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SUMMARY
In this study, a new approach of adaptive control law for
controlling robot manipulators using the Lyapunov based
theory is derived, thus the stability of an uncertain system is
guaranteed. The control law includes a PD feed forward part
and a full dynamics feed forward compensation part with the
unknown manipulator and payload parameters. The novelty
of the obtained result is that an adaptive control algorithm
is developed using trigonometric functions depending on
manipulator kinematics, inertia parameters and tracking
error, and both system parameters and adaptation gain matrix
are updated in time.

KEYWORDS: Adaptive control; Robot manipulators; Para-
meter estimation; System stability; Parametric uncertainty.

1. INTRODUCTION
Adaptive control methods offer an attractive solution to the
robot control problem, when neither an exact model of
a manipulator nor accurate values of dynamic parameters
may exist. Some of the control laws introduced by Craig
et al.,1 Middleton and Goodwin,2 and Spong and Ortega3

require acceleration measurements and/or computation of the
inverse of the moments inertia matrix containing estimated
parameters. Slotine and Li4 derived an adaptive control
algorithm without using the joint accelerations and the
inverse of inertia matrix. It consists of a PD feedback part
and a full dynamics feed forward compensation part with the
unknown manipulator and payload parameters. In another
study of Slotine and Li,5 it is shown that position and
velocity errors converge to zero but the Lyapunov stability
was not established. In the reference study,6 the adaptive
robot controller5 was proved in the Lyapunov sense, but in
the proof the feedback matrix was assumed to be uniformly
positive definite. Egeland and Godhavn7 assumed that the
feedback gain matrix is to be uniformly positive defined,
possible time varying and proved stability in the sense of the
Lyapunov. Burdet and Codourey8 compared nine different
adaptive control algorithms and, as a result, it is shown
that the adaptive feed forward controllers are convenient
for learning the parameters of the dynamic equation in the
presence of friction and noise. In references [8,10], other
comparative studies of adaptive control laws are given.

In this paper, a new adaptive control law is derived for
n-link robot manipulators based on the Lyapunov-based
theory. A parameter adaptation law is derived considering
the Slotine and Li4 and Sciavicco and Siciliano11 approaches.
Apart from similar studies, system parameters are estimated
using trigonometric functions depending on manipulator
kinematics, inertia parameters and tracking errors, and the
adaptive gain matrix is also updated in time.

2. DERIVATION OF THE ADAPTATIVE
CONTROL LAW
In the absence of friction or other disturbances, the dynamic
model of an n-link manipulator can be written as12

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where q denotes the n-dimensional vector of generalised
coordinates, τ is the n-dimensional vector of applied torques
(or forces), M(q) is the n × n symmetric positive definite
inertia matrix, C(q, q̇)q̇ is the n-dimensional vector of
centripetal and Coriolis terms and G(q) is the n-dimensional
vector of gravitational terms. Equation (1) can also be
expressed in the following form.

M(q)q̈ + C(q, q̇)q̇ + G(q) = Y(q, q̇, q̈)π (2)

where π is a constant p-dimensional vector of inertia
parameters and Y is an n × p matrix of known function of
joint position, velocity and acceleration. Consider the control
law

τ = M(q)q̈r + C(q, q̇)q̇r + G(q) + Kσ (3)

where K is a positive definite matrix. The other quantities are
given by

q̃ = qd − q q̇r = q̇d + �q̃ q̈r = q̈d + � ˙̃q (4)

where q̃ is the error between the desired and the actual
position, � is a positive definite matrix that describes the
nonlinear compensation and decoupling terms as a function
of the desired velocity and acceleration, corrected by the
current state (q and q̇) of the manipulator. The term Kσ

shows PD action on the error. σ is taken as

σ = q̇r − q̇ = ˙̃q + �q̃ (5)
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Suppose that the computational model has the same structure
as that of the manipulator dynamic model, but its parameters
are not known exactly. The control law (3) is then modified
into

τ = M̂(q)q̈r + Ĉ(q,q̇)q̇r + Ĝ + Kσ
(6)

= Y(q, q̇, q̇r, q̈r)π̂ + Kσ

where π̂ represents the available estimate on the parameters
and, accordingly, M̂, Ĉ, Ĝ denote the estimated terms in the
dynamic model. Substituting (6) into (2) gives

M(q)σ̇ + C(q, q̇)σ + Kσ = −M̃(q)q̈r − C̃(q, q̇)q̇r − G̃

= −Y(q, q̇, q̇r, q̈r)π̃ (7)

where the parameter error vector is

π̃ = π̂ −π (8)

