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Abstract

A family {Qβ}β≥0 of Markov chains is said to exhibit metastable mixing with modes

S(1)
β , . . . , S(k)

β if its spectral gap (or some other mixing property) is very close to the worst

conductance min
(
�β

(
S(1)
β

)
, . . . , �β

(
S(k)
β

))
of its modes for all large values of β. We

give simple sufficient conditions for a family of Markov chains to exhibit metastability in
this sense, and verify that these conditions hold for a prototypical Metropolis–Hastings
chain targeting a mixture distribution. The existing metastability literature is large, and
our present work is aimed at filling the following small gap: finding sufficient con-
ditions for metastability that are easy to verify for typical examples from statistics
using well-studied methods, while at the same time giving an asymptotically exact for-
mula for the spectral gap (rather than a bound that can be very far from sharp). Our
bounds from this paper are used in a companion paper (O. Mangoubi, N. S. Pillai, and
A. Smith, arXiv:1808.03230) to compare the mixing times of the Hamiltonian Monte
Carlo algorithm and a random walk algorithm for multimodal target distributions.

Keywords: Metastability; Markov chain Monte Carlo (MCMC); spectral gap; multi-
modal distribution.
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1. Introduction

It is well known that Markov chains targeting multimodal distributions, such as those that
appear in mixture models, will often mix very slowly. Of course, some algorithms are still faster
than others, and the present paper is motivated by the problem of comparing different MCMC
(Markov chain Monte Carlo) algorithms in this ‘highly multimodal’ regime. We provide a
step in this direction by finding some simple sufficient conditions under which we can find an
explicit formula for the spectral gap for MCMC algorithms on multimodal target distributions.
To be slightly more precise, we consider a sequence of Markov transition kernels {Qβ}β≥0

with state space � partitioned into pieces �= �k
i=1S(i)

β . One of our main results, Lemma 2,
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gives sufficient conditions under which the spectral gap λβ of Qβ is asymptotically given by

the worst-case conductance �min(β) = min
(
�β
(
S(1)
β

)
, . . . , �β

(
S(k)
β

))
, in the sense

lim
β→∞

log(λβ )

log(�min(β))
= 1. (1.1)

The main heuristic behind our calculations is that, in the highly multimodal regime, a
Markov chain with strongly multimodal stationary distribution will mix within its starting
mode before travelling between modes. When this occurs, we say that the Markov chain
exhibits metastable behaviour, and the mixing properties of the Markov chain are often deter-
mined by the rate of transition between modes at stationarity (see, e.g., [2] and the references
therein for an introduction to metastability). As a prototypical example, we consider the simple
mixture of two Gaussians,

πσ = 1

2
N (− 1, σ 2)+ 1

2
N (1, σ 2), (1.2)

for σ > 0. When σ is close to 0, the usual tuning heuristic for the random walk Metropolis–
Hastings (MH) algorithms (see, e.g., [19]) suggests using a proposal distribution with standard
deviation on the order of σ , such as

Kσ (x, ·) =N (x, σ 2).

Informally, an MH chain {Xt}t≥0 with proposal distribution Kσ , target distribution πσ , and
initial point X0 ∈ [− 2,−0.5] in one of the modes will evolve according to the following three
stages:

1. For t very small, the law of the chain Xt, L(Xt), will depend quite strongly on the starting
point X0.

2. For σ−1 � t � ec1σ
−2

and c1 > 0 small, the chain will have mixed very well on its first
mode and is very unlikely to have ever left the interval (− ∞,−0.1), so that

‖L(Xt) −N (− 1, σ 2)‖TV � e−c2σ
−1

for some c2 > 0. Note that L(Xt) is close to N (− 1, σ 2
)
, which is not its stationary

measure πσ .

3. For t 
 ec3σ
−2

, the chain will have mixed well on the entire state space in the sense that

‖L(Xt) − πσ‖TV � e−c3σ
−1

for some c3 > 0.

In the context of this example, the main result of our work is a straightforward way to

verify that there is a sharp transition around t ≈ e
1
2σ

−2
, so that we may take c1 = c3 = 1

2 in this
heuristic description (see Theorems 1 and 2 for a precise statement). In the notation of (1.1),
we can take the parameter β that indexes our chains to be equal to σ−1. We view β as indexing
‘how multimodal’ a chain is, while in this particular example σ−1 measures both the width of
each mode and how well separated they are.

We believe that these scaling exponents c1, c3 are natural ways to measure performance
in the highly multimodal regime, as they seem to capture the most important differences in
algorithm performance; see our companion paper [11] for further discussion of this point and
relationships to the literature on optimal scaling and lifted Markov chains.
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1.1. Related work

Our work is closely related to two large pieces of the Markov chain literature: decomposi-
tion bounds (see, e.g., [5, 10, 17, 23, 24]) and metastability bounds (see, e.g., the popular books
[2, 16] and the references within the recent articles [1, 6]). It is far beyond the scope of
the present article to give a comprehensive survey. Instead, we describe the small gap in the
literature that the present article fills.

Our main goal was to find sufficient conditions for metastability that are both easy to verify
for typical statistical examples, and still give an asymptotically exact formula for the spectral
gap. Such bounds would allow a (relatively) simple way to compare the asymptotic perfor-
mance of different algorithms. Despite the size of the literature on metastability, we were not
able to find results that met both of these criteria.

Much of the existing work on decomposition bounds applies to examples from statistics
in a straightforward way ([23, 24] are both applied in this context, but the other references
above can be extended to this setting as well). However, because the resulting bound involves
a product of two terms that can be small, it is not straightforward to use these bounds to actually
compute the asymptotics of the spectral gap—we merely obtain bounds.

The existing work from the metastability community tends to give much sharper bounds,
and many results on metastability can be used to compute the asymptotics of the spectral gap.
However, these results are typically not aimed at a statistical audience, and they can be difficult
to apply to the Markov chains that appear in computational statistics. Most Markov chains used
in this setting are discrete-time chains on unbounded, continuous state spaces; they are also
typically geometrically ergodic but not uniformly ergodic. To our knowledge, the most recent
large-scale text on metastability [2] does not directly give bounds on any Markov chains in this
setting. Other recent surveys also seem to omit this setting.

Of course, this does not mean that the ideas in the book (and the larger literature on metasta-
bility) cannot be applied at all. Some of the classical approaches to metastability can be
extended to this setting without much difficulty, but the methods that seem simplest to extend
are based on assumptions that seem difficult to verify for statistical examples. For example,
approaches based on the analysis of ‘typical’ trajectories between modes may require a detailed
understanding of these trajectories, and it is usually quite difficult to compute these trajectories.

Our results allow the computation of the asymptotics of the spectral gap, and the assump-
tions are stated in terms that should be familiar to the statistics community. In particular,
our assumption about control of the tails is stated in terms of control of hitting times
and a Lyapunov condition, which are quite similar to conditions in the dominant drift-and-
minorization approach to convergence analysis of Markov chains in statistics [15, 21]. While
the basic idea of metastability is not new, we believe that such ‘in-between’ results are a use-
ful compromise that focuses on the most relevant properties for comparison of Markov chains
targeting multimodal distributions that arise in a statistical context. Although our introduction
focuses on a simple Metropolis–Hastings algorithm with a one-dimensional stationary mea-
sure based on Gaussians, the main conditions we study here are also fairly easy to verify for a
wide variety of other Markov chains. Towards the end of this paper we illustrate metastability
with a simple example related to a high-dimensional Gibbs-like sampler for the problem of
estimating the volume of a set, and our companion paper [11] uses our main result to prove
metastability for the Hamiltonian Monte Carlo algorithm in a mixture setting.

