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Motivated by the mushy zones of sea ice, volcanoes and icy moons of the outer solar
system, we perform a theoretical and numerical study of boundary-layer convection along
a vertical heated wall in a bounded ideal mushy region. The mush is comprised of a porous
and reactive binary alloy with a mixture of saline liquid in a solid matrix, and is studied in
the near-eutectic approximation. Here, we demonstrate the existence of four regions and
study their behaviour asymptotically. Starting from the bottom of the wall, the four regions
are (i) an isotropic corner region; (ii) a buoyancy dominated vertical boundary layer; (iii)
an isotropic connection region; and (iv) a horizontal boundary layer at the top boundary
with strong gradients of pressure and buoyancy. Scalings from numerical simulations are
consistent with the theoretical predictions. Close to the heated wall, the convection in the
mushy layer is similar to a rising buoyant plume abruptly stopped at the top, leading to
increased pressure and temperature in the upper region, whose impact is discussed as an
efficient melting mechanism.

Key words: porous media, convection in porous media, buoyant boundary layers

1. Introduction

Convection of pore fluid in partially molten porous media arises in numerous
environmental and industrial systems (Worster 1997), such as brine drainage in sea ice
(Hunke et al. 2011), solidification of magma (Tait & Jaupart 1992) and freckle formation
in alloys (Fowler 1985). An important class of problems arise when solidifying alloys are
cooled from boundaries (Worster 1986, 2000). Mushy zones cooled from the boundaries
are found in many geological phenomena, such as hot volcanic dikes (Furumoto 1975;
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Cheng & Minkowycz 1977) and chimneys in analogues of metallic alloy solidification
(Copley et al. 1970). When imposed on a partially solidified region, boundary cooling can
trigger free convection of the liquid flowing through the porous solid mushy zone. This
has been studied in the case of solidification with cooling from a horizontal boundary
(e.g. Worster 1997, 2000; Anderson & Guba 2019), but also in the more complex case
of cooling at a vertical boundary (Huppert 1990; Guba & Worster 2006). Similar types
of convective boundary layers from vertically distributed sources have been studied in
non-reactive porous media (Cheng & Minkowycz 1977), and for convection adjacent to
boundaries undergoing phase change (e.g. Carey & Gebhart 1982; Bloomfield & Huppert
2003). Free convection is also important when the flow is internal to the mush and coupled
to the solidification process (e.g. Guba & Worster 2006). We here focus on convective
boundary layer flows next to a heated vertical boundary, or vertical planar buoyancy source
in a reactive porous mushy layer.

One particular application of the mushy zone surrounding a heated wall is as a model for
shear heating induced melting along tectonic features in the shells of icy satellites, such as
the tiger stripes of Enceladus (Nimmo et al. 2007) or Europa (Hammond 2019). Prevailing
models of heating at localised fractures in ice shells have treated pure fresh ice (Gaidos &
Nimmo 2000; Han & Showman 2008), but the ice shell may be a binary mixture of salts
and water (e.g. McCord et al. 1999). Partial melting of the salt and ice mixture can result
in the formation of a mushy layer, which is a reactive porous layer of fresh ice crystals
and saline liquid brine, and allows for convection and heat transport in the interstitial fluid
(Worster 1997; Wells, Hitchen & Parkinson 2019). Tidally induced shear heating along the
fracture could cause the region around the fracture to warm above the eutectic temperature
(Nimmo et al. 2007) and partially melt to form a mushy zone with two-phase coexistence
of salty liquid in a solid ice matrix. The liberated brine (liquid water and dissolved salt)
will convect due to variations in salt content through the mushy zone and the motion of
the mobile brine could provide the source for the observed Enceladus south polar plume.

Convective flows in porous regions sustained by heat provided by a vertical wall have
been shown to be described by self-similar scalings. For example, Cheng & Minkowycz
(1977) and Ingham & Brown (1986) considered a heated vertical plate in a semi-infinite
domain in a pure saturated porous media. Depending on the thermal input at the wall,
the flow and temperature in the porous medium can be described by a self-similar
solution within a thermal boundary layer (Ingham & Brown 1986). Guba & Worster
(2006) considered convection in a mushy zone at an isothermal vertical boundary at the
eutectic freezing front formed during horizontal directional solidification. They showed
that the flow close to the wall in a semi-infinite mushy region can also be described by a
self-similar solution. By contrast, we here consider the buoyant flow generated by melting
of a mushy layer from a vertical boundary with an imposed constant heat flux, in particular
investigating the flow dynamics in a domain of finite height.

In this paper, we report a theoretical and numerical study of free convection along a
heated wall that imposes a heat flux into a partially melted mushy region of finite depth.
We focus on a reduced model using the near-eutectic approximation (Fowler 1985; Worster
1997) for a mushy layer that is already sufficiently warm to allow partial melt. Our model
yields dynamical insight into flow patterns in an existing region of porous mush, but does
not account for the initial transient production of the melted region. We study the flow in
a finite depth closed box and focus primarily on the flow close to the heated wall, ignoring
possible far-field feedbacks such as flow–boundary interactions and varying buoyancy due
to the return flow. In § 2 we describe the model and present the governing equations as well
as the numerical methods. We identify four different regimes near the wall (from bottom
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Figure 1. Formulation of the problem: a full depth wall, from z = 0 to z = H, is heated, imposing a constant
heat flux F = Fex to the mushy region. A thermal boundary layer develops close to the wall, in which the
convective flow is studied. The buoyancy b and vertical velocity w are fixed at zero at the top and bottom.

to top: an isotropic diffusive tip; a vertical buoyant boundary layer; an isotropic transition
region; and a connection region with scaling inherited from a horizontal boundary layer).
These different regimes predicted by the model are detailed in § 3 in which the theoretical
derivation is supported by a quantitative check of the proposed scalings in numerical
simulations of flow in a porous medium consistent with the near-eutectic approximation
to the mushy layer dynamics. Our conclusions and discussion are presented in § 4.