Error quantities concerning the system parameters are
characterised by

M̃ = M̂ − M, C̃ = Ĉ − C, G̃ = Ĝ − G (9)

In order to derive a new adaptive control law, the following
Lyapunov function candidate is defined as

V(σ , q̃, π̃) = 1

2
σ TM(q)σ + 1

2
q̃TBq̃ + 1

2
π̃T�(t)2π̃ (10)

where B is a positive definite matrix. As the novelty of this
study, �(t) is chosen as a p × p dimensional diagonal matrix
and changes in time. The time derivative of Equation (10) is
written as

V̇(σ , q̃, π̃ ) = σ TM(q)σ̇ + 1

2
σ TṀ(q)σ + q̃TB˙̃q

+ π̃T�̇(t)�(t)π̃ + π̃T�(t)2 ˙̃π (11)

Taking B = 2�K, using the property σ T[Ṁ(q) −
2C(q, q̇)]σ = 0 ∀σ ∈ Rn, the time derivative of V(σ , q̃, π̃)
along the trajectory of system (7) is

V̇(σ , q̃, π̃) = − ˙̃qTK˙̃q − q̃T
�K�q̃ + π̃T(�(t)�(t) ˙̃π

+ �̇(t)�(t)π̃ − YT(q, q̇, q̇r, q̈r)σ ) (12)

Since K > 0, and � > 0 the first terms of Equation (12) are
less or equal to zero that is:

V̇(σ , q̃, π̃) =− ˙̃qTK˙̃q − q̃T
�K� q̃ ≤ 0 (13)

Hence, we look for the conditions for which the equ-
ation �(t)�(t) ˙̃π + �̇(t)�(t)π̃ − YTσ = 0 is satisfied. The
remaining terms in Equation (13) are

�(t)�(t) ˙̃π + �̇(t)�(t)π̃ − YTσ = 0 (14)

Equation (14) is arranged as

�(t) ˙̃π + �̇(t)π̃ = YTσ

�(t)
(15)

Then

�(t) ˙̂π + �̇(t)π̂ = YTσ

�(t)
+ �̇(t)π (16)

since ˙̃π = ˙̂π (π is a constant). Equation (16) is arranged as

d

dt
(�(t)π̂ ) = YTσ

�(t)
+ �̇(t)π (17)

Integration of both side of Equation (17) yields

�(t)π̂ =
∫

YTσ

�(t)
dt +

∫
�̇(t)π dt + C (18)

Then

�(t)π̂ =
∫

YTσ

�(t)
dt +�(t)π + C (19)

In order to solve the above equation, �(t) is chosen as a time
varying function such that

1/�(t) =
(

γ cos

(∫
YTσ dt

)
+ β

)
I (20)

where γ and β are positive real numbers, I is a p × p
dimensional identity matrix. Substitution Equation (20) into
Equation (19) yields

π̂

γ cos
(∫

YTσ dt
) +β

=
∫

(YTσ )

(
γ cos

(∫
YTσ dt

)
+β

)
dt

+ π

γ cos
(∫

YTσ dt
) +β

+ C (21)

After integration, the result is

π̂

γ cos
(∫

YTσ dt
) +β

= γ sin

(∫
YTσ dt

)
+β

∫
YTσ dt

+ π

γ cos
(∫

YTσ dt
)+ β

+ C (22)

If the condition of π̂ (0) =π is taken as an initial condition,
the constant C is equivalent to zero. Hence, the parameter
adaptation law is derived as

π̂ =
(

γ cos

(∫
YTσ dt

)
+ β

)[
γ sin

(∫
YTσ dt

)

+ β

∫
YTσ dt

]
+ π (23)

The resulting block diagram of adaptive control is illustrated
in Fig. 1.

https://doi.org/10.1017/S0263574704000657 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000657


Control law 95

Fig. 1. Block diagram of the proposed adaptive control (23).

3. EXTENSIONS
In order to derive the other parameter estimation law, �(t) is
chosen as

1/�(t) =
(

cos

(
α

∫
YTσ dt

))
I (24)

where α is a positive real number. Substituting Equation (24)
into Equation (19) yields

π̂

cos
(
α

∫
YTσ dt

) =
∫ [

(YTσ )cos

(
α

∫
YTσ dt

)]
dt

+ π

cos
(
α

∫
YTσ dt

) + C (25)

After integration, the result is

π̂

cos
(
α

∫
YTσ dt

) = (1/α) sin

(
α

∫
YTσ dt

)

+ π

cos
(
α

∫
YTσ dt

) + C (26)

Then

π̂ = cos

(
α

∫
YTσ dt

)
(1/α) sin

(
α

∫
YTσ dt

)

+π + Ccos

(
α

∫
YTσ dt

)
(27)

If the condition of π̂ (0) =π is taken as an initial condition,
the constant C is equivalent to zero. Hence, the parameter
adaptation law is derived as

π̂ = cos

(
α

∫
YTσ dt

)[
(1/α) sin

(
α

∫
YTσ dt

)]
+ π (28)

The resulting block diagram is shown in Fig. 2.