1.2. Guide to the paper

In Section 2 we review the basic notation and definitions, and also provide some
simple bounds. Our main results on metastability are presented in Section 3. Finally, we
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give an illustrative one-dimensional Gaussian application in Section 4 and an illustrative
high-dimensional Gibbs-like sampler in Section 5.

2. Preliminaries

2.1. Basic notation

Throughout the remainder of the paper we denote by π the smooth density function of
a probability distribution on a convex subset of R

d. We denote by L(X) the distribution of
a random variable X. Similarly, if μ is a probability measure, we write ‘X ∼μ’ for ‘X has
distribution μ’. We use P[·] and E[·] to denote probabilities and expectations. We will often
consider a Markov chain {Xt}t≥0 sampled from a transition kernel L and with initial distribution
X0 ∼μ; when we wish to emphasize the role of the starting distribution, we will write Pμ[·]
and Eμ[·]. In a slight abuse of notation, we write Px[·] and Ex[·] in the special case that μ is a
point mass concentrated at x ∈�.

For two nonnegative functions or sequences f ,g, we write f = O(g) as shorthand for the
statement: there exist constants 0<C1,C2 <∞ such that, for all x>C1, f (x) ≤ C2 g(x). We
write f =�(g) for g = O( f ), and we write f =�(g) if both f = O(g) and g = O( f ). Relatedly,
we write f = o(g) as shorthand for the statement: limx→∞ f (x)

g(x) = 0. Finally, we write f = Õ(g)

if there exist constants 0<C1,C2,C3 <∞ such that, for all x>C1, f (x) ≤ C2 g(x) log(x)C3 ,
and write f = �̃(g) for g = Õ( f ). As shorthand, we say that a function f is ‘bounded by a
polynomial’ if there exists a polynomial g such that f = O(g).

2.2. Cheeger’s inequality and the spectral gap

We recall the basic definitions used to measure the efficiency of MCMC algorithms. Let L
be a reversible transition kernel with unique stationary distribution μ on R

d. It is common to
view L as an operator from L2(π ) to itself via the formula

(Lf )(x) =
∫

y∈Rd
L(x, dy)f (y).

The constant function is always an eigenfunction of this operator, with eigenvalue 1. We define
the space W⊥ = {

f ∈ L2(μ):
∫

x f (x)μ(dx) = 0
}

of functions that are orthogonal to the constant
function, and denote by L⊥ the restriction of the operator L to the space W⊥. We then define
the spectral gap ρ of L by the formula

ρ = 1 − sup
{|λ|:λ ∈ Spectrum(L⊥)

}
,

where Spectrum refers to the usual spectrum of an operator. If L⊥ has a largest eigenvalue |λ|
(for example, if L is a matrix of a finite-state-space Markov chain), then ρ = 1 − |λ|.

Cheeger’s inequality [3, 7] provides bounds for the spectral gap in terms of the ability of
L to move from any set to its complement in a single step. This ability is measured by the
conductance �, which is defined by the pair of equations

�= inf
S∈A : 0<μ(S)< 1

2

�(S),

�(S) =
∫

x 1{x ∈ S}L(x, Sc)μ(dx)

μ(S)
,
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where A=A(Rd) denotes the usual collection of Lebesgue-measurable subsets of R
d.

Cheeger’s inequality for reversible Markov chains, first proved in [7], gives

�2

2
≤ ρ ≤ 2�. (2.1)

2.3. Traces and hitting times

We recall some standard definitions related to Markov processes.

Definition 1. (Trace and restriction chains.) Let L be the transition kernel of a reversible
ergodic Markov chain on state space � with stationary measure μ, and let S ⊂� be a mea-
surable subset with μ(S)> 0. Let {Xt}t≥0 be a Markov chain evolving according to L, and
iteratively define

c0= inf{t ≥ 0 : Xt ∈ S},
ci+1= inf{t> ci : Xt ∈ S}.

Then X̂t = Xct , t ≥ 0, is the trace of {Xt}t≥0 on S. Note that {X̂t}t≥0 is a Markov chain with state
space S, and so this procedure also defines a transition kernel with state space S. We call this
kernel the trace of the kernel L on S.

Similarly, define the restriction μ|S of μ to S by

μ|S(A) = μ(S ∩ A)

μ(S)

for measurable A ⊂�. Define the restriction L|S of L to S to be the Metropolis–Hastings kernel
with proposal distribution L and target distribution μ|S, that is, the transition kernel given
by L|S(x, A) = L(x, A) for all x ∈ S and measurable A ⊂ S\{x}, and by L|S(x, {x}) = L(x, {x}) +
L(x, Sc). We call L|S the restriction of the kernel L to S.

We note that both the trace and restriction kernels are defined here purely to help us write
conditions that are easier to verify in practice. In particular, although L|S is a Metropolis–
Hastings kernel, we do not assume in any sense that the kernel L itself is a practical Metropolis–
Hastings algorithm in statistics.

Definition 2. (Hitting time.) Let {Xt}t≥0 be a Markov chain with initial point X0 = x and let S
be a measurable set. Then τx,S = inf{t ≥ 0 : Xt ∈ S} is called the hitting time of S from x. When
the starting point X0 = x is already fixed, we sometimes use the shorthand τS.

3. Generic metastability bounds

Denote by {Qβ}β≥0 the transition kernels of a collection of reversible ergodic Markov chains
with stationary measures {πβ}β≥0 on common state space �, which we take to be a convex
subset of Rd. Throughout the remainder of the paper we will always use the subscript β to
indicate which chain is being used; for example, �β (S) is the conductance of the set S with
respect to the chain Qβ , ρβ is the spectral gap of Qβ , and so on.

Our two main results are:

1. In Lemma 1, we fix a set S ⊂� and give sufficient conditions for the worst-case hitting
time of Sc from S to be bounded by the average-case hitting time �β (S).
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FIGURE 1. A cartoon plot of the target density fσ with the regions illustrated. Note that we have sub-
stantially compressed the regions so that they are all visible; in a scale drawing, Bβ would not be

visible.

2. In Lemma 2, we consider sufficient conditions on the entire partition S(1), . . . , S(k) to
ensure that the spectral gap of Qβ is approximately equal to the worst-case conductance
min1≤i≤k �β (S(i)).

3.1. Metastability and hitting times

The main point of our first set of assumptions is to guarantee that the Markov chain cannot
get ‘stuck’ for a long time before mixing within a mode S. Fix S ⊂� with infβ≥0 πβ (S) ≡
c1 > 0. We will also define a sequence of sets Gβ, Bβ,Wβ ⊂ S indexed by β ≥ 0 that satisfy
Gβ ⊂ Wβ and Bβ ⊂ Wc

β ∩ S.
In the following assumption we think of the set Gβ as the points that are ‘deep within’

the mode S, the points Bβ as the points that are ‘far in the tails’ of the target distribution,
and the ‘covering set’ Wβ as a way of separating these two regions. To help with intuition,
a reasonable choice of these sets in the special case of the mixture of Gaussians in (1.2) is
illustrated in Figure 1. These sets are S = (− ∞, 0), Gβ = (− σ−9, 0), Wβ = (− σ−10, 0), and
Bβ = (− ∞,−σ−10]. Note that Figure 1 shows two collections of these sets. The first covers
S; the second is associated with Sc, which is needed by Lemma 2 below. Also note that, as this
example suggests, there is a great deal of flexibility in designing these sets; changing, e.g., 9
to 11.3 and 10 to 11.7 in these definitions would not substantially change our analysis.

Our assumptions are as follows.