2. Model

2.1. Governing equations
We consider a binary alloy that constitutes an ideal mushy region in a two-dimensional
domain (see figure 1), i.e. a region in which the solid–liquid interface has become so
convoluted that the solid forms a porous matrix of fresh ice crystals with negligible solute
concentration saturated by brine (Worster 2000). Here, we assume that all the material
properties are the same in each phase and assume the solid and liquid properties are equal
(this is an idealisation to aid mathematical tractability, and leads to a so-called ideal mushy
layer Worster 1997). One such example of a mushy layer is porous sea ice (see Wells et al.
(2019) and references therein). A vertical boundary is located at x = 0 and we impose a
constant horizontal heat flux F = Fex into the mush. In the mushy zone, the governing
equations for the temperature T , the liquid salinity S, the solid fraction φ and the velocity
field u = (u, 0,w) are given by (Worster 1997)

∂T
∂t

+ (u · ∇)T = κ∇2T + L
Cp

∂φ

∂t
, (2.1)

(1 − φ)
∂S
∂t

+ (u · ∇)S = S
∂φ

∂t
, (2.2)

T = T0 − m(S − S0), (2.3)
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μ

Π
u = −∇P + ρg, (2.4)

∇ · u = 0. (2.5)

Equations (2.1) and (2.2) are the heat and salinity advection–diffusion equations taking
into account the phase change correction, where L is the latent heat, Cp the heat capacity
per unit mass and κ the thermal diffusivity. Due to the relatively large Lewis number (ratio
of heat diffusivity to solute diffusivity) in the considered systems, we neglect the diffusive
term in (2.2) at the macroscopic scale. At the pore scale, solute diffusivity cannot be
neglected and acts to rapidly adjust the pore space to a local thermodynamic equilibrium.
The liquidus equation (2.3) is a closure relation for the system when considering an ideal
mush in which the liquid and solid phases are at equilibrium and aligns on the liquidus of
the binary alloy. In the mush, we assume that the temperature and solute concentration
or salinity are linked by a linear relation with S0 a reference solute concentration, T0
the freezing temperature at S0 and m a constant coefficient (Worster 1986, 2000). The
brine flow through the porous mush can be modelled using Darcy’s law (2.4), where
μ is the viscosity, Π the permeability of the porous media, ρ the fluid density, g the
gravitational acceleration and P the pressure field. For the purpose of this study, we assume
that the permeability Π of the mush is constant and that there is no feedback from the
variation of solid fraction, on permeability. Equation (2.5) is the continuity equation for
mass conservation in the flow when assuming incompressibility.

In Darcy’s law (2.4), the density of the fluid ρ is a function of the temperature and of
the salinity, which we approximate as

ρ(T, S) = ρ0 [1 − αT(T − T0)+ αS(S − S0)] , (2.6)

where ρ0 is a reference density, αT and −αS are the coefficients of thermal and solutal
expansion, respectively, and T0 and S0 are reference temperature and salinity. From the
liquidus equation (2.3), however, temperature and salinity are linearly related through a
constant coefficient m, and the density ρ can be written as a function that depends only on
temperature. We have

ρ(T) = ρ0 [1 − α(T − T0)] , (2.7)
with α = αT + αS/m. The coefficient αS/m often dominates, in which case the buoyancy
is controlled by the meltwater released by phase change as the system rapidly relaxes to
local thermal equilibrium.

We now define the buoyancy b as a linear function of temperature

b = αgρ0(T − T0), (2.8)

so that
ρg = ρ0g − b, (2.9)

where g = |g|. Using these definitions, we write both the advection–diffusion equation
for heat (2.1) and the advection–diffusion equation for salinity (2.2) in terms of b. Note
that in Darcy’s law, the constant term ρ0g can be included as the gradient of a hydrostatic
pressure field.

The buoyancy can be fully determined using boundary conditions that close the system.
We here consider an imposed heat flux condition at x = 0 as

F = −λ∂T
∂x

= − λ

αgρ0

∂b
∂x
, (2.10)

where F is a constant heat flux, parametrising the problem, and λ the thermal conductivity
of water, assumed to be the same in the liquid and the ice. Note that by symmetry this
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yields the same thermal forcing as a localised delta-function line source of heating at the
centre of a domain of twice the width, with magnitude 2F. This will be later modelled
using a Gaussian approximation to the delta function in the numerical solutions. In the far
field, the buoyancy and the velocities are assumed to go to zero, and we also assume zero
vertical velocity and zero buoyancy at the top and bottom boundaries. Although this model
neglects some physical processes relevant to the dynamics of geophysical settings, such as
temporally and spatially intermittent heating sources, the goal is to yield an analytically
tractable problem capturing the key elements of the convective boundary-layer flow near
to a heated vertical boundary in order to build initial insight.

2.2. Dimensionless equations
We consider a characteristic length scale H, corresponding to the vertical size of the wall,
and a characteristic thermal diffusion time scale H2/κ , where κ is the thermal diffusivity.
We therefore construct a characteristic velocity scale κ/H. This leads us to the definition
of dimensionless lengths, time and velocities

x → x̃ = x
H
, z → z̃ = z

H
, and t → t̃ = κt

H2 , (2.11a–c)

and

u → ũ = Hu
κ

and w → w̃ = Hw
κ
, (2.12a,b)

where the arrow indicates the rescaling operation, and the tilde denotes the dimensionless
quantities. A similar scaling can also be found for the buoyancy and the pressure

b → b̃ = HΠ0b
κμ

and P → p̃ = Π0P
κμ

+ gHΠ0ρ0

κμ
z̃. (2.13a,b)

Note that the buoyancy scale is the buoyancy required to drive the flow at velocity κ/H,
and that the pressure scale is the pressure difference per unit H required to cause the fluid
to flow at the same velocity κ/H. For the sake of brevity, the dimensionless variables will
be noted without tildes. Hence, the dimensionless equations are

∂b
∂t

+ (u · ∇)b = ∇2b + S Ra
∂φ

∂t
, (2.14)

∂

∂t
[C Raφ + b(1 − φ)] + (u · ∇)b = 0, (2.15)

u = −∇p + bẑ, (2.16)

∇ · u = 0, (2.17)

where S is the Stefan number defined as

S = Lλ
CpFH

, (2.18)

C is the compositional ratio

C = mS0λ

FH
, (2.19)

and the porous medium Rayleigh number Ra is

Ra = αgρ0Π0FH2

κ2μCp
, (2.20)
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that represents the ratio of buoyant to dissipative mechanisms (thermal and viscous). Note
that, while the Stefan number and the compositional ratio are inversely proportional to the
heat flux F, changing F does not directly influence the rate of local phase change since the
products S Ra and C Ra in (2.14) and (2.15) are independent of F.

This form of Rayleigh number emerges from the dimensionless form of the heat flux
boundary condition (2.10) expressed in terms of the buoyancy b

F = −λ∂T
∂x

→ αgρ0Π0H2

κ2μCp
F = −∂ b̃

∂ x̃
, (2.21)

which yields

−∂b
∂x

= Ra at x = 0, (2.22)

with dimensionless variables and tildes dropped. In the numerical simulations, we
therefore discuss the heat flux F and the Rayleigh number Ra interchangeably. It can
also be used to define a natural length scale h� over which the buoyancy and dissipative
mechanisms have commensurate magnitude written as

h� =
√

H2

Ra
=
(
κ2μCp

αgρ0Π0F

)1/2

. (2.23)

We then define the dimensionless length scale h = h�/H.