For the third derivation, �(t) is chosen as

1/�(t) = cos

(∫
YTσ dt

)
+ δcos

(
κ

∫
YTσ dt

)
(29)

Substituting Equation (29) into Equation (19) yields

π̂

cos
(∫

YTσ dt
) + δ cos

(
κ

∫
YTσ dt

)

=
∫ [

(YTσ ) cos

(∫
YTσ dt

)

+ (YTσ )δcos

(
κ

∫
YTσ dt

)]
dt

+ π

cos
(∫

YTσ dt
) + δ cos

(
κ

∫
YTσ dt

) + C (30)

The result after integration is

π̂

cos
(∫

YTσ dt
) + δcos

(
κ

∫
YTσ dt

)

= sin

(∫
YTσ dt

)
+ (δ/κ)sin

(
κ

∫
YTσ dt

)

+ π

cos
(∫

YTσ dt
) + δ cos s

(
κ

∫
YTσ dt

) + C (31)

If the condition of π̂(0) = π is taken as an initial condition,
the constant C is equivalent to zero. Hence, the parameter
adaptation law is derived as

π̂ =
[

cos

(∫
YTσ dt

)
+ δcos

(
κ

∫
YTσ dt

)]

×
[

sin

(∫
YTσ dt

)
+ (δ/κ) sin

(
κ

∫
YTσ dt

)]
+π (32)

The resulting block diagram is shown in Fig. 3.
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Fig. 2. Block diagram of the proposed adaptive control law (28).

Fig. 3. Block diagram of the proposed adaptive control law (32).

Fig. 4. Two-link planar robot.13

4. SIMULATION EXAMPLE

The control algorithms have been applied to a two-link
robot manipulator, as shown in Fig. 4, to illustrate the
proposed controllers performance. Computer simulations
have been carried out with the same Spong’s model13 and

one parameterization of this robot is given by

π1 = m112
c1 + m2l21 + I1, π2 = m2l2c2 + I2, π3 = m2l1lc2,

π4 = m1lc1, π5 = m2l1, π6 = m2lc2, (33)

With this parameterisation, the dynamic model in Equation 1
can be written as

Y(q, q̇, q̈)π = τ (34)

The component yij of Y(q, q̇, q̈) are given as

y11 = q̈1; y12 = q̈1 + q̈2;

y13 = cos (q2) (2q̈1 + q̈2) − sin (q2)
(
q̇2

2 + 2q̇1q̇2
)
;

y14 = gc cos(q1); y15 = gc cos(q1); y16 = gc cos(q1 + q2);

y21 = 0; y22 = q̈1+ q̈2; y23 = cos(q2)q̈1 + sin (q2)
(
q̇2

1

)
;

y24 = 0; y25 = 0; y26 = gc cos(q1 + q2). (35)
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Table I. Parameters of the unloaded arm13.

m1 m2 l1 l2 lc1 lc2 I1 I2

10 5 1 1 0.5 0.5 10/12 5/12

Table II. πi for the unloaded arm13.

π1 π2 π3 π4 π5 π6

8.33 1.67 2.5 5 5 2.5

Table III. π0i for the loaded arm13.

π01 π02 π03 π04 π05 π06

13.33 8.96 8.75 5 10 8.75

Y(q, q̇, q̇r, q̈r)in Equation (6) has the component

y11 = q̈r1; y12 = q̈r1 + q̈r2;

y13 = cos (q2) (2q̈r1 + q̈r2) − sin (q2) (q̇1q̇r2 + q̇1q̇r2 + q̇2q̇r2);

y14 = gc cos (q1) ; y15 = gc cos (q1) ; y16 = gc cos (q1 + q2)

y21 = 0; y22 = q̈r1 + q̈r2; y23 = cos (q2) q̈r1 +sin (q2) (q̇1q̇r1);

y24 = 0; y25 = 0; y26 = gc cos (q1 + q2) .
(36)

For illustrative purposes let us assume that the parameters of
the unloaded manipulator are known and Table I gives the
relevant values. Using the values in Table I, Equation (33)
gives the ith component of π as shown in Table II; Table II
also shows the lower bounds of parameters.

