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We consider the situation of a heavier fluid placed above a lighter one in a vertically
arranged Hele-Shaw cell. The two fluids are miscible in all proportions. For this
configuration, experiments and nonlinear simulations recently reported by Fernandez
et al. (2002) indicate the existence of a low-Rayleigh-number (Ra) ‘Hele-Shaw’ in-
stability mode, along with a high-Ra ‘gap’ mode whose dominant wavelength is on
the order of five times the gap width. These findings are in disagreement with linear
stability results based on the gap-averaged Hele-Shaw approach, which predict much
smaller wavelengths. Similar observations have been made for immiscible flows as
well (Maxworthy 1989).

In order to resolve the above discrepancy, we perform a linear stability analysis
based on the full three-dimensional Stokes equations. A generalized eigenvalue prob-
lem is formulated, whose numerical solution yields both the growth rate and the
two-dimensional eigenfunctions in the cross-gap plane as functions of the spanwise
wavenumber, an ‘interface’ thickness parameter, and Ra. For large Ra, the dispersion
relations confirm that the optimally amplified wavelength is about five times the gap
width, with the exact value depending on the interface thickness. The corresponding
growth rate is in very good agreement with the experimental data as well. The eigen-
functions indicate that the predominant fluid motion occurs within the plane of the
Hele-Shaw cell. However, for large Ra purely two-dimensional modes are also ampli-
fied, for which there is no motion in the spanwise direction. Scaling laws are provided
for the dependence of the maximum growth rate, the corresponding wavenumber, and
the cutoff wavenumber on Ra and the interface thickness. Furthermore, the present
results are compared both with experimental data, as well as with linear stability
results obtained from the Hele-Shaw equations and a modified Brinkman equation.

1. Introduction
The investigation of variable-density miscible flows in vertical Hele-Shaw cells has

a long history. Among the first researchers to address this class of flows is Wooding
(1960), who analyses situations characterized by a constant density gradient. Based
on a set of approximate equations, he calculates the conditions for neutral stability in
terms of a critical Rayleigh number Ra, where the perturbations are assumed to be of
wavy form both in the horizontal and the vertical direction. He furthermore provides

† Author to whom correspondence should be addressed.
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262 F. Graf, E. Meiburg and C. Härtel

a discussion of the range of validity of the Poiseuille flow assumption. In a related
experimental work several years later (Wooding 1969), the same author focuses on the
unstable dynamics of a miscible interface in a Hele-Shaw cell. He observes the early
stages to be dominated by diffusive growth. During the later stages the amplitudes of
the evolving fingers exhibit linear growth, while their wavelength increases with time.

In a companion paper, Fernandez et al. (2002, henceforth referred to as FKPM),
revisit gravitationally unstable, miscible flows in a vertically arranged Hele-Shaw cell.
From their experiments on the early, linear phase of the instability growth, they are
able to obtain information regarding the wavelength of the dominant perturbation,
along with the corresponding growth rate, as a function of Ra. These data indicate the
existence of a low-Ra regime in which the wavelength is inversely proportional to Ra,
and a high-Ra regime with a dominant wavelength of about five times the gap width
of the Hele-Shaw cell. Accompanying nonlinear numerical simulations based on the
three-dimensional Stokes equations confirm the existence of qualitative differences
between the low- and high-Ra regimes. In the low-Ra regime, convective transport
occurs primarily in the plane of the Hele-Shaw cell. Consequently, for this so-called
‘Hele-Shaw’ mode the interfacial region deforms predominantly in the spanwise
direction, whereas gradients in the cross-gap direction remain small. Conversely, at
high Ra a ‘gap’ mode is seen to dominate, in which layers of the resident fluid are
deposited on the walls of the cell, while fingers of the lighter fluid propagate along the
central regions of the cell, cf. also Petitjeans & Maxworthy (1996), Chen & Meiburg
(1996), Lajeunesse et al. (1997, 1999), Petitjeans et al. (1999). This behaviour leads to
the formation of large gradients in the cross-gap direction, which immediately raises
the question as to whether it can be captured by a gap-averaged Hele-Shaw approach,
cf. Homsy (1987). Such gap-averaged approximate equations have been employed by
several authors in order to investigate Hele-Shaw and porous media flows, both
for the purpose of linear stability analyses (e.g. Tan & Homsy 1986; Yortsos 1990;
Rogerson & Meiburg 1993a; Manickam & Homsy 1995; Wooding, Tyler & White
1997), and for fully nonlinear simulations, as reported by e.g. Tan & Homsy (1988),
Manickam & Homsy (1993), Rogerson & Meiburg (1993b), Chen & Meiburg (1998),
Ruith & Meiburg (2000). Very recently, Martin, Rakotomalala & Salin (2001) address
the relationship between the stability problems for the confined gap and unbounded
geometries, cf. also the earlier work by Taylor (1950), Chandrasekhar (1961), and
Batchelor & Nitsche (1991) for an unbounded stratified fluid, and by Batchelor &
Nitsche (1993) for stratified fluid contained in a vertical cylinder.