Assumptions 1. We assume the following all hold for β > β0 sufficiently large:

1. Small conductance: There exists some c> 0 such that �β (S) ≤ e−cβ .

2. Rapid mixing within Gβ : Let Q̂β be the restriction of Qβ to S. There exists some function
r1 bounded by a polynomial such that

sup
x∈Gβ

∥∥Q̂r1(β)
β (x, ·) − πβ |S( · )

∥∥
TV ≤ β−2�β (S). (3.1)

3. Never stuck in Wβ\Gβ : There exists some function r2 bounded by a polynomial
such that

sup
x∈Wβ\Gβ

Px[τGβ∪Sc > r2(β)] ≤ β−2�β (S).
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4. Never hitting Wc
β : We have

sup
x∈Gβ

Px
[
τWc

β
<min(r1(β) + r2(β) + 1, τSc )

]≤�β (S)4. (3.2)

It is important to note that the first inequality in (3.2) is strict; one use of this assumption is
to check that τWc

β
= τSc occurs with high probability for ‘typical’ starting points in Gβ .

Remark 1. As is common in the metastable literature, there are a wide variety of tweaks to
these assumptions that would give similar results. For example, it is possible to get a very sim-
ilar result if we replace the chain Q̂β by another chain that closely approximates the dynamics
of Qβ on S (e.g. the trace of Qβ on S rather than the restriction), at some small cost in checking
that periodicity does not pose a problem. Similarly, the power 4 appearing in (3.2) could be
decreased at some small cost to the other constants appearing in this assumption.

Under these assumptions, we have the following conclusion.

Lemma 1. (Hitting times and conductance.) Let Assumptions 1 hold, and fix a point x that is
in Gβ for all β > β0(x) sufficiently large. Then, for all ε > 0,

Px

[
log(τSc )

− log(�β (S))
> 1 + ε

]
= o(1).

Proof. Fix p ∈ Wβ , and define T = T(β) = r1(β) + r2(β) + 1. Throughout the following
argument we denote by {Xt}t≥0 a Markov chain sampled from Qβ (with starting point indicated
by subscripts). We then calculate:

Pp[τSc ≤ T] ≥ inf
q∈Gβ

Pq[τSc ≤ r1(β) + 1] − Pp[τGβ∪Sc > r2(β)]

≥ Pπβ |S [X1 ∈ Sc] − sup
q∈Gβ

∥∥Q̂r1(β)
β (q, ·) − πβ |S( · )

∥∥
TV − Pp[τGβ∪Sc > r2(β)]

=�β (S) − sup
q∈Gβ

∥∥Q̂r1(β)
β (q, ·) − πβ |S( · )

∥∥
TV − Pp[τGβ∪Sc > r2(β)],

where the first inequality follows from using the Markov property at the stopping time
min(τGβ∪Sc , r2(β)), and the second is the triangle inequality (for the total variation metric on
distributions). Applying Assumptions 1.2 and 1.3, the two negative terms in this expression are
both bounded by β−2�β (S). This implies that

Pp[τSc ≤ T] ≥�β (S)
(
1 − 2β−2). (3.3)

If we also have p ∈ Gβ ⊂ Wβ , then applying Assumption 1.4 gives

Pp[τWc
β
<min(T, τp,Sc )] ≤�β (S)4. (3.4)
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We now iteratively apply (3.3) and (3.4) to control the behaviour of {Xt}t≥0 over longer time
intervals. More precisely, for all k ∈N and starting points p ∈ Gβ ,

Pp[τSc > kT] =
Pp[τSc > kT|τSc > (k − 1)T, X(k−1)T ∈ Wβ ]Pp[τSc > (k − 1)T, X(k−1)T ∈ Wβ ]

+ Pp[τSc > kT|τSc > (k − 1)T, X(k−1)T ∈ Wc
β ]Pp[τSc > (k − 1)T, X(k−1)T ∈ Wc

β ]

≤ Pp[τSc > kT|τSc > (k − 1)T, X(k−1)T ∈ Wβ ]Pp[τSc > (k − 1)T]

+ Pp[τSc > (k − 1)T, X(k−1)T ∈ Wc
β ]

≤ (1 −�β (S)(1 − 2β−2))Pp[τSc > (k − 1)T] + Pp[τSc > (k − 1)T, X(k−1)T ∈ Wc
β ]

≤ (1 −�β (S)(1 − 2β−2))Pp[τSc > (k − 1)T] + k�β (S)4,

where (3.3) is used in the second-last line and (3.4) is used in the last line. Iterating and
collecting terms, this gives

Pp[τSc > kT] ≤ (1 −�β (S)
(
1 − 2β−2))k + k2�β (S)4. (3.5)

Fix any ε > 0 and take k = �β�β (S)−1�. By Assumption 1.1 and the fact that r1, r2 are
bounded by polynomials,

kT = �β�β (S)−1�(r1(β) + r2(β) + 1) ≤�β (S)−1(5β(r1(β) + r2(β))) ≤�β (S)−1−ε,

for all β > β0(ε) sufficiently large. Fix x as in the statement of the lemma; we can use this
bound on kT along with (3.5) to conclude that

Px

[
log(τSc )

− log(�β (S))
> 1 + ε

]
= Px[τSc >�β (S)−1−ε]

≤ Px[τSc > kT]

≤ (1 −�β (S)
(
1 − 2β−2))k + k2�β (S)4 = o(1).

This completes the proof of the lemma. �

3.2. Metastability and spectral gaps

If we can partition the state space of a Markov chain into a collection of sets S(1), . . . , S(k)

satisfying Assumptions 1, we typically expect the spectral gap of the Markov chain to be
entirely determined by the typical transition rates between these sets. However, we must rule
out a few possible sources of bad behaviour:

1. Very slow mixing in the ‘tails’ of the distribution could have an impact on the
spectral gap.

2. A typical transition from one mode could land far out in the tails of the mode being
entered, causing the walk to get ‘stuck’.

3. The transitions between modes might exhibit near-periodic behaviour, even if the
Markov chain is not exactly periodic.
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4. There might be metastability among collections of modes. For example, there
might be some I ⊂ {1, 2, . . . , k} for which �β ( ∪i∈I S(i)) is much smaller than
min1≤i≤k �β (S(i)).

Although detailed discussion of metastability is beyond the scope of the present paper,
the first three types of behaviour can all cause the spectral gap to be very different from the
prediction given by our metastability heuristic. The fourth behaviour simply says that you have
chosen the ‘wrong’ partition of the state space, and that you should check the conditions again
after joining several pieces of the partition together.

The following assumptions rule out these new complications.

Assumptions 2. Let �= �k
i=1S(i) be a partition of � into k pieces. Set �min = min(�β (S(1)),

. . . , �β (S(k))) and �max = max (�β (S(1)), . . . , �β (S(k))). We assume the following.

1. Metastability of sets: Each set S(i) satisfies Assumptions 1 (with�β (S) replaced by�max
in Assumption 1.1 and replaced by �min in Assumptions 1.2–4). We use the superscript
(i) to extend the notation of that assumption in the obvious way.

2. Lyapunov control of tails: Denote by Br(x) the ball of radius r> 0 around a point x ∈�.
Assume there exist 0<m,M <∞ satisfying

∪k
i=1W(i)

β ⊂ BM(0), Bm(0) ⊂ ∪k
i=1G(i)

β .

Assume there exist a collection of privileged points si ∈ G(i)
β such that the function

Vβ (x) = exp{β min1≤i≤k ‖x − si‖} satisfies

(QβVβ )(x) ≤
(

1 − 1

r3(β)

)
Vβ (x) + r4e�β

for all x ∈�, where r3, r4 are bounded by polynomials and 0 ≤ � <m.