2.3. Near-eutectic approximation
Similarly to the analysis of a freezing front in Guba & Worster (2006), we now consider
an approximation that is similar to the near-eutectic approximation described by Fowler
(1985) and Worster (1986). The relevant limit considers C � 1, which corresponds to a
relatively weak magnitude of heating vs the freezing point depression for the background
composition. This is similar to the near-eutectic approximation, where composition or
temperature differences across the system are assumed to be a small fraction of the eutectic
composition or temperature difference between the eutectic point and freezing point of
pure liquid. If the largest length scales in the system are of order 1, then condition (2.22)
implies an order of magnitude upper bound of b = O(Ra). Writing the solid fraction
φ = φ0 + φ̂ where φ0 is a constant initial value and φ̂ a perturbation, we then consider
a limit where C � 1, and φ̂ = O(1/C ) � 1. Approximating (1 − φ)b � (1 − φ0)b at
leading order in (2.15) yields to an equation for ∂tφ in terms of ∂tb. Then, eliminating ∂tφ
from (2.14) results in (2.24), an advection–diffusion equation for the buoyancy that, after
rescaling time by (C + (1 − φ0)S )/(C + S ), does not involve the solid fraction φ

Ω

[
∂b
∂t

+ (u · ∇)b
]

= ∇2b, (2.24)

where Ω = 1 + S /C represents a modified dimensionless heat capacity, which accounts
for the impact of phase changes and latent heat transfer that occurs during warming or
cooling of the solid matrix (Huppert & Worster 2012). Note that, in this approximation, φ
evolves as a slaved variable, with no impact on b or u. The reduced system (2.15), (2.16),
and (2.24) hence characterises buoyancy driven convective flow in a porous medium with
modified heat capacity. We also note that we are assuming small deviations to an initially
uniform solid fraction, rather than directly assuming the solid fraction is small as is more
commonly done in the near-eutectic approximation (cf. Worster 1997).
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2.4. Numerical methods
We run direct numerical simulations (DNS) of the governing equations (2.16), (2.17) and
(2.24) using a pseudospectral method implemented in Dedalus (Burns et al. 2020). We
use a two-dimensional horizontally periodic domain (x, z) ∈ [−Lx/2, + Lx/2] × [0,H],
with 256 × 256 nodes using a Fourier basis in the x direction and a Chebyshev basis in
the z direction which naturally clusters grid points near the boundaries. The resolution and
the time step have been set to ensure the convergence of the simulation, defined by the
saturation of the total kinetic energy of the system with an uncertainty of 10−4. Boundary
conditions of no orthogonal flow and zero buoyancy are applied at the top and bottom of
the domain. Instead of applying the flux boundary condition (2.22) directly, at x = 0, we
use an approximation to a line source, with a horizontal Gaussian heating pattern that is
constant along the vertical wall,

Q(x, z) = Q0√
2πσ 2

exp
(

− x2

2σ 2

)
, (2.25)

where Q0 = 2F is the heating coefficient and σ the width of the Gaussian, both constant.
We solve (2.16) through (2.24), which corresponds to the dimensionless set of equations
for porous medium convection with a modified heat capacity, integrating out to the steady
state reached when convergence of the code is observed, i.e. when the total kinetic energy
reaches a plateau. Example results are presented in figure 2 to provide context for the
subsequent discussion. One should note that this stationary state is, to be precise, a
‘quasi-steady’ state for the system: energetic quantities are still slowly fluctuating and,
if the model is run longer, the system will reach a state where the heat input along the
vertical wall is balanced by the heat lost through the top boundary and convective flow
transporting heat in between. In this study, we choose to focus on this quasi-steady state
as it is the regime in which the buoyant plume is fully developed and where melting or
freezing may be triggered; at longer times, our model does not hold anymore.

Figure 2(a,c) shows contours of the streamfunction in the steady state, in a DNS with
Lx = 16 and H = 7 (size of the wall, in non-dimensional length units), Ra = 200, Ω = 1
and σ/H = 7.1 × 10−3 (width of the Gaussian, in length units). Two convective cells are
created, one flowing clockwise (in blue) and one flowing anti-clockwise (in red). They
are symmetric right–left but the up–down symmetry is broken because of buoyancy and
gravity. From the bunching of streamlines in the thin layer close to the heated wall, we can
infer the existence of a vertical boundary layer in which the flow is accelerated vertically
to the top. The right panel in figure 2 shows the instability triggered when the heating is
increased further, to Ra = 360. Here, we focus on the steady solutions, hence the study
of this instability is beyond the scope of this work. It is noteworthy that the DNS results
in the stable configuration (figure 2a,c) are similar to what is described by Menand, Raw
& Woods (2003) and Milne & Butler (2007) for purely compositional plumes in passive
porous layers. With a combination of different values of Ω and Ra, however, they report
different shapes for the buoyant plumes that can be thinner or wider, with an asymmetry
between the upper and the lower part. Exported to our configuration, their results point
towards a system in which buoyancy transport is dominated by the advection term.

3. Results

We focus primarily on the boundary-layer flow near the wall, supplied by a reservoir of
far-field mush. The specific pattern of the far-field return flow may depend more strongly
on the far-field boundary conditions – in geophysical applications this might include the
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Figure 2. Contours of streamfunction (a,b) and buoyancy (c,d) in a DNS using Dedalus (Burns et al. 2020),
imposing a z-independent localised heat source around x̃ = 0 which emulates a heated wall, and zero buoyancy
and vertical velocity at the top and at the bottom of the domain. Contour values for the streamfunction go from
−10 to +10 with a spacing of 0.5; blue is clockwise and red is anti-clockwise. Contour values for the buoyancy
go from 0 to 50 with a spacing of 1.5. (a,c) Steady state reached at relatively low heating Ra = 200 andΩ = 1.
(b,d) Instability triggered with increased heating, at Ra = 360 andΩ = 1. We do not consider these larger and
unstable Rayleigh number solutions further here.

geometry of any mush–eutectic phase boundary. But one would expect the leading order
characteristics of the near-wall boundary-layer flow to depend primarily on conditions at
the heated wall and immediately outside the boundary layer, and be less sensitive to details
of the far-field return flow.

Figure 3 presents the global picture of the convective cell. We define four regions,
labelled I through IV, based on the flow characteristics and their various scalings close
to the wall, which are derived later. In the following subsections, we provide an analytical
description of these different types of behaviours observed near the wall.

3.1. Theory
Focusing on the two-dimensional dynamics in the plane (x, z), we show that (2.16), (2.17)
and (2.24), all collapse into a single equation of a single function that will help us to
understand the different physical scalings involved in the problem.