The above observations for miscible flows have corresponding counterparts for
immiscible two-phase flows in Hele-Shaw cells. In viscously driven flows, at low
capillary numbers Ca the curved interface front extends across the entire gap, cf.
Park & Homsy (1985), whereas at large Ca a wetting layer is left behind on the walls
of the cell (Bretherton 1961; Park & Homsy 1984; Schwartz 1986). Experimental
measurements by Park, Gorell & Homsy (1984) and Maxworthy (1989) show that the
predictions for the dominant wavelength obtained from the Hele-Shaw equations by
Chuoke, Van Meurs & Van der Poel (1959) as well as Saffman & Taylor (1958) are
accurate only in the limit of small Ca. For larger Ca values, the dominant wavelength
is again seen to scale with the gap width of the Hele-Shaw apparatus.

The present investigation addresses the reasons for the disagreement between
experimental observations and predictions by the Hele-Shaw equations regarding
such quantities as the dominant wavelengths and the corresponding growth rates. For
viscously driven flows, a first step in this direction was taken by Paterson (1985). Using
the criterion that the flow will tend to a state of minimal dissipation, he showed that
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Figure 1. Hele-Shaw cell with coordinate system.

the wavelength of maximum growth in the absence of diffusion and surface tension
is approximately four times the gap width, provided that the less viscous fluid is
essentially inviscid. However, this argument cannot be extended to constant-viscosity,
variable-density situations such as the one of interest here. Consequently, we approach
the task of determining the most amplified wavelength, along with the corresponding
growth rate, by means of a linear stability analysis of the full three-dimensional Stokes
equations in a vertical Hele-Shaw cell. In this way, the effects of cross-gap velocities
and concentration gradients can be included in the analysis, which is not possible
with the gap-averaged Hele-Shaw approach.

The paper is structured as follows: The physical problem, along with the governing
equations and their non-dimensionalization, is described in more detail in § 2. These
equations are linearized, and the numerical procedure for the solution of the resulting
eigenvalue problem is discussed. Both two-dimensional, i.e. cross-gap, and three-
dimensional perturbations are considered. In § 3 the results of the stability analysis
regarding the dominant wavenumber and its growth rate are presented. Furthermore,
the commonly employed ‘extended Hele-Shaw’ equations, or Darcy’s law, are analysed
in some detail, and the validity of the underlying assumptions is discussed. Stability
predictions obtained from these Hele-Shaw equations are compared with the present
results for the Stokes equations. In addition, comparisons with the experimental
data of FKPM and the modified Brinkman equation approach of those authors are
presented. Section 4 states the main conclusions to be drawn from the stability results.

2. Physical problem
2.1. Governing equations

We consider the situation of a heavier fluid placed above a lighter one in a vertically
arranged Hele-Shaw cell with a gap width e, cf. figure 1. The two fluids are miscible in
all proportions, and we assume that their motion is governed by the three-dimensional
Stokes equations

∇ · u = 0, (2.1)

∇p = µ∇2u− ρg, (2.2)

∂c

∂t
+ u · ∇c = D∇2c. (2.3)
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It should be pointed out that the convective term in the concentration equation
renders the above set of equations nonlinear; u represents the flow velocity, g denotes
the vector of gravitational acceleration, which is taken to point in the −y-direction,
and c indicates the concentration of the heavier fluid. Note that implicitly contained
in the above set of conservation equations is the Boussinesq approximation, which
assumes that the solute concentration affects the local density without causing an
expansion or contraction of the fluid. Both the viscosity µ and the diffusion coefficient
D are considered constant throughout the mixture. The density ρ is assumed to vary
linearly with c according to

ρ = ρ2 + c(ρ1 − ρ2), (2.4)

where ρ1 and ρ2 represent the densities of the heavier and lighter fluid, respectively.
To render the governing equations dimensionless, we introduce a characteristic length
L∗, velocity U∗, time T ∗, pressure P ∗ and density difference R∗ in the form of

L∗ = e, (2.5)

U∗ =
∆ρ g e2

µ
, (2.6)

T ∗ =
µ

∆ρ g e
, (2.7)

P ∗ = ∆ρ g e, (2.8)