3. Never hitting Wc
β : We have the following variant of (3.2):

sup
x∈∪k

i=1G(i)
β

P

[
τ

x,
(
∪k

i=1W(i)
β

)c <�−2
min

]
≤�4

min. (3.6)

4. Non-periodicity: For all 1 ≤ i �= j ≤ k,

inf
β

inf
x∈S(i)

Qβ (x, S(i))≡ c(i)
2 > 0, (3.7)

sup
x∈S(i)

Qβ
(
x, S(j)\G(j)

β

)
<�4

min. (3.8)

5. Connectedness: There exists some r5 bounded by a polynomial such that the graph with
vertex set {1, 2, . . . , k} and edge set{

(i, j) : min

(
inf

x∈S(i)
P
[
Xτx,(S(i))c

∈ S(j)], inf
x∈S(j)

P
[
Xτx,(S(j))c

∈ S(i)])≥ r5(β)

}
(3.9)

is connected.
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Lemma 2. (Spectral gap and conductance.) Let Assumptions 2 hold. Denote by λβ and�β the
spectral gap and conductance of Qβ . Then

lim
β→∞

log(λβ )

log(�min)
= lim
β→∞

log(�β )

log(�min)
= 1. (3.10)

Proof. Define the candidate ‘small set’ R = ∪k
i=1G(i)

β .

For convenience, we define Tmax = Tmax(β) ≡�−1.5
min to be the longest timescale of interest

in this problem; we note that any mixing behaviour should occur on this timescale, while on
the other hand there should be no entrances to the ‘bad’ set W ≡ (∪k

i=1 W(i)
β

)c. In order to
reduce notational clutter, we will frequently use q with a subscript to refer to a function that is
bounded by a polynomial and whose specific values are not of interest.

We will begin by estimating the mixing rate of Qβ for Markov chains started at points
x, y ∈ R. We do this by coupling Markov chains {Xt}Tmax

t=0 , {Yt}Tmax
t=0 started at X0 = x, Y0 = y

for some x, y ∈ R and trying to force them to collide. (Note that the Markov chains are only
defined up until this ‘maximal time’ Tmax.) This saves us from having to either explicitly write
min(·, Tmax), or add extremely small terms that correspond to the probability that various times
exceed Tmax, in essentially all of the following calculations. This choice has virtually no other
impact. Roughly speaking, we will make the following two calculations:

1. If we run the two chains independently, the time it takes for them to both be in G(i)
β , for

the same i simultaneously, is not too much larger than the conjectured relaxation time
�−1

min.

2. If we run two chains started on the same good set G(i)
β , the two chains will couple long

before either one transitions from G(i)
β to another mode.

We now give some further details, following this sketch. Let x, y ∈ R.

Part 1: Time to be in same good set simultaneously. We will run the chains independently
until the first time ψ1 = inf

{
t ≥ 0 : there exists 1 ≤ i ≤ k such that Xt, Yt ∈ G(i)

β

}
that they are

both in the same ‘good’ part of the partition. Define ψ2 = inf
{
t ≥ 0 : there exists 1 ≤ i ≤ k

such that Xt, Yt ∈ S(i)
}
, the first time that {Xt}, {Yt} are both in the same part of our partition.

For convenience, set c2 = min(c(1)
2 , . . . , c(k)

2 , 0.5).

Let 1 ≤ a, b ≤ k satisfy x ∈ G(a)
β , y ∈ G(b)

β and let G be the connected graph whose existence
is guaranteed in (3.9). Since G is a connected graph on k vertices, there is a path γ in G from
a to b of length |γ | ≤ k − 1. We next consider the event E that, the first |γ | times that {Xt}t≥0
or {Yt}t≥0 changes parts of the partition, they go towards each other along the path γ . By (3.9),
P[E] ≥ r5(β)k−1.

Bounding the amount of time spent in each part of the partition along this path by (3.5) and
(3.7), this implies that

P
[
ψ2 ≤ q1(β)�−1

min

]≥ 1

2
c2r5(β)k−1 (3.11)

for some function q1 that is bounded by a polynomial. By (3.8),

P[ψ1 =ψ2] ≥ 1 − Tmax�
4
min ≥ 1 −�2

min.
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Combining this with (3.11),

P
[
ψ1 ≤ q1(β)�−1

min

]≥ P
[
ψ2 ≤ q1(β)�−1

min

]− P[ψ1 �=ψ2]

≥ 1

2
c2r5(β)k−1 −�2

min ≡ 1

q2(β)
, (3.12)

where we note that q2 is bounded by a polynomial.

Part 2: Mixing from same good set. If ψ1 ≥ Tmax − r1(β), continue to evolve {Xt}t≥0, {Yt}t≥0
independently. Otherwise, let 1 ≤ i ≤ k satisfy Xψ1 , Yψ1 ∈ S(i). We then let {X̂t}t≥0, {Ŷt}t≥0 be
Markov chains evolving according to the Metropolis–Hastings kernel with proposal distribu-
tion Qβ and target distribution πβ |S(i) . We give these chains initial points X̂0 = Xψ1 , Ŷ0 = Yψ1

and couple them according to a maximal r1(β)-step coupling (that is, a coupling that maximizes
P[X̂r1(β) = Ŷr1(β)]; such a coupling is known to exist [4]).

We next observe that the following informal algorithm gives a valid coupling of the Markov
chains {Xt}ψ1+r1(β)

t=ψ1
, {X̂t}r1(β)

t=0 :

1. Run the full Markov chain {Xt}ψ1+r1(β)
t=ψ1

according to Qβ .

2. For all t< τbad ≡ inf{s : Xψ1+s /∈ S(i)}, set X̂t = Xψ1+t.

3. If τbad < r1(β), continue to evolve {X̂s}r1(β)
s=τbad independently of {Xt}r1(β)

t=0 . (Note that the
particular choice made in this third step will not influence the analysis—we could make
any measurable choice here.)

We couple the pair of chains {Xt}ψ1+r1(β)
t=ψ1

, {X̂t}r1(β)
t=0 this way, and we couple {Yt}ψ1+r1(β)

t=ψ1
,

{Ŷt}r1(β)
t=0 analogously. Under these couplings, we have

P[Xψ1+r1(β) �= Yψ1+r1(β)] ≤ P[X̂r1(β) �= Ŷr1(β)] + P[Xψ1+r1(β) �= X̂r1(β)]

+ P[Yψ1+r1(β) �= Ŷr1(β)]

≤ β−2�max + 2�4
min,

where the first term is bounded by (3.1) and the last two terms are bounded by (3.6).
Combining this with (3.12), we conclude that

P[XT1 = YT1 ] = (1 − o(1)), (3.13)

where T1 = �q1(β)�−1
min + r1(β)�.

This completes the proof of our two-stage analysis, as (3.13) gives a useful minorization
bound for x, y ∈ R. Note that (3.13) is very close to a minorization condition in the sense of
[21] for the small set R. Applying the closely related Lemma A.11 of [12] (see also [13]), the
minorization bound (3.13), and the drift bound in Assumptions 2.2, we find

‖Qt
β (x, ·) − πβ ( · )‖TV ≤ M(β, x) exp

{
− t�min

q4(β)

}
,

where q4( · ) ≥ 1 and, for each x, M(·, x) is bounded by a polynomial.
By Theorem 2.1 of [20], this implies that

λβ ≥ �min

q4(β)
. (3.14)
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By (2.1), the conductance �β of Qβ satisfies

λβ ≤ 2�β ≤ 2�min. (3.15)

Combining (3.14) and (3.15), we conclude that

�min

q4(β)
≤ �β

q4(β)
, λβ ≤ 2�min ≤ 2�β .

This immediately implies the limit in (3.10), completing the proof of the lemma. �

4 Application to mixtures of Gaussians

We define the usual random walk Metropolis algorithm.

Definition 3. (Random walk Metropolis algorithm.) The transition kernel K of the random
walk Metropolis algorithm with step size σ > 0 and target distribution π on R

d with density ρ
is given by the following algorithm for sampling X ∼ K(x, ·):

1. Sample ε1 ∼N (0, σ 2) and U1 ∼ Unif[0, 1].

2. If

U <
ρ(x + ε1)

ρ(x)
,

set X = x + ε1, otherwise set X = x.