From the continuity equation (2.16), we define a streamfunction ψ so that the horizontal
and vertical velocities u and w are

u = −∂ψ
∂z

and w = ∂ψ

∂x
. (3.1a,b)

Then, from the horizontal projection of Darcy’s law, which involves cross-derivatives of
the pressure field and of the streamfunction, we define a potential ϕ̄ so that p and ψ can
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I: Diffusive – b, w ∼ z

II: Self similar plume

b, w ∼ z1/3 f
x
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III: Connection region

(isotropic)

b ∼ (H − z)−1/3

w ∼ (H − z)1/3

IV: Top corner – b, w ∼ H − z
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Figure 3. Regions of different behaviours observed for the flow close to the wall, from left to right: contours
of streamfunction in the numerical simulation; along wall profiles of b, w and ∂zp; and summary of the scalings
predicted by the theory that are derived in § 3.1. DNS run at Ra = 200 and Ω = 1.

be written as

p = ∂ϕ̄

∂z
and ψ = ∂ϕ̄

∂x
. (3.2a,b)

Using this potential, the horizontal component of Darcy’s law is automatically satisfied,
and the vertical projection of Darcy’s law becomes an equation for ϕ̄ and the buoyancy b,

∇2ϕ̄ = b. (3.3)

As a result, all relevant functions of the problem can be expressed using derivatives of the
potential ϕ̄, as

p = ∂zϕ̄, (3.4)

ψ = ∂xϕ̄, (3.5)

u = −∂x∂zϕ̄, (3.6)

w = ∂2
x ϕ̄, (3.7)

b = ∇2ϕ̄ = ∂2
x ϕ̄ + ∂2

z ϕ̄. (3.8)

From these results and using the advection–diffusion equation for b (2.24), we obtain a
collapsed equation for ϕ̄ that is

Ω[∂t∇2ϕ̄ − ∂x∂zϕ̄ ∂x∇2ϕ̄ + ∂2
x ϕ̄ ∂z∇2ϕ̄] = ∇4ϕ̄. (3.9)

As Ω is a parameter of order 1, by renormalising the potential ϕ̄ and the time variable t as

ϕ̄ → 1
Ω
ϕ and t → Ωt, (3.10a,b)

we can write the equation for ϕ without explicit dependence on Ω . Hereafter, we use ϕ to
represent the renormalised quantity according to (3.10a,b). Hence, we have the following

926 A33-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.742


S. Boury, C.R. Meyer, G.M. Vasil and A.J. Wells

equation with three different contributions

∂t∇2ϕ − ∂x∂zϕ∂x∇2ϕ + ∂2
x ϕ∂z∇2ϕ = ∇4ϕ. (3.11)

This (3.11) represents a balance between temporal evolution of the system ∂t∇2ϕ,
nonlinearities coming from the advection term ∂x∂zϕ∂x∇2ϕ + ∂2

x ϕ∂z∇2ϕ and diffusion
of buoyancy ∇4ϕ.

In our study, we will consider steady states for buoyancy and velocity, so the temporal
contribution will always be neglected, and relevant balances will involve the nonlinear
advection term and the diffusive term. We focus on steady solutions after the initial
transient adjustment after warming begins (e.g. figure 2a,c), but note that, at sufficiently
large Rayleigh number, the transient dynamics can potentially trigger an instability, as
shown in figure 2(b,d). The two nonlinear contributions in (3.11) have the same scaling in
terms of numbers of x and z derivatives, due to continuity.

Note that the heat flux boundary condition (2.22) can also be expressed in terms of ϕ as

−∂x∇2ϕ = RaΩ at x = 0, (3.12)

so that the only parameter group in the problem is the modified Rayleigh number RaΩ
which accounts for the effective heat capacity augmented by latent heat release or uptake
from the phase change.

The buoyancy is given by the Laplacian of ϕ and, as such, it involves x and z derivatives.
These derivatives may or may not have the same scalings, which leads to three different
idealised cases discussed in the following subsections:

(i) If ∂x ∼ ∂z, both derivatives contribute to the buoyancy and the region is isotropic.
(ii) If ∂x � ∂z, the horizontal variations are more important than the vertical variations,

which is characteristic of a vertical boundary layer.
(iii) If ∂x � ∂z, the horizontal variations are less important than the vertical variations,

which is characteristic of a horizontal boundary layer.

We now examine the scalings resulting from (3.11) based on these three regimes

3.1.1. Isotropic scaling
We define the following scalings for x, z, and ϕ

x, z → L and ϕ → A, (3.13a,b)

where x and z have the same scaling due to isotropy.
The scaling of the heat flux boundary condition leads to

A ∼ RaΩL3 ∼ L3. (3.14)

Since the system is in a steady state, temporal derivatives make no contribution, and the
scaling of the remaining terms in the potential equation (3.11) yields

−∂x∂zϕ∂x∇2ϕ + ∂2
x ϕ∂z∇2ϕ ∼ A2

L5 ∼ Ra2Ω2L, (3.15)

∇4ϕ ∼ A
L4 ∼ RaΩ

L
, (3.16)

where we eliminate A using (3.14). This means that the nonlinear terms and the diffusive
term have different scalings, in L and in 1/L respectively. Two asymptotic behaviours can
therefore be described:
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Convection in a mushy layer along a heated wall

(i) For L � (RaΩ)−1/2: the diffusive term dominates the equation and is at least one
order of magnitude in L larger than the nonlinear terms. The regime is diffusive,
which means that u · ∇b ≈ 0, and the buoyancy satisfies a Poisson equation with
heat source from the heated wall. From the scaling of ϕ in (3.14), we have b ∼ RaΩL
and w ∼ RaΩL.

(ii) For L � (RaΩ)−1/2: the nonlinear terms dominate the equation.

3.1.2. Isotropic stagnation flow scaling
Another explanation for a linear scaling comes from a stagnation point flow model. We
illustrate this here for flow near the upper boundary at z = H. A Taylor series expansion
of the streamfunction in to second order gives

ψ = Ax + Bz + Cx2 + Dxz + Ez2. (3.17)

Enforcing boundary conditions that w = ∂xψ = 0 at z = H and the symmetry condition
u = −∂zψ = 0 at x = 0 yields the following streamfunction:

ψ = −Dx(H − z), (3.18)

with D a coefficient to be determined. This suggests a linear scaling in z for w near to the
upper boundary. The coefficient D depends on matching to the flow from the incoming
isotropic region; this calculation is challenging and not pursued here. A similar analysis
yields a corresponding expression ψ ∝ xz near the lower boundary at z = 0.

3.1.3. Vertical boundary layer
We define the following scalings for x, z and ϕ:

x → Lx, z → Lz ∼ z, and ϕ → A, (3.19a–c)

where Lz ∼ z. In this case, the variations along z are small compared with the variations
along x and the scaling length Lx is expected to be a function of z (cf. similarity solutions
of Cheng & Minkowycz 1977; Guba & Worster 2006).