R∗ = ∆ρ = ρ1 − ρ2, (2.9)

cf. also FKPM. In this way, we obtain the dimensionless set of equations

∇ · u = 0, (2.10)

∇p = ∇2u− c∇y, (2.11)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c, (2.12)

where the Rayleigh number is defined as

Ra =
∆ρ g e3

Dµ
. (2.13)

2.2. Linearization and formulation of the eigenvalue problem

We linearize the above system of equations around a quiescent base state
u
v
w
p
c

 (x, y, z, t) =


0
0
0
p̄
c̄

 (y) +


u′
v′
w′
p′
c′

 (x, y, z, t) (2.14)

characterized by the concentration profile

c̄ = 0.5 + 0.5 erf
(y
δ

)
, (2.15)

where the parameter δ characterizes the thickness of the interfacial region. In the
following, we assume that the diffusive time scale of the base state is much larger than
the characteristic time scale of the instability growth, so that δ can be held constant
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for the purpose of evaluating the instability growth rate. The perturbations, denoted
by a prime, are assumed to be of the form

u′
v′
w′
p′
c′

 (x, y, z, t) =


û(y, z) sin(βx)
v̂(y, z) cos(βx)
ŵ(y, z) cos(βx)
p̂(y, z) cos(βx)
ĉ(y, z) cos(βx)

 eσt, (2.16)

where the hatted quantities represent the two-dimensional eigenfunctions. By substi-
tuting the above into the dimensionless conservation equations, subtracting out the
base state, and linearizing, we obtain the system of linear equations

βû(y, z) +
∂

∂y
v̂(y, z) +

∂

∂z
ŵ(y, z) = 0, (2.17)

βp̂(y, z) = β2û(y, z)− ∂2û

∂y2
− ∂2û

∂z2
, (2.18)

∂

∂y
p̂(y, z) = −β2v̂(y, z) +

∂2v̂

∂y2
+
∂2v̂

∂z2
− ĉ(y, z), (2.19)

∂

∂z
p̂(y, z) = −β2ŵ(y, z) +

∂2ŵ

∂y2
+
∂2ŵ

∂z2
, (2.20)

σĉ(y, z) +
∂c̄

∂y
v̂ =

1

Ra

(
−β2ĉ(y, z) +

∂2ĉ

∂y2
+
∂2ĉ

∂z2

)
. (2.21)

2.3. Numerical implementation

The above system of linearized equations is discretized on a domain that extends
from wall to wall, i.e. from −0.5 to 0.5, in the cross-gap z-direction, and from −l/2
to l/2 in the vertical y-direction. Here l has to be chosen sufficiently large so that
its effect on the numerical results for the eigenvalue and eigenfunctions is negligible.
Test calculations show that as long as the computational domain extends at least one
perturbation wavelength above and below the interface, i.e. as long as

l =
4π

β
, (2.22)

the error in the magnitude of σ is below 0.1%, Consequently, this value of l is adopted
for most of the calculations to be discussed below. However, for large wavenumbers
a minimum value of l = 4 is always maintained, in order not to truncate the
computational domain too close to the interfacial region.

In the z-direction, the linear equations (2.17)–(2.21) are discretized by compact
finite differences (Lele 1992) of fourth order at the walls, and up to tenth order in the
interior of the domain. In the y-direction, a Chebyshev collocation method is employed
with two separate subdomains that cover the regions y > 0 and y 6 0, respectively.
This allows us to concentrate the numerical resolution in the interfacial region. At
the element boundaries, the variables and their first derivatives are continuous. The
vertical domain boundaries are sufficiently far away from the interface that for
all velocity components and the concentration perturbation, homogeneous Dirichlet
conditions can be prescribed. At the solid walls, all velocity components are assumed
to vanish, along with the normal derivative of the concentration perturbation. No

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

65
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006516


266 F. Graf, E. Meiburg and C. Härtel

boundary conditions need to be prescribed for the pressure. The required numerical
resolution is established by means of test calculations. These indicate that for most
cases Nz = 17 points in the cross-gap direction are sufficient to keep the error in
the eigenvalue below 0.1%. The required number of grid points Ny in the vertical
direction depends on both the interface thickness parameter δ, and the size of the
computational domain, which in turn is a function of the wavenumber β. The largest
calculations employ up to Ny = 77 and Nz = 29 points, which results in a matrix of
size 5NyNz × 5NyNz = 11 165× 11 165.