For σ > 0, define the mixture distribution

πσ = 1

2
N (− 1, σ 2) + 1

2
N (1, σ 2)

and denote its density by fσ . Let Kσ be the kernel from Definition 3 with step size σ and target
distribution πσ .

Denote by λσ the relaxation time of Kσ (the reciprocal of the spectral gap of Kσ ), and denote
by �σ =�(Kσ , (− ∞, 0)) the Cheeger constant associated with kernel Kσ and set (− ∞, 0).

We will state our two main results about this walk; the proofs are deferred until both results
have been stated. First, we have an asymptotic formula for the Cheeger constant.

Theorem 1. The Cheeger constant �σ satisfies

lim
σ→0

(− 2σ 2) log(�σ ) = 1. (4.1)

For fixed x ∈ (− ∞, 0), let {X(σ )
t }t∈N be a Markov chain with transition kernel Kσ and initial

point X(σ )
1 = x. Define the hitting time τ (σ )

x = inf{t> 0 : X(σ )
t /∈ (− ∞, 0)}.

We also have the following estimate of the spectral gap and the hitting time.

Theorem 2. For all ε > 0 and fixed x ∈ (− ∞, 0), the hitting time τ (σ )
x satisfies

lim
σ→0

P

[
log
(
τ

(σ )
x
)

log(�σ )
< 1 + ε

]
= 1

and the relaxation time satisfies

lim
σ→0

log(λσ )

log(�σ )
= lim
σ→0

log(λσ )

log(�(Kσ ))
= 1.
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Remark 2. This result implies that the Cheeger constant�(Kσ ) of Kσ is close to the bottleneck
ratio �σ =�(Kσ , (− ∞, 0)) associated with the set (− ∞, 0), at least for σ very small. The
set (− ∞, 0) is of course a natural guess for the set with the ‘worst’ conductance, though we
do not know of any simple argument that would actually prove this. In some sense this is the
motivation for the approach taken in this paper: it can be very hard to guess a good partition,
even in a very simple example!

We begin by proving Theorem 1.

Proof of Theorem 1. Let {Xt}t≥0 be a Markov chain with transition kernel Kσ , started
at X0 ∼ πσ , and drawn according to the stationary distribution. Denote by φσ the density
of the Gaussian with variance σ 2. Defining the set E = {X0 <−σ−1} ∪ {|X1 − X0|>σ−1},
we have

P[{X0 < 0} ∩ { X1 > 0} ∩ Ec] ≤
∫ 0

−σ−1

∫ σ−1

0
fσ (x)φσ (y − x) dx dy

≤ 2
∫ 0

−σ−1

∫ σ−1

0
φσ (1 + x)φσ (y − x) dx dy

= 2

πσ 2

∫ 0

−σ−1

∫ σ−1

0
exp

{
− 1

2σ 2
((1 + x)2 + (y − x)2)

}
dx dy

≤ 2

πσ 2

∫ 0

−σ−1

∫ σ−1

0
e− 1

2σ2 = 2

πσ 4
e− 1

2σ2 .

We also have the simple bound

P[E] ≤ P[X0 <−σ−1] + P[|X1 − X0|>σ−1]

≤ 2
∫ −σ−1

−∞
φσ (x) dx + 2

∫ ∞

σ−1
φσ (x) dx

≤ 4√
2πσ

exp

{
− (σ−1 − 1)2

2σ 2

}
≤ 4√

2πσ
e− 1

3σ
−3
,

where the last inequality holds for all σ sufficiently small. Putting these two bounds together,
we have, for all σ > 0 sufficiently small,

P[X0 < 0, X1 > 0] ≤ 1

πσ 4
e
− 1

2σ2 + 4√
2πσ

e− 1
3σ

−3
.

Taking logs, this immediately proves that limσ→0 (− 2σ 2) log(�σ ) ≤ 1, the desired upper
bound on the left-hand side of (4.1). To prove the lower bound on this quantity, begin by defin-
ing the intervals Iσ = (− 2σ 20,−σ 20) and Jσ = (σ 10, 2σ 10). Since σ 20 � σ 10 for σ small, we
have, for sufficiently small σ > 0,

inf
x∈Iσ ,y∈Jσ

fσ (y)

fσ (x)
≥ 1.
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Informally, this means that any proposed step from Iσ to Jσ will be accepted. Thus, letting
Y ∼N (0, σ 2) be independent of X1, we have

P[X0 < 0, X1 > 0] ≥ P[X0 ∈ Iσ , X1 ∈ Jσ ]

≥ P[X0 ∈ Iσ ] inf
x∈Iσ

P[X0 + Y ∈ Jσ | X0 = x]

≥
(

σ 20

4
√

2π
e− 1

2σ2

)
×
(

σ 10

4
√

2π

)
,

where the last inequality holds for all σ > 0 sufficiently small. Taking logs, this proves that
limσ→0 (− 2σ 2) log(�σ ) ≥ 1, completing the proof of (4.1). �

Proof of Theorem 2. We defer some of the longer exact calculations in this proof to
Appendix A, retaining here the key steps that might be used to prove similar metastability
results for other Markov chains. To prove Theorem 2, it is enough to verify Assumptions
1 and 2 for the sets S(1) = (− ∞, 0) and S(2) = [0,∞), with the decomposition of S(1) into
G(1)
β = (− σ−9, 0), W(1)

β = (− σ−10, 0), B(1)
β = (− ∞,−σ−10), and G(2)

β , W(2)
β , and B(2)

β defined
analogously (see Figure 1). Note that Assumption 1.1 follows immediately from (4.1), which
we have already proved.

Denote by K̂σ the Metropolis–Hastings transition kernel on (− ∞, 0) that has as its proposal
kernel Kσ and as its target distribution the density ρ̂σ (x) = 2fσ (x), x ∈ (− ∞, 0).

We begin by proving some stronger Lyapunov-like bounds for Kσ and K̂σ .

Lemma 3. Let Vσ (x) = eσ
−1 min(‖x−1‖,‖x+1‖). Then there exist 0<α ≤ 1, 0 ≤ M,C<∞ such

that, for all K ∈ {Kσ , K̂σ } and x ∈ (− ∞,−Mσ ),

(KVσ )(x) ≤ (1 − α)Vσ (x) + C. (4.2)

Furthermore, Assumption 2.2 holds.

Proof. The proof is deferred to Appendix A. �
We next check the main condition.

Theorem 3. With notation as above, Assumption 1.2 is satisfied.

Proof. We begin with a weak estimate of mixing from within a good set.

Lemma 4. Fix 0< δ < 1
20 . With notation as above, there exist some constants 0< a1, A1 <∞

such that
sup

−σ−11<x,y<−δ

∥∥K̂T
σ (x, ·) − K̂T

σ (y, ·)∥∥TV ≤ A1e−a1σ
−1

(4.3)

for T > A1σ
−a1 .

Proof. The proof is deferred to Appendix A. �

Note that this bound is not good enough for our conclusions, since our upper bound e−a1σ
−1

is still very large compared to the conductance of interest. We improve the bound by iterating
it several times.

Lemma 5. Fix 0< δ < 1
20 . There exist constants 0< a2, A2 <∞ depending only on δ

such that
sup

−σ−9<x,y<−δ

∥∥K̂S
σ (x, ·) − K̂S

σ (y, ·)∥∥TV ≤ A2e−a2σ
−5

(4.4)
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for S = �A2σ
−a2�. Furthermore, there exist constants 0< a3, A3 <∞ such that

sup
x∈(−δ,0)

P[τx,(−δ,0)c < A3σ
−a3 ] ≥ 1 − e−σ−10

. (4.5)

Proof. The proof is deferred to Appendix A. �
Fix δ= 0.01. Combining (4.4) with the bound in (4.5) on the length of excursions above −δ

completes the proof of the Theorem 3.