Temporal derivatives make no contribution in steady state and, given that ∂x � ∂z,
we neglect the z derivatives compared with x derivatives, so the scaling of the potential
equation is given as

∂t∇2ϕ − ∂x∂zϕ∂x(∂
2
x ϕ+∂2

z ϕ)+ ∂2
x ϕ∂z(∂

2
x ϕ+∂2

z ϕ)︸ ︷︷ ︸
A2

LzL4
x

= ∂4
x ϕ︸︷︷︸
A

L4
x

+2∂2
x ∂

2
z ϕ + ∂4

z ϕ, (3.20)

leading to the balance
A ∼ Lz ∼ z. (3.21)

The same method gives a scaling of the wall heat flux boundary condition (3.12)

RaΩ � − ∂x(∂
2
x ϕ︸ ︷︷ ︸

A
L3

x

+∂2
z ϕ), (3.22)

then

Lx ∼
(

A
RaΩ

)1/3

∝ z1/3. (3.23)
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From these scalings, we define a characteristic boundary-layer width Lx as

Lx = h2/3z1/3

Ω1/3 = z1/3(RaΩ)−1/3, (3.24)

where h is the dimensionless characteristic length defined from the Rayleigh number and
the size of the wall H in (2.23). This motivates using a self-similar variable

η = x
Lx

= xΩ1/3

h2/3z1/3 . (3.25)

The potential can be written under the form ϕ = zf (η) in terms of a function f . As we are
neglecting the z derivatives in the boundary layer, we have

w = b = Ω−1∂2
xϕ and p = Ω−1∂zϕ, (3.26a,b)

and, since ϕ = zf (η) and Lx goes like z1/3, we obtain the following scalings for w and b:

w ∼ Ra2/3Ω−1/3z1/3 and b ∼ Ra2/3Ω−1/3z1/3. (3.27a,b)

These scalings are analogous to those derived by Cheng & Minkowycz (1977) for a
self-similar flow at a wall with imposed temperature varying T ∼ z1/3, which recovers
a constant heat flux. Replacing ϕ = zf (η) in the collapsed advection–diffusion equation
(3.20), we derive a self-similar ordinary differential equation for f ,

( f ′′)2 − 2f ′f ′′′ − 3f ′′′′ = 0. (3.28)

The boundary conditions imposed at the wall (x = 0) and in the far field (see similar
analysis in Cheng & Minkowycz (1977) for a boundary layer in a porous medium with
wall temperature varying as a power law of distance along the wall, and Guba & Worster
(2006) for a boundary layer next to an isothermal boundary in a solidifying mush layer)
are

f ′′′(0) = −1︸ ︷︷ ︸
flux at x=0

, f ′(0) = 0︸ ︷︷ ︸
u=0 at the wall

and f ′′(η∗) → 0 as η∗ → ∞︸ ︷︷ ︸
constant b in the far field

. (3.29a–c)

Note that the final condition of constant buoyancy in the far field is equivalent to zero
vertical velocity in the far field outside of the boundary layer. For numerical integration
purposes, we set f ′′(η∗) = 0 at some large value of η∗ and thereafter check that the solution
becomes independent of this choice of η∗. Although (3.28) is a fourth-order differential
equation, only three boundary conditions are required because the physical variables only
depend on derivatives of f and (3.28) is a third order equation for f ′. We later compute
this solution using the Dedalus iterative boundary value problem solver (Burns et al.
2020) over 256 Chebyshev nodes, with η� chosen large enough to ensure that the far-field
boundary condition is satisfied. Numerical convergence of the solution is obtained after a
few iterations.

3.1.4. Horizontal boundary layer
To determine scalings for the horizontal boundary layer near the top boundary, we define
the following scalings for x, z and ϕ

x → Lx ∼ x, z → Lz, and ϕ → A, (3.30a–c)

where Lx ∼ x and Lz � Lx as the variations along x are small compared with the variations
along z. The scaling length Lz is expected to be a function of x.
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Convection in a mushy layer along a heated wall

Temporal derivatives make no contribution in steady state and, given that ∂x � ∂z, we
neglect the x derivatives, so the scaling of the potential equation yields

∂t∇2ϕ − ∂x∂zϕ∂x(∂
2
x ϕ+∂2

z ϕ)+ ∂2
xϕ∂z(∂

2
x ϕ+∂2

z ϕ)︸ ︷︷ ︸
A2

L3
z L2

x

= ∂4
x ϕ + 2∂2

x ∂
2
z ϕ+ ∂4

z ϕ︸︷︷︸
A

L4
z

. (3.31)

Balancing these terms leads to

A ∼ L2
x/Lz ∼ x2/Lz, (3.32)

where Lz(x) has to be determined.
As for the vertical boundary layer, we introduce a similarity variable ζ and write the

potential ϕ in terms of a function g as

ζ = z
Lz(x)

and ϕ = x2

Lz(x)
g(ζ ). (3.33a,b)

We determine Lz(x) by assuming that an order-1 fraction of the buoyant heat flux
coming from below towards the top boundary is eventually transported sideways through
this upper boundary layer, so that the horizontal spreading flow carries a constant heat
flux at leading order. A full solution of the problem will require asymptotic matching of
the incoming fluxes. However, to determine the scalings this only needs to be true in an
order-of-magnitude sense; the whole buoyant heat flux, corresponding to the heat flux at
the entire wall (i.e. sum of the flux −bx = Ra = 1/h2 emitted over the wall of length H),
is going sideways through this top region, meaning∫

ub dz ∼ Ra
h2 as h → 0, (3.34)

where the integral is over the depth of the horizontal boundary layer. This assumes the heat
lost by conduction through the top boundary does not change the order of the magnitude
of the heat flux: this approximation should work well for small enough x sufficiently close
to the plume, but may break down sufficiently far downstream where the accumulated
heat loss may eventually become substantial. Noting that u = −∂x∂zϕ/Ω and b ≈ ∂2

z ϕ/Ω
within the boundary layer, computing the left-hand side yields∫

ub dz = − 1
Ω2

x3

Lz(x)4

∫ [
g′′(ζ )

(
2g′(ζ )− xL′

z(x)
Lz(x)

(
ζg′′(ζ )+ 2g′(ζ )

))]
dζ. (3.35)

If Lz has power-law dependence on x, then xL′
z/Lz is a constant. Then, the balance of the

heat fluxes (3.34) gives

Lz(x) = h1/2x3/4

H1/4Ω1/2 = x3/4Ra−1/4Ω−1/2, (3.36)

where, we retain a dimensionless H in the following calculation to aid interpretation, even
though the dimensionless height is 1. Hence, the potential ϕ is given as

ϕ = Ω1/2H1/4x5/4

h1/2 g(ζ ) = Ra1/4Ω1/2H1/4x5/4g(ζ ). (3.37)

As we are neglecting the x derivatives compared with the z derivatives, b � ∂zp so that we
have

w = Ω−1∂2
x ϕ and b � ∂zp = Ω−1∂2

z ϕ, (3.38a,b)
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which implies that hydrostatic balance holds at leading order in this boundary layer, and
the pressure gradient is

∂zp = Ω−1∂2
z ϕ = Ω1/2H3/4

h3/2x1/4 g′′(ζ ) = Ra3/4Ω
1/2H3/4

x1/4 g′′(ζ ). (3.39)

3.2. Comparison with numerical solutions
Using the above scaling arguments, we can define four different domains for the numerical
simulation results presented in figure 3, labelled I, II, III and IV, starting from the bottom
of the wall, and correspond to the different scalings derived in the previous subsections.
These domains yield contrasting behaviour of the along wall profiles of w, b and ∂zp (see
figure 3). The interest in these three quantities is motivated by the relation b = ∇2ϕ = w +
∂zp, showing that the buoyancy, the vertical velocity, and the vertical pressure gradient, are
linearly related.