If an unknown load carried by the robot is regarded as part
of the second link then the parameters m2, lc2, and I2 will
change to m2 + �m2, lc2 +�lc2 and I2 +�I2 respectively. A
controller will be designed so as to provide robustness in the
following intervals.

0 ≤ �m2 ≤ 10; 0 ≤ �lc2 ≤ 0.5; 0 ≤ I2 ≤ 15

12
(37)

With this choice of the range given by (37), π0 is a vector
chosen as a loaded arm parameters and their upper bound.
The computed values for the ith component of π0 are given
in Table III.13

5. CONCLUSION AND DISCUSSION
In this paper, a new parameter estimation law for controlling
robot manipulators based on the Lyapunov stability theory
has been derived. In this scheme, the main structure of this
control law is similar to (in fact, based on) Sciavicco and
Siciliano,11 and Slotine and Li’s algorithm.4 For illustrative
purpose, the adaptive algorithm of Sciavicco and Siciliano11

is given by

˙̂π = K−1
π YT(q, q̇, q̇r, q̈r)σ (38)

where the Equation (38) gives the parameter update law, and
Kπ is a p × p dimensional positive definite gain matrix. Then,
the parameter estimation law (38) can be modified into

π̂ =
∫

K−1
π YT(q, q̇, q̇r, q̈r)σ dt + π (39)

where π̂(0) =π .
In the reference study,11 the adaptation gain matrix Kπ is

fixed and the parameters estimated depend on the values
of

∫
YTσdt. However, in the new scheme, the functions

γ sin(
∫

YTσ dt) + β
∫

YTσ dt, (1/α) sin(α
∫

YTσ dt) and
sin(

∫
YTσ dt) + (δ/κ) sin(κ

∫
YTσ dt) are parameter esti-

mation laws used instead of
∫

YTσdt, and the functions
γ cos(

∫
YTσ dt) +β, cos(α

∫
YTσ dt) and cos(

∫
YTσ dt) +

δcos(κ
∫

YTσ dt) can be considered adaptation gain matrices
used instead of K−1

π . Both system parameters and adaptation
gain matrices are updated in time and converge to their
asymptotic values during control process.

For computer simulation, a fifth order polynomial is
considered as a reference trajectory for both joints. The
joint angles change from 0 to 2.5 rad in 3 seconds and the
sampling time is taken to be 0.01 s. For a comparison of
the proposed control laws with the known controller (39),
using the same parameters such as K and �, the developed
control algorithms are applied to the model system for the
same trajectory in order to analyse the performance of each
control law. Consequently, the matrices K and � are chosen
as K = diag(80 80), � = diag(80 80). The relevant results
are plotted in Fig. 5 for the controller (39), and are given in
Figs 6–8 for the proposed controllers, respectively.

Fig. 5. Response using the adaptive control law11 (39) when Kπ = diag([1 1 1 1 1 1]), �= diag([80 80]) and K = diag([80 80]).
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Fig. 6. Response of the adaptive control law (23) when �= diag([80 80]), K = diag([80 80]), γ = 1 and β = 1.

Fig. 7. Response of the adaptive control law (28) when �= diag([80 80]), K = diag([80 80]) and α = 0.2.

Fig. 8. Response of the adaptive control law (33) when �= diag([80 80]), K = diag([80 80]), κ = 2 and δ = 0.2.

As seen from Fig. 5, the maximum tracking error in tran-
sient state is about 0.013 rad for the first joint, 0.007 rad for
the second joint with the control parameters K = diag(80 80)
and � = diag(80 80). As shown in Figs 6–8, the per-
formance of the proposed control laws are better than the
known control law (39), and its maximum tracking error
is about 0.0051 rad for the first joint, 0.0036 rad for the
second joint for control law (23); 0.0068 rad for the first
joint, 0.0041 rad for the second joint for the control law
(28); 0.0040 rad for the firsf joint, 0.0027 rad for the
second joint for the control law (32) in transient state with
the same control parameters of K = diag(80 80) and � =
diag(80 80).

In the control process, YTσ converges to zero, and the
parameter estimation speed and the convergence rate of
estimation law (39) decreases. Therefore, the tracking
performance in a transient and steady state response is not
better as compared to the proposed control laws. However,
in the new scheme, parameter estimation speed does not
decreases as much as the control law (39) when YTσ

converges to zero because of the trigonometric function.
Thus, the parameter estimation speed of the proposed
controllers is high and accurate convergence of parameters
to their asymptotic values can be achieved. As a result, the
tracking performance in a transient and steady state has been
improved.
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