Lemma 6. With notation as above, Assumptions 1.3, 1.4, and 2.3 hold.

Proof. These all follow immediately from Lemma 3 and the definition of our partition.

Next, note that Assumption 2.1 holds by the symmetry of S(1), S(2) and the fact that we have
already checked Assumptions 1.

Thus, it remains only to check Assumption 2.4.

Lemma 7. With notation as above, Assumption 2.4 holds.

Proof. It is immediately clear that Kσ (x, (− ∞, x]) ≥ 1
2 for all x ∈R, which implies

(3.7). Standard Gaussian inequalities imply that supx<0 Kσ (x, (σ 10,∞)) ≤ e−σ 9
for σ < σ0

sufficiently small. Combining this with (4.1) completes the proof of (3.8). �
Since we have verified all the assumptions of Lemmas 1 and 2, applying them completes

the proof of Theorem 2.

5. Application to sampling from high-dimensional sets

We give an example with a very different flavour from that in Section 4: an analysis of
multimodality in a simple Gibbs-like walk for sampling from the uniform distribution on a
high-dimensional set. To keep the analysis as simple and easy-to-read as possible, we consider
a very simple situation; we briefly discuss some generalizations in Remark 4.

We begin by defining a simple variant of the hit-and-run sampler introduced in [22].
Roughly speaking, this algorithm proceeds by choosing a random direction at every step and
sampling uniformly along this line. More precisely, denote by λ the Lebesgue measure on R

d

and fix an open set C ⊂R
d with 0<λ(C)<∞. We define the associated sampler L with target

distribution equal to the uniform distribution on C by the following algorithm for sampling
X ∼ L(x, ·):

1. Sample v uniformly on the unit sphere {y ∈R
n : ‖y‖ = 1}.

2. Define �′ = {x + sv : s ∈R
n} ∩ C. Note that �′ is a union of line segments and includes

x; let � be the connected component of �′ that contains x.

3. Return X ∼ Unif(�).

We now set up the main problem. Roughly speaking, we will check that this algorithm
exhibits metastability when C is the union of two moderately rounded sets that have small
intersection. A concrete family of such sets is given in Example 1.

Proceeding more formally, fix constants r, R ∈R such that 0< r< R, and �> 0. Let
Â1, Â2, . . .⊆R

d and K̂1, K̂2, . . .⊆R
d be two sequences of convex bodies. Suppose that, for

each β ∈N, the convex bodies Âβ and K̂β each contain a (possibly different) ball of radius r,
and are each contained in a (possibly different) ball of radius R. For each β ∈N, we define
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Aβ := Âβ + B(0, �) and Kβ := K̂β + B(0, �), where ‘+’ denotes the Minkowski sum. Finally,
let Cβ = Aβ ∪ Kβ , and let Qβ be the hit-and-run sampler associated with the set Cβ .

For c> 0 and S ⊂R
d, we define the c-interior of S by S(−c) = {x ∈R

d : infy/∈S ‖x − y‖> c}.
We assume the following conditions on our sequences of convex bodies Â1, Â2, . . .⊆R

d

and K̂1, K̂2, . . .⊆R
d in order to guarantee metastability.

Assumptions 3. We assume:

1. There exists a measurable set S ⊂R
d such that, for all β ∈N,

Kβ ∩ S ⊆ Aβ ∩ S,

Aβ ∩ Sc ⊆ Kβ ∩ Sc,

A

(
− 1

80
√

d
�
)

β ⊂ S,

K

(
− 1

80
√

d
�
)

β ⊂ Sc.

2. Define the function

f (β) := 1

λ(S ∩ Cβ )

∫
S∩Cβ

Qβ (x, Sc) dx,

which is just the conductance of the set S ∩ Cβ for the kernel Qβ . There exist constants
c1, c2, c3 > 0 such that e−c1β

c2
< f (β) ≤ e−c3β for all β ∈N.

The main result of this section is the following theorem.

Theorem 4. Fix sequences of convex sets satisfying Assumptions 3, and let Qβ be the asso-
ciated hit-and-run transition kernel. The spectral gap ρβ and conductance �β of Qβ satisfy

lim
β→∞

log(ρβ )

log(�β (S))
= 1.

Example 1. As a concrete example, for any�< 1
10 , consider the�-rounded simplex D = {x ∈

R
d : x[i] ≥ 0 for all i ∈ [d] and ‖x‖1 ≤ 1} + B(0, �). For all α ≥ 0, let Aα = α1 +D, where 1 =

(1, . . . , 1)� is the all-ones vector. Let Kα = −Aα , and let Cα = Aα ∪ Kα . Note that these sets
are clearly contained, for example, in the ball of radius R = 2 around the origin, and contain,
for example, the ball of radius r = 1

2d2 around ( 1
2d , . . . ,

1
2d ).

We next check that this sequence satisfies Assumptions 3 for some appropriate choice of
α = α(β). Let S be the half-plane S = {x ∈R

d : 1�x ≥ 0}. Define the function

F(α) := 1

λ(S ∩ Aα)

∫
S∩Aα

Lα(x, Sc) dx,

where Lα is the hit-and-run sampler associated with the set Cα .

We note that F is clearly continuous, strictly monotone decreasing on [0, �], and satisfies
f (0)> 0 and F(�) = 0. Thus, there exists a monotone increasing function g : [0,∞) �→ [0, �]
that satisfies e−c1xc2

< F(g(β)) ≤ e−c3x for some c1, c2, c3 > 0 and all β ∈ [0,∞).
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FIGURE 2. The convex sets Aβ and Kβ , and their union Cβ = Aβ ∪ Kβ , considered in Example 1.
Theorem 4 implies metastability of the hit-and-run Markov chain on the uniform distribution on the sets

Cβ as β → ∞.

Define Aβ := Ag(β), Kβ := Kg(β), and Cβ = Cg(β) = Ag(β) ∪ Kg(β) for all β ∈N (see Figure 2).
Then the sequence C1, C2, . . . satisfies the assumptions of Theorem 4.

Remark 3. Note that we did not need to explicitly compute either �β (S) or ρβ here! For
this particular example, estimating �β (S) is likely not too difficult, but in more complicated
examples this can be useful.

Remark 4. In Theorem 4, we held the ambient dimension d, the radii of the contained and
containing balls r, R, and the amount of ‘rounding’ � as constant for simplicity. We point out
here that the proof of Theorem 4 more or less goes through for many sequences of convex
bodies even when these constants are allowed to change (and indeed even when the amount of
rounding� is 0). Essentially the only serious difficulty comes from the step at which we check
that the mixing time of the walk restricted to each part of the partition is small. In the proof of
Theorem 4, we checked this by invoking Corollary 1.2 of [9], the strongest result in this area
that we are aware of. This theorem has basically two requirements for the sequence of convex
bodies Kβ :

1. Denote by Rβ the radius of the smallest ball containing Kβ , rβ the radius of the

largest ball contained in Kβ , and dβ its dimension. Then Rβdβ
rβ

cannot grow more than
polynomially quickly in β.

2. From any starting point, the hit-and-run kernel must jump at least some non-negligible
distance with non-negligible probability, in a sense made formal by (B.4).

The first condition is often trivial to verify. The second condition seems trivial in moderate
dimension, and is guaranteed by having a fixed dimension d and degree of rounding �> 0. It
can hold even as d goes to infinity and�= 0, but it turns out to be more complicated in higher
dimensions. We can see the basic difficulty quite clearly by considering the cube [0, 1]n: if
a hit-and-run walk is started at the origin, it will stay there until the proposed direction v
has components that are either all positive or all negative. This has probability 2−(n−1), so on
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average the walk will not move at all for something on the order of 2n steps. Thus, although
the walk mixes in polynomial time started from the point (0.5, 0.5, . . . , 0.5), the worst-case
mixing time is �(2n). Thus, the worst-case mixing time can be quite bad for sequences of
convex bodies with growing dimensions.