These four regions have different scalings, that can be explained as follows.

a. Region I Tip behaviour, in a small regularisation region. All quantities are small and
the region is isotropic. Diffusive terms dominate and the buoyancy approximately
satisfies a Laplace equation for diffusive heat transfer in steady state. Because this
region is isotropic, we expect the variation along the length of the wall to satisfy
w ∼ z and b ∼ z as discussed in § 3.1.1.

b. Region II Rising plume region, described by a vertical boundary layer in which
horizontal spatial derivatives dominate. The vertical Darcy flow is driven by
buoyancy forces with pressure gradients negligible, yielding b � w. Due to the
vertical boundary layer, z1/3 scalings are expected as discussed in § 3.1.3.

c. Region III Connection region, between II and IV, where b, w and ∂zp are of the
same order of magnitude. The region is isotropic and the nonlinear terms dominate
the collapsed equation. The incoming plume flow from below carries most of the
buoyancy flux, which is advected through this region and the additional heating at
the wall does not change the buoyancy flux substantially, remaining of the same order
of magnitude throughout this region. An empirical power law of w ∝ (H − z)1/3 and
b ∝ (H − z)−1/3 scalings are discussed in § 3.2.3.

d. Region IV Top corner region, with the scaling of a top boundary layer, bringing the
heat flux sideways into the horizontal boundary layer. Again, this region is diffusive
and we expect the linear scalings, similar to those derived in § 3.1.1 except using
the distance to (0,H). Region IV forms part of the turnaround region, where the
initially vertical flow adjusts into horizontal flow towards a region that grows with
x with a horizontal boundary layer as in § 3.1.4 and its scalings for the pressure
gradient. Region IV can be decomposed into two distinct regions, with a corner
region close to the top of the wall, which develops into an adjacent region as a
horizontal top boundary layer. We hypothesise that the pressure gradient from the
horizontal boundary layer is imprinted on the corner region, leading to a unique
pressure scaling for region IV.

In figure 4, we present log–log plots of the vertical velocity and of the buoyancy in
which the different scalings predicted analytically in the previous subsections are tested.
Figure 4(a,b) shows log–log plots of the vertical velocity along the wall, with distance
from the bottom and distance from the top, respectively. We first observe a linear scaling
w ∝ z in region I, behaviour potentially consistent with two 1/3 scalings w ∝ z1/3 and
w ∝ (H − z)1/3 in region II and III, and a linear scaling w ∝ (H − z) in region IV.
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Figure 4. Scalings inferred from the profiles obtained in the DNS along the wall (at x = 0). Blue lines show
(a) vertical velocity varying with distance from the bottom; (b) vertical velocity varying with distance from the
top; (c) buoyancy varying with distance from the bottom; and (d) buoyancy varying with distance from the top.
Red lines indicate slope of linear scalings, green lines for +1/3 power law and cyan lines for −1/3 power law.
The different regions are indicated by the labels I, II, III and IV.

Figure 4(c,d) shows log–log plots of the buoyancy varying with distance along the wall,
starting from the bottom and starting from the top, respectively. Similarly to the vertical
velocity, we first observe a linear scaling w ∝ z in region I, a 1/3 scaling w ∝ z1/3 in region
II and a −1/3 scaling w ∝ (H − z)−1/3 in region III and a linear scaling w ∝ (H − z)
in region IV. As discussed above, scalings for regions I, II, and IV, are consistent with
the theoretical expectations. Region III, however, shows interesting empirically suggested
scalings for which we do not yet have an asymptotic explanation. We now compare our
scaling predictions with the numerics in more detail.

3.2.1. Region I
Close to the bottom tip, the vertical velocity, the buoyancy and the pressure gradient
are small (figure 3). All terms contribute to the equations as the region is isotropic. The
scalings described in § 3.1.1 show that, because the length scale is small, this region is
diffusive and has a linear scaling for b and w with z, that is observed in figure 4(a,c). This
region breaks down when the isotropic scale Lx ∼ z becomes comparable to the width
Lx ∼ h2/3z1/3 of a potential rising plume, i.e. when z is of order h.

3.2.2. Region II
In region II, the flow acts like a rising buoyant plume described by the vertical boundary
layer from § 3.1.3. The flow structure is similar to the analysis performed by Guba &
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Figure 5. Horizontal slices of vertical velocity w and buoyancy b at different depths in region II (at z = 0.34
(blue), z = 0.39 (orange), z = 0.44 (red) and z = 0.49 (yellow)), with (a) w vs x for different z; (b) collapsed
w vs collapsed x; (c) b vs x for different z; and (d) collapsed b vs collapsed x. The self-similar solution to
(3.28)–(3.29a–c) is superimposed on the rescaled profiles in (b,d) (dashed line).

Worster (2006) but with some differences in the power-law scalings in the similarity
solution: where Guba & Worster (2006) derived a self-similar variable in z−1/2 and
velocity and buoyancy scalings in z1/2 for an isothermal wall, we here derive solutions for
a constant flux wall with a self-similar variable in z−1/3 yielding velocity and buoyancy
scalings in z1/3. Note that these scales match the Cheng & Minkowycz (1977) solution
with a similarity power scaling of 1/3. By equating the length scales Lx between region
I and region II, we see that the lateral extent of this region at the bottom, connecting to
region I, is initially of order h, and thereafter increases proportional to h2/3z1/3. From
(3.27a,b), our theory predicts a scaling in z1/3 for w and b with the numerical solutions
appearing to approach this scaling for intermediate z in the log–log plot in figure 4(a,c).
In figure 5, we present horizontal slices of the vertical velocity (a,b) and of the buoyancy
(c,d) at different depths in region II (plain lines), rescaled in the horizontal variable by
z1/3 as well as in amplitude. We observe a good collapse at x = 0, close to the wall. The
superimposed dashed line is the self-similar solution of (3.28) and (3.29a–c). Note that
the scale separation between the start z = O(h) and end z = O(1) of this region is quite
modest for the given Rayleigh number Ra = 200, and there is only around a decade for the
power-law scaling to adjust. Whilst the scale separation would increase for a steady laminar
flow at higher Ra, our simulations (figure 2b) revealed that instability and unsteady flow
develops at larger Ra.

