beam envelopes for 100 mA (red); 75 mA, 50 mA, and 25 mA (black);
and 25 mA (blue) slices; for the indicated conditions, as shown previously in
Figure 8. (Bottom) The same envelopes, but now assuming injection of a beam
with r � �

I
√

,r
′
= 0, and with zero emittance. With emittance increased to 1 µm, this

panel looks identical except that very small currents approaching zero become non-
physical due to their being injected with a theoretical radius of zero which yields an
infinite emittance-driven impulse. This emphasizes the similarity of a1 = 0.03 m/A to
the ideal case for transport.

322 J. R. Harris

https://doi.org/10.1017/S0263034619000612 Published online by Cambridge University Press

https://accelconf.web.cern.ch/accelconf/IPAC2013/papers/tupfi018.pdf
https://accelconf.web.cern.ch/accelconf/IPAC2013/papers/tupfi018.pdf
https://accelconf.web.cern.ch/accelconf/IPAC2013/papers/tupfi018.pdf
https://accelconf.web.cern.ch/accelconf/e04/PAPERS/TUZACH01.PDF
https://accelconf.web.cern.ch/accelconf/e04/PAPERS/TUZACH01.PDF
https://doi.org/10.1017/S0263034619000612


Li Y and Lewellen JW (2008) Generating a quasiellipsoidal electron beam by
3D laser-pulse shaping. Physical Review Letters 100, 074801.

Limborg-Deprey C and Bolton PR (2006) Optimum electron distributions
for space charge dominated beams in photoinjectors. Nuclear Instruments
and Methods in Physics A 557, 106–116.

Lund SM (2015) Nonlinear optics of solenoid magnets. Proceedings
of the 2015 International Particle Accelerator Conference, 4048–4050.
Available at: http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/
thpf139.pdf.

McDonald KT, Sayed HK, Berg JS, Kirk HG and Palmer RB (2014)
Optimized capture-solenoid field for a muon accelerator font end.
Available at: http://cosmology.princeton.edu/mumu/target/Sayed/140129/
SolTaper-140129_k9.pdf

Mohsen O, Gonin I, Kephart R, Khabiboulline T, Piot P, Solyak N,
Thangaraj JC and Yakovlev V (2018) Initial beam dynamics simulations
of a high-average-current field-emission electron source in a super-
conducting radiofrequency gun. Nuclear Instruments and Methods A 909,
456–459.

Peterson RE (2011) Shielding Requirements for an Energy-Recovery Linac
Free-Electron Laser. MS Thesis, Naval Postgraduate School.

Pierce JR (1940) Rectilinear electron flow in beams. Journal of Applied Physics
11, 548–554.

Poole BR, Blackfield DT, Chen Y-J, Harris JR and O’Shea PG (2009) Space
charge waves in mismatched beams. Proceedings of the 2009 Particle
Accelerator Conference, 3272–3274. Available at: https://accelconf.web.
cern.ch/AccelConf/PAC2009/papers/th5pfp035.pdf

Poursaleh A (2013) Design and simulation of high power RF modulated triode
electron gun. Life Science Journal 10, 2685–2689.

Reiser M (2008) Theory and Design of Charged Particle Beams. New York:
Wiley.

Sayed HK and Berg JS (2014) Optimized capture section for a muon acceler-
ator front end. Physical Review Special Topics –Accelerators and Beams 17,
070102.

Spangenberg KR (1948) Vacuum Tubes. McGraw-Hill: New York.
Stancari G, Valishev A, Annala G, Kuznetsov G, Shiltsev V, Still DA and

Vorobiev LG. (2011) Collimation with hollow electron beams. Physical
Review Letters 107, 084802.

Umstattd RJ and Luginsland JW (2001) Two-dimensional space-charge-
limited emission: beam-edge characteristics and applications. Physical
Review Letters 87, 145002.

Laser and Particle Beams 323

https://doi.org/10.1017/S0263034619000612 Published online by Cambridge University Press

http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/thpf139.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/thpf139.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/thpf139.pdf
http://cosmology.princeton.edu/mumu/target/Sayed/140129/SolTaper-140129_k9.pdf
http://cosmology.princeton.edu/mumu/target/Sayed/140129/SolTaper-140129_k9.pdf
http://cosmology.princeton.edu/mumu/target/Sayed/140129/SolTaper-140129_k9.pdf
https://accelconf.web.cern.ch/AccelConf/PAC2009/papers/th5pfp035.pdf
https://accelconf.web.cern.ch/AccelConf/PAC2009/papers/th5pfp035.pdf
https://accelconf.web.cern.ch/AccelConf/PAC2009/papers/th5pfp035.pdf
https://doi.org/10.1017/S0263034619000612

	Transport of intense beams with current-dependent initial conditions in linearly tapered solenoid channels
	Introduction
	Approach
	Envelope calculations and initial conditions
	Channel configurations
	Results matrix
	Motivations and limitations

	Results
	Linear taper with fixed emittance
	Linear taper with emittance varied

	Summary
	References