There is a large literature on dealing with ‘corners’ in high-dimensional bodies (with some
discussion in [9] itself), but a detailed discussion is far beyond the scope of the present arti-
cle. For this reason, we limit ourselves to convex bodies (such as �-rounded convex bodies)
where it is easy to see that the walk gets ‘far’ from the boundary within a few steps with high
probability.

Proof of Theorem 4. We verify the conditions in Assumptions 2 for the partition S � Sc of
�, with trivial choice of sets Gβ = Wβ ≡ S, Bβ = ∅.

Going down the list quickly, we look at the referenced parts of Assumptions 1:

1. This follows from the fact that e−c1β
c2
< f (β) ≤ e−c3β for all β ∈N.

2. Checking this is the main difficulty in proving the theorem. This follows from apply-
ing Lemma 8 in Appendix B with the choice ε = β−2�β (S); note that the result is
polynomial in β because of the assumption that �β (S) ≥ e−c1β

c2 for some c1, c2 > 0.

3. Wβ ∪ Bβ\Gβ = ∅, so this is immediate.

4. For the same reason as part 3, this is immediate.

We then verify the remaining parts of Assumptions 2:

1. This just refers to the parts of Assumptions 1 checked above.

2. Since � is compact, this is clear.

3. Again, since Wβ ∪ Bβ\Gβ = ∅, this is immediate.

4. By the symmetry of the problem, (3.7) holds with constant at least 1
2 . The inequality

(3.8) follows again from the fact that Wβ ∪ Bβ\Gβ = ∅.

5. Since our partition has only two parts, this is immediate.

Having checked Assumptions 2, the result follows from an application of Lemma 2. �

Appendix A. Technical bounds from the proof of Theorem 2

We prove some technical lemmas that occur in the proof of Theorem 2.

Proof of Lemma 3. Let a = aσ be the unique local minimum of fσ in the interval
(− 2,−0.5)—it is clear one such exists for all σ > σ0 sufficiently large, and that aσ is within

distance O
(
e
− 1

3σ2
)

of −1). Let Qσ be the transition kernel given in Definition 3 with step

size σ and target distribution N (a, 4σ 2). Let Lσ (x) = e−σ−1‖x−1‖. By a standard computation
(e.g. keeping track of the constants in the proof of Theorem 3.2 of [14]), there exist 0<α ≤ 1
and 0 ≤ C<∞ such that (QσLσ )(x) ≤ (1 − α)L(x) + C for all x ∈R and Q ∈ {Qσ , Q̂σ }. Next,
observe that

inf
x∈(−∞,−10σ )

d2

dx2
− log( fσ (x)) ≥ 1

8σ 2
.
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In particular, fσ is strongly log-concave on the interval (− ∞,−10σ ) with the same parameter
as the density of N (a, 4σ 2). Thus, if we fix M> 0 and x ∈ (− ∞,−Mσ ) and let X ∼ Kσ (x, ·),
we have, for K ∈ {Kσ , K̂σ },

(KVσ )(x) ≤ (QσLσ )(x) +E[Vσ (X)1X>−10σ ]

≤ (1 − α)Lσ (x) + C +E[Vσ (X)1X>−10σ ]

= (1 − α)Vσ (x) + C +E[Vσ (X)1X>−10σ ]. (A.1)

Let Y ∼N (0, σ 2). As M → ∞, for K = K̂σ we can then bound the last term by

E[Vσ (X)1X>−10σ ] ≤ Vσ (x)E[eσ
−1Y1x+Y∈[−10σ,0]] = (1 + o(1))Vσ (x). (A.2)

Combining (A.1) and (A.2) completes the proof of (4.2) in the case K = K̂σ . In the case
K = Kσ , we replace (A.4) by the similar bound

E[Vσ (X)1X>−10σ ] ≤ Vσ (x)E[eσ
−1Y1x+Y∈[−10σ,10σ ]] + Vσ (x)P[x + Y > 10σ ]

= (1 + o(1))Vσ (x)

to obtain the same conclusion.
Finally, Assumption 2.2 immediately follows from (4.2) in the case K = Kσ and the triv-

ial inequality sup|x|≤Mσ (KσVσ )(x) ≤ eσ
−3

for any fixed M and all σ < σ0 = σ0(A) sufficiently
small.

Proof of Lemma 4. Fix α,C as in Lemma 3 and let μ be the uniform distribution on the
interval I = [− 1 − 10C

α
σ,−1 + 10C

α
σ ]. We note that K̂σ inherits the following minorization

condition from the standard Gaussian:

inf
x∈I

inf
J⊂I

K̂σ (x, J) ≥ εμ(J) (A.3)

for some ε > 0 that does not depend on σ .
Fix −σ−10 < x, y<−δ. Applying the popular ‘drift-and-minorization’ bound in Section 10

of [15], using the ‘drift’ bound in (4.2) and the ‘minorization’ bound in (A.3) gives a bound of
the form

sup
−σ−10<x,y<−δ

∥∥K̂T
σ (x, ·) − K̂T

σ (y, ·)∥∥TV ≤ B1e−b1σ
−1 + 2 sup

−σ−10<x<−δ
P[τx,(−Mσ,∞) < t] (A.4)

for all T > B1σ
−b1 , where 0< b1, B1 are constants that do not depend on σ . Note that the

second term on the right-hand side, which does not appear in [15], represents the possibility
that a Markov chain ever escapes from the set (− ∞,−Mσ ) on which the drift bound (4.2)
holds.

Fix −σ−10 < x<−δ and let {Xt}t≥0 be a Markov chain with transition kernel K̂σ
and starting point X0 = x. Let τ = inf{t ≥ 0 : Xt >−Mσ }. By (4.2), we have, for all t ∈N,
E[Vσ (Xt)1τ≥t−1] ≤ (1 − α)tVσ (X0) + C

α
. Thus, by Markov’s inequality,

P[τ ≤ t]≤ e−σ−1(−Mσ+1)
t∑

s=0

(
(1 − α)tVσ (X0) + C

α

)

≤ t e−σ−1(−Mσ+1)
(

eσ
−1(−δ+1) + C

α

)
.

Combining this with (A.4) completes the proof of the lemma. �
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Proof of Lemma 5. We denote by {Xt}t≥0 a Markov chain with transition kernel K̂σ and
some starting point X0 = x. To improve on the bound in Lemma 4, we must control what
can occur when coupling does not happen quickly. There are two possibilities to control: the
possibility that {Xt}t≥0 goes above −δ, and the possibility that it goes below −σ−10. The
latter is easier to control; by (4.2) and Markov’s inequality, for all ε > 0 there exist constants
c1 = c1(ε),C1 = C1(ε)> 0 such that

sup
|X0|≤σ−β

P

[
min

1≤t≤eσ−β
Xt <−σ−β−ε

]
≤ eσ

−β
sup

|X1|≤σ−β
sup

1≤t≤eσ−β

E[e|Xt|]
eσ−β−ε

≤ eσ
−β
(

eσ
−β + α−1C

eσ−β−ε

)

≤ C1e−c1σ
−β−ε

(A.5)

uniformly in β ≥ 1.
The possibility that {Xt}t≥0 goes above −δ cannot be controlled in the same way, because it

does not have negligible probability on the timescale of interest. Instead, we use the fact that
Xt will generally exit the interval (− δ, 0) fairly quickly, often to the interval (− ∞,−δ).