The computed solutions show a good agreement with the data. The profiles diverge
from the similarity solution in the far field, due to the influence of the return flow and
its impact on the background buoyancy field that is not included in the boundary-layer
model. Nevertheless, the similarity variables yield a good collapse of the shape of decay
of the velocity and buoyancy profiles away from the heat source, their characteristic
boundary-layer width and capture their leading-order quantitative magnitude. We note that
the peak in w measured from the DNS is not as large as predicted by the similarity solution:
this might be due to the neglect of the pressure gradient term in the leading-order balance
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Figure 6. Horizontal slices of vertical velocity w and buoyancy b at different depths in region III (at z = 0.65
(blue), z = 0.70 (orange), z = 0.75 (red) and z = 0.80 (yellow)), with (a) w vs x for different z; (b) collapsed w
vs collapsed x; (c) b vs x for different z; and (d) collapsed b vs collapsed x.

for the similarity solution, which acts to slightly decelerate the flow in the full numerical
solution.

3.2.3. Region III
Region III is an isotropic region connecting regions II and IV. Figure 3(b) shows how the
force balance in this connection region behaves. We recall that b = w + ∂zp from Darcy’s
law (2.16). In region II, as seen before, the vertical boundary layer model leads to w � b
and ∂zp is negligible, whereas in region IV, b � ∂zp and w has a small contribution (see
figure 3b). The only way this configuration can occur is to have an isotropic transition
region in between, in which w and ∂zp have the same order of magnitude, with w
decreasing while ∂zp increases. This behaviour is observed in domain III in figure 3(b).

From the log–log plots in figure 4(b,d), we infer two empirical scalings: a (z − H)1/3

scaling for w, and a (z − H)−1/3 scaling for b. Figure 6 presents horizontal slices of vertical
velocity (a,c) and buoyancy (b,d) rescaled by 1/3 and −1/3 power laws, showing a good
collapse close to the wall. A deviation in the far field, due to the return flow outside of
the boundary layer, is observed. The collapse is better for w than for b, pointing towards a
transition between a vertical boundary layer in which w is set and a fully isotropic region
dominated by fluxes. This collapse, however, is curious as it does not correspond to the
boundary layer described in the previous sections, and still awaits a theoretical explanation
which we reserve for future work. Note that this scaling implies that the product wb is
approximately constant, which means that the heat flux advected through this region III
also remains approximately constant.

3.2.4. Region IV
In the top corner region IV, both the scalings of b and w, linear with H − z (see figure 4),
are consistent with a stagnation point flow. The velocity profile decelerates to satisfy the
non-normal flow boundary condition at the top, and we observe the dominance of diffusive
transfers of buoyancy as the velocity decays to zero in the corner.
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Figure 7. Along wall profiles of the vertical pressure gradient for different Rayleigh numbers (corresponding
to different heating prefactors Q0).

We also note that the pressure gradient is consistent with the imprint of scalings in
the neighbouring horizontal boundary layer in which the flow spreads horizontally. In
this region, the pressure gradient reaches a maximum and balances the buoyancy force at
leading order. According to (3.39), the peak in the vertical profile of the pressure gradient
should increase and move upwards as we increase the Rayleigh number. Figure 7 shows
results from DNS at various Rayleigh numbers, with this increasing peak. For each of
these profiles, we measure the amplitude of the peak max(∂zp) and its location zm from
the top of the wall. Figure 8 presents these data in log–log plots. For the amplitude of the
peak (figure 8a) we have a Ra3/4 scaling (or h−3/2) consistent with the theory developed
in § 3.1.4. For the location zm (figure 8b), we have a Ra−1/2 scaling (or h) for H − zm,
which is linked to the cross-over length scale derived in § 3.1.1 where both the nonlinear
advective and diffusive terms become of similar magnitude. Note that the testing of these
scalings in figure 8 is limited in the range of accessible Rayleigh numbers: at low Ra,
the flow stops convecting and there are no boundary layers in which our model would
apply; conversely, at high Ra (we have not characterised the precise instability threshold,
but our brief numerical investigation suggests above 300–350), the near-crack instability
is triggered (see figure 2) and the theoretical derivation does not hold anymore.

We present, in figure 9, vertical slices of the horizontal velocity u and of the buoyancy b
unscaled (a,c) and rescaled by the scalings predicted by the theory (b,d). The self-similar
scalings works relatively well in a thin boundary layer close to the top boundary z = H but
breaks further below. It is likely that there is some more complex behaviour going on with
the spreading horizontal boundary layer fed by the rising plume, with another diffusive
boundary layer nested within this due to the cooling boundary condition that b = 0 at the
top of the domain.

3.3. Prediction of the solid dissolution rate
We now discuss the phase change behaviour close to the wall. We have previously shown
that the flow transports solute which can drive either local dissolution of the ice matrix, or
freezing, which modify the solid fraction.

The advection–diffusion equation for b and the solute and heat equations give an
equation for the evolution of the solid fraction φ, or melting rate, depending on the
potential ϕ. At first order, the solid fraction can be written φ = φ0 + φ̂, where φ0 is
the initial value and φ̂ the perturbation away from the steady state. Recalling that the
near-eutectic approximation leads to b(1 − φ) ≈ b(1 − φ0), then (2.15) yields an equation
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Figure 8. Scaling laws for along wall pressure with Rayleigh number in log–log plots. The shades of blue
correspond to the Rayleigh numbers indicated in figure 7. (a) Amplitude of the peak of pressure gradient, with
a Ra3/4 law. (b) Location of the maximum of the pressure gradient, as a distance from the top boundary, with
a Ra−1/2 law.
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Figure 9. Vertical slices of horizontal velocity u and buoyancy b at different locations x in region IV (measured
from the crack: at x = 0.24 (blue), x = 0.36 (orange), x = 0.48 (red) and x = 0.60 (yellow)), with (a) u vs
(H − z) for different x; (b) collapsed u vs collapsed (H − z); (c) b vs (H − z) for different x; and (d) collapsed
b vs collapsed (H − z).

for ∂φ/∂t in terms of b. Substituting for (1 − φ0)∂b/∂t + u · ∇b using (2.24) and noting
that b = ∇2ϕ/Ω , in dimensionless form this yields

∂φ̂

∂t
= − 1

C Ra

[
(1 − φ0)

∂b
∂t

+ (u · ∇)b
]

= − 1
C RaΩ

∇4ϕ. (3.40)

As we are looking at quasi-steady tendencies on the porosity, we do not include the
time-dependent feedback on b and therefore set ∂b/∂t = 0. Therefore, the intermediate
expression in (3.40) indicates the role of the advection of salinity anomalies, and hence
buoyancy anomalies, in controlling the phase change. There is a tendency for reduction in
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Figure 10. Dissolution rate, or solid fraction change predicted by the steady state flow and buoyancy fields,
from the numerical simulation (red shows melting). The white dotted lines show the locations ±σ used for
the Gaussian heat flux, at Ra = 200 and Ω = 1. Note that the scaling of (3.40) and the prediction of melt rate
break down in our simulations over a length scale comparable to the white dashed lines due to the use of an
added volumetric heat source rather than a boundary flux.