Upon discretization, the system of linear equations (2.17)–(2.21) can be written in
matrix form as

Aφ = σ Bφ. (2.23)

Here the matrices A and B and the eigenvector φ are of the following form

0 βI
∂

∂y

∂

∂z
0

βI M1 0 0 0

− ∂

∂y
0 M1 0 −I

− ∂

∂z
0 0 M1 0

0 0 − ∂c̄
∂y

−∂c̄
∂z

M2




p̂
û
v̂
ŵ
ĉ

 = σ


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 I



p̂
û
v̂
ŵ
ĉ

 (2.24)

with

M1 = −β2I +
∂2

∂y2
+

∂2

∂z2
, (2.25)

M2 =
1

Ra

(
−β2I +

∂2

∂y2
+

∂2

∂z2

)
. (2.26)

This system has to be solved numerically in order to determine the eigenvalue σ along
with the corresponding eigenfunctions û, v̂, ŵ, p̂, and ĉ as functions of the spanwise
wavenumber β for the two parameters characterizing the overall fluid system and the
base state, Ra and δ.

The numerical eigenvalue problem is solved iteratively for the leading eigenvalues
by an Arnoldi method (Sorensen 1992). For the computational implementation we
make use of the public domain software package ARPACK (Maschhoff & Sorensen
1996; Lehoucq, Sorensen & Yang 1998). Test calculations demonstrate that in this
way the eigenvalues can be computed to a high degree of accuracy. However, the
corresponding eigenfunctions are not always fully converged, and the overall rate of
convergence is quite slow at times. The root of this problem can be traced back to
the fact that matrix B contains very few non-zero elements on the diagonal. In order
to accelerate the convergence, and to improve the accuracy, we consequently modify
the original system of equations slightly to

∇ · u = 0, (2.27)

Re
∂u

∂t
+ ∇p = ∇2u− c∇y, (2.28)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c, (2.29)
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Computed Residual
Re eigenvalue ξ

0 1.23061× 10−2 2.51376
0.001 1.23061× 10−2 3.55297× 10−9

0.01 1.23061× 10−2 3.31699× 10−12

0.1 1.23057× 10−2 3.19916× 10−12

1 1.22919× 10−2 9.78586× 10−13

Table 1. Eigenvalues and eigenfunction residuals for δ = 1, Ra = 105, β = 5,
and various values of Re.

where Re represents an artificial, Reynolds-number-like parameter. Test results shown
in table 1 for δ = 1, Ra = 105, β = 5, and various values of Re, demonstrate that for
Re = 0.01 the magnitude of the eigenvalue is essentially unaffected by Re, whereas
the eigenfunctions are much better converged than for Re = 0. Consequently, this
value of Re is employed throughout the present investigation.

2.4. Two-dimensional perturbations

When studying the stability behaviour for small spanwise wavenumbers β, condition
(2.22) demonstrates the need for large computational domains. The simultaneous
requirement to maintain a sufficiently fine resolution of the narrow interfacial region
results in exceedingly large matrix sizes, so that β cannot be made arbitrarily small.
Furthermore, it is not clear that three-dimensional modes for β → 0 will asymptote
towards the two-dimensional case β = 0. For this reason, and in order to obtain
information on the stability of purely two-dimensional perturbations, we consider
the case of β = 0 separately, i.e. of perturbations across the gap in the absence of
spanwise variations. Under these conditions, the spanwise u-velocity component van-
ishes identically, and we can conveniently formulate the two-dimensional governing
equations in terms of the streamfunction (ψ) and vorticity (ω) variables

∇2ψ + ω = 0, (2.30)

Re
∂ω

∂t
+ ∇2ω − ∂c

∂z
= 0, (2.31)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c. (2.32)

Note that we keep the artificial parameter Re for the same reasons as above. Vorticity
and streamfunction are defined in the usual way by

w =
∂ψ

∂y
, v = −∂ψ

∂z
(2.33)

and

ω =
∂v

∂z
− ∂w

∂y
. (2.34)

Upon introducing perturbations of the form ψ′
ω′
c′

 (y, z, t) =

 ψ̂(y, z)
ω̂(y, z)
ĉ(y, z)

 eσt, (2.35)
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Figure 2. The maximum eigenvalue σmax as a function of Ra, for different interface thicknesses δ.

into equations (2.30)–(2.32), linearizing, and discretizing, we obtain an eigenvalue
system of the form

M1 I 0

0 M1 − ∂

∂z

M3 0 M2


 ψ̂

ω̂
ĉ

 = σ

 0 0 0
0 ReI 0
0 0 I

 ψ̂
ω̂
ĉ

 (2.36)

with

M1 =
∂

∂y
+

∂

∂z
, (2.37)

M2 =
1

Ra

(
∂2

∂y2
+

∂2

∂z2

)
+
∂ψ̄

∂z

∂

∂y
− ∂ψ̄

∂y

∂

∂z
, (2.38)

M3 =

(
∂c̄

∂y

∂

∂z
− ∂c̄

∂z

∂

∂y

)
. (2.39)

Along the solid walls, we specify ψ̂ = 0 and ∂ψ̂/∂z = 0 along with ∂ĉ/∂z = 0. At the
far-field boundaries, all perturbations are assumed to vanish.