To see this, fix x ∈ (− δ, 0) and let {Xt}t≥0 have starting point X0 = x. Next, let {εt}t≥1 be
a sequence of independent and identically distributed N (0, σ 2) random variables and let Yt =
X0 +∑t

s=1 εt. For I ⊂R, let ψx,I = inf{t ≥ 0 : Yt ∈ I} be the hitting time of I for the Markov
chain {Yt}t≥0. Observing the forward mapping representation of Kσ in Definition 3, and that fσ
is monotone on (− δ, 0), it is clear that we can couple {Xt}t≥0, {Yt}t≥0 so that

Xt ≤ Yt for all 0 ≤ t ≤ min(τx,(−δ,0)c , ψx,(−δ,0)c ). (A.6)

But, by standard calculations for a simple random walk,

sup
x∈(−δ,0)

P[ψx,(−δ,0)c >C2σ
−c2 ] ≤ σ 2, inf

x∈(−δ,0)
P[Yψx,(−δ,0)c <−δ]>C3σ (A.7)

for some constants c2,C2,C3 that do not depend on σ . (To see the first inequality in

(A.7), note that a direct calculation for Gaussians gives supx∈(−δ,0) P[ψx,(−δ,0)c >C2
′σ−c2

′
]>

C2
′′ > 0 for some C2

′, c2
′C2

′′ > 0; applying the strong Markov property to iterate this bound
as in the proof of (3.5) gives the desired conclusion. The second inequality in (A.7) follows
from the observation that P[Y1 >C3

′σ ]>C3
′′ > 0 for some constants C3

′,C3
′′ > 0 and then

the well-known ‘gambler’s ruin’ calculation (see, e.g., Section 10.14.4 of [18]).)
Combining (A.7) with (A.6) and noting that {Xt}t≥0 never exits (− ∞, 0) by construction,

we find
sup

x∈(−δ,0)
P[τx,(−δ,0)c <C2σ

−c2 ] ≥ C3σ − σ 2 = C3(σ )(1 − o(1)).

Noting that these bounds are uniform over the starting point X0 ∈ (− δ, 0), we find,
for k ∈N, supx∈(−δ,0) P[τx,(−δ,0)c < k C2σ

−c2 ] ≥ 1 − (1 − C3(σ ) − σ 2)k. Taking k very large

(k>σ−12 suffices) gives supx∈(−δ,0) P[τx,(−δ,0)c <C4σ
−c4 ] ≥ 1 − e−σ−10

for some constants
0 ≤ c4,C4 <∞, which is exactly (4.5).

Combining the bound (4.3) on the mixing of K̂σ on (− σ−11,−δ) with the bound (A.5) on
the possibility of excursions below −σ−11 and the bound (4.5) on the length of excursions
above −δ completes the proof of the lemma.
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Appendix B. Technical bounds from the proof of Theorem 4

We obtain the required bound on the mixing time, which is essentially a corollary of [9,
Theorem 1.1].

Lemma 8. Fix sequences of convex sets satisfying Assumptions 3, and denote by Lβ the hit-
and-run kernel on Cβ ∩ S = Aβ ∩ S, with stationary measure πβ the uniform distribution on this
set. Then there exists some constant 0<C<∞ that does not depend on β (though depending
on d) such that, for all ε > 0 and all T >C log(ε−1), supx∈Cβ∩S ‖LT

β (x, ·) − πβ ( · )‖TV ≤ ε.

Proof. For 0< δ < 0.15, define Aβ,δ = {x ∈ Aβ ∩ S : infy/∈Aβ∩S ‖x − y‖< δ} to be the points
at least distance δ from the boundary of Aβ ∩ S. Recall from [9, Corollary 1.2] that

supx∈Aβ,δ ‖Lt
β (x, ·) − πβ ( · )‖TV ≤ 0.25 for all t>C1(δ) ≡ 4 × 1011n3 R2

r2 log(4δ−1).
Applying the Markov property and then this bound (together with the well-known fact that

TV distance to stationarity decays exponentially quickly, as shown, e.g., in [8, Lemmas 4.11,
4.12], we have, for all t1, t2 ∈N,

sup
x∈Aβ∩S

∥∥Lt1+t2
β (x, ·) − πβ ( · )

∥∥
TV ≤ sup

x∈Aβ∩S
Px[τAβ,δ > t1] + sup

x∈Aβ,δ

∥∥Lt2
β (x, ·) − πβ ( · )

∥∥
TV

≤ sup
x∈Aβ∩S

Px[τAβ,δ > t1] + 2
−
⌊

t2
C1

⌋
. (B.1)

Fix any point x ∈ Aβ . We now consider the hit-and-run step defined by sampling v uniformly
on the (d − 1)-dimensional unit sphere, setting �= {x + sv : s ∈R

d} ∩ Aβ , and sampling X ∼
Unif(�). Recall that Aβ := Âβ + B(0, �) is the Minkowski sum of a convex body with a ball of
radius�. This implies that x lies on the surface of some ball B⊆ Aβ , where B has radius 1

2�.
Denote by nx the normal vector to the tangent plane of B at x, and let v⊥ be the component of
v in the direction of nx. Since the vector v which determines the hit-and-run step is uniformly
distributed on the (d − 1)-dimensional unit sphere, standard concentration inequalities for the
uniform distribution on the sphere imply that

P

[
‖v⊥‖ ≥ 1

3
√

d

]
≥ 1

2
.

It is an exercise in two-dimensional Euclidean geometry to check that, when ‖v⊥‖ ≥ 1
3
√

d
,

there exists some z ∈ � such that B 1
20

√
d

(z) ⊆B⊆ Aβ (see Figure B1(a) for a picture proof of

this fact). Denote by E the event that there exists z ∈ � : B 1
20

√
d

(z) ⊆B⊆ Aβ ; we have shown

that

P[E] ≥ 1

2
. (B.2)

We now continue by analysing the distribution of X on the event E , and fix the z ∈ �
whose existence is guaranteed as above. We note that E depends only on v. Let a,b be
the two intersection points of � with the convex body Aβ , and consider the convex hull
� = Convex

({a} ∪ {b} ∪ B 1
20

√
d
�

(z)
)⊂ Aβ of these two points and the ball B 1

20
√

d
�

(z). Let m

be the midpoint of the line segment [z, a], and let M be the midpoint of the line [z, b]. Since the
convex hull � consists of the union of two prisms which share a base consisting of a (d − 1)-
dimensional ball of radius 1

20
√

d
� centred at the point z, we can see that all the points on the
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FIGURE B1. An illustration of the convex geometry in the proof of Lemma 8.

lines [z, m] and [z, M] are in the 1
40

√
d
�-interior of � ⊆ Aβ ; see Figure 3(b). On the event E ,

then,

P

[
X ∈ A

(
− 1

40
√

d
�
)

β

∣∣ E
]

≥ P[X ∈ [z,m] ∪ [z,M] | E] ≥ 1

2
.

Combining this with (B.2), we have shown that

P

[
X ∈ A

(
− 1

40
√

d
�
)

β

]
≥ 1

4
. (B.3)

Now, our assumption that Kβ ∩ S ⊆ Aβ ∩ S implies that Cβ ∩ S = Aβ ∩ S. Moreover, by
another one of our assumptions, S contains the 1

80
√

d
�-interior of Aβ . Therefore, applying

(B.3) gives

inf
x

Lα

(
x, C

β, 1
80

√
d
�

)
≥ 1

4
. (B.4)

Applying this to (B.1) with the choice δ = 1
80

√
d
�, we find

sup
x∈Cβ∩S

∥∥Lt1+t2
β (x, ·) − πβ ( · )

∥∥
TV ≤

(
1 − 1

4

)t1
+ 2

−
⌊

t2
C1

⌋
.

Choosing t1 = ⌈ log(ε)
log(1− 1

4 )

⌉
and t2 = log(ε)

2C1

(
1

80
√

d
�
) gives

sup
x∈Cβ∩S

∥∥Lt1+t2
β (x, ·) − πβ ( · )

∥∥
TV ≤ ε.

�
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