solid fraction by local dissolution when u · ∇b > 0, which corresponds to an advection of
saline fluid with low buoyancy into a fresher region with higher buoyancy. As described
by Worster (1997) and Butler (2011), this phenomenon arises because solute advects
more rapidly than heat in a passive porous layer, so the salinity front runs ahead of the
thermal front and ice melts in order to reduce the salinity and restore a thermodynamic
equilibrium. In this model, we assume that the system reaches a steady state for the flow,
the buoyancy, and the temperature. We have neglected the feedback from porosity variation
on the flow (Π is a constant and is equal to Π0) which allows for such a quasi-steady state
with slowly evolving porosity and non-zero ∂tφ. Hence, the neglect of transient porosity
changes should be reasonable at early times, but will eventually break down at longer
time as the accumulated porosity change becomes large. Due to the different behaviours
in the aforementioned regions, there are presumably two different time scales according to
which the porosity evolves. In region II, accounting for the narrow vertical boundary-layer
thickness, we get a melting rate ∂tφ̂ ∼ −Ra1/3Ω1/3/C . In the corner region IV, using that
b ∼ ∂zp ∼ Ra3/4, and ∇2b ∼ b/h2, we obtain a melting rate ∂tφ̂ ∼ Ra3/4Ω1/2/C . This
suggests a larger freezing rate in the top region, in agreement with our observations.

The instantaneous melting rate predicted by (3.40) using the DNS is presented in
figure 10, in which areas with decreasing solid fraction are shown in red. This indicates
instantaneous melt rate deviation away from steady state. Negative value for ∇4ϕ ∝ −∂tφ̂
means that the solid fraction is increasing, corresponding to ice solidifying. A strong and
localised region of solidification is identified at the top of the crack, corresponding to
region IV, with a vertical extent of order h, which confirms the importance of the top
region in the melting problem. Such freezing is caused by upward advection of solute
and a net convergence of the solute flux in the diffusive boundary layer in the upper corner
region. Note that this region is direct analogue to the region of localised freezing identified
and discussed in Guba & Worster (2006). An additional region of melting can be seen
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close to the wall, next to the heated melting region which corresponds to the tendency for
advection by the rising plume to enrich the initial background of solute and cause melting.
Because the solution predicts flow through regions of instantaneous freezing, it would only
be valid for a system that initially has non-zero porosity and cannot be applied directly to
an initial condition with pure eutectic solid. The melting occurring close to the crack is
a slower process than the freezing, as ∂tφ̂ varies over more than an order of magnitude
between the freezing and the melting region at the crack, and even more if we look at
the top region. On longer time scales, it is likely that this behaviour would be suppressed
with a feedback of the porosity on the flow, as a solid fraction equal to 1 would prevent the
liquid from flowing. The relevant scalings, however, are still a good approximation of what
is happening for a system starting with non-zero porosity at early times. Understanding the
impact on porosity-dependent feedbacks on permeability, and evolution from an initially
solid state represent interesting challenges for future work.

4. Conclusions and discussion

In this study, we developed a simple model of a buoyant plume generated by a heated wall
with constant heat flux in an ideal mushy zone using a near-eutectic limit. We identified
four different regions created along the wall through the heating process, and we show that
the relevant part that dominates the melting is located near the surface over a short depth
h ∝ Ra−1/2 (to within a multiplicative factor depending on the modified heat capacity
Ω). The proposed mechanism is robust, with local scalings holding for a wide range of
Rayleigh number, and the different scalings observed in DNS agree well with the theory
that uses asymptotics and self-similar solutions. From top to bottom these demonstrate
an isotropic diffusive region I with linear scalings for buoyancy and velocity with height
develops into a buoyant self-similar rising plume region II which scalings are given by
a vertical boundary-layer theory. Region II is connected to a top region IV through an
isotropic region III. Region IV has a vertical velocity scaling consistent with a stagnation
point flow, and the pressure gradient scaling imposed by an adjacent horizontal boundary
layer that develops sidewards with approximate hydrostatic balance in the vertical.

Some empirically diagnosed scalings remain to be explained, however. In region III
there are two different scalings for the buoyancy and the vertical velocity that are not
theoretically explained. In this region, it is very likely that the vertical velocity matches
with region II whereas the buoyancy and the pressure fields match with region IV, and
that the total heat flux is conserved, but we have no supporting mathematical theory. No
analytical result for region I, at the bottom of the crack, has been properly derived. The
top region IV could be better understood by defining regions IV and V: one being the top
corner, the other one being the horizontal boundary layer that extends near the surface
in the x direction. Different scalings can then be tested in region V accordingly to the
horizontal boundary-layer theory from § 3.1.4.

The vertical extension of the top region can be estimated through the Rayleigh number,
as Ra = (H/h)2. From the previous derivation, noting that the relevant temperature scale
in this problem is �T = FH/Cpκ , the Rayleigh number can be expressed into a porous
medium Rayleigh number as

Ra = gα�TΠ0H
κν

. (4.1)

In the case of icy satellites (e.g. Enceladus or Europa), we treat the planetary ice shell
as having sea ice material properties and lower gravity on account of planetary size.
Hence, due to the range of values for the different parameters involved in the problem
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if we estimate orders of magnitude for Enceladus such as g = 10−1 m s−2, α = 10−2 K−1,
κ = 10−7 m2 s−1, ν = 10−6 m2 s−1,�T ∼ 102 K,Π0 ∼ 10−14 m2 (lower value than used
for terrestrial sea ice (e.g. Π0 = 10−10–10−12 m2 in Polashenski et al. 2017) since it is
a colder and less open ice) and H ∼ 103–104 m, we obtain a relatively small Rayleigh
number Ra, approximately 10–100. A simple estimate indicates that the top region, in
which large vertical pressure gradients are predicted, has a small extension of order
O(h) � H and that the high melting region is therefore located near the surface.

Increasing the Rayleigh number further triggers an instability near the wall (see figure 2)
and the present model of steady flow is not valid anymore. Starting from the linear steady
state, such an instability could occur with an intense and short lived forcing generating
large heat fluxes, which might be enough to create strong intermittent melting spots close
to the heated wall. This unstable regime is very sensitive to slight changes in Rayleigh
number (see figure 2) and its threshold remains to be determined, which will be the focus
of future studies.

The geophysical setting of heated cracks in a planetary ice shell contains several
complexities not included in the present model. A more accurate description of the
problem could be derived, relaxing the constant permeability assumption. The flow would
then feel a feedback from the melting of the mush and the phase change itself, as the
permeability would be a function of the solid fraction. The geometry of the mushy region
generated by melting may also introduce added complexity, as there may be an interface
between the mushy region and the pure ice region, that can evolve through time as the mush
is growing rather than the rectangular cavity considered here. Provided the mushy region
extends beyond the extent of the boundary layers identified here, the present analysis
should provides insights relevant to the more complex setting for the far-field flow.
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