2.5. Validation

As discussed above, convergence studies serve to establish the required numerical
resolution, along with the necessary vertical extent of the computational domain. In
addition, the computational approach is validated by comparing the growth rates
with those obtained from the fully nonlinear code of FKPM for small perturbation
amplitudes.

3. Results
3.1. Two-dimensional perturbations

We begin by discussing two-dimensional perturbations, i.e. perturbations that vary
across the gap, but not in the spanwise direction. Figure 2 shows the maximum
eigenvalue σmax as a function of the Rayleigh number for different values of the
interfacial thickness parameter δ. In general, thinner interfaces and larger Ra values
are seen to be destabilizing. For each δ, a critical value Racrit can be identified, below
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Figure 3. The critical Rayleigh number Racrit as a function of the interfacial thickness parameter
δ, for two-dimensional perturbations. The squares represent the results of the stability calculations,
and the straight line is a linear regression for these data.
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Figure 4. Isocontours of the concentration eigenfunctions ĉ for δ = 0.1: (a) the low-Ra mode for
Ra = 103, (b) the high-Ra mode for Ra = 107. Solid (dashed) lines represent positive (negative)
values. At low Ra values, the eigenfunction has its maximum values near the walls, whereas at large
Ra values, the perturbation decreases to near zero at the wall.

which the base state is stable to two-dimensional perturbations. The critical Ra-value
reflects the stabilizing influence of the walls of the cell. This observation is consistent
with the nonlinear simulations discussed in FKPM. It is also in agreement with the
findings of Batchelor & Nitsche (1991), as well as Batchelor & Nitsche (1993). For
an unbounded stratified fluid, these authors observe all positive Rayleigh numbers to
be unstable, whereas cylindrical boundaries are seen to result in a non-zero critical
Rayleigh number. For large Rayleigh numbers, the present results show that the
growth rate asymptotically reaches a plateau, whose value depends on δ.

Figure 3 depicts the critical Rayleigh number Racrit as a function of δ. For 0.1 6
δ 6 2, Racrit is seen to grow approximately linearly with the interface thickness. By
performing a linear regression, we obtain the relationship

Racrit = 472.46 δ + 489.06. (3.1)

This indicates that Rayleigh numbers below O(500) are always stable with respect
to two-dimensional perturbations. By extrapolating the maximum growth rates as a
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Figure 5. Sketch of the qualitative nonlinear concentration contours for δ = 0.1 and Ra = 103 (a)
and Ra = 107 (b). Compare with the nonlinear simulation results provided in FKPM.

function of δ for Ra = 107 to δ = 0, we find that the maximum eigenvalue for a
step-like concentration base state is approximately 0.036.

Figure 4 displays the concentration eigenfunctions for δ = 0.1 and the two Ra
values of 103 and 107. We can clearly distinguish a low-Ra mode, for which the
concentration perturbations reach a maximum near or at the walls, and a high-Ra
mode characterized by nearly vanishing perturbation levels at the wall. Since the
corresponding streamfunction and vorticity eigenfunctions for these Ra values are
very similar to each other, the differences in the concentration eigenfunctions are
predominantly due to the effects of the diffusive term in the concentration equation.

Qualitative sketches of nonlinear interfacial shapes corresponding to the high- and
low-Ra concentration eigenfunctions are given in figure 5. For low Ra values the
fingers are wider and propagate up and down the solid walls, whereas for higher
Rayleigh numbers we find narrower fingers growing in the central regions of the gap.
It should be pointed out that for all of the parameter combinations investigated,
the maximum eigenvalue never corresponded to an eigenmode with more than two
fingers.

3.2. Three-dimensional perturbations

Figure 6 shows dispersion relationships for δ = 0.1 and several Rayleigh numbers
ranging from 50 to 107. For small and intermediate wavenumbers, the curves for
Ra > 105 become indistinguishable, which indicates that a further increase in Ra
affects only the range of unstable wavenumbers, i.e. the short-wavelength cutoff, but
not the wavenumber of maximum growth or its growth rate.

In order to provide insight into the long-wavelength limit, figure 7 presents detailed
information regarding the small-wavenumber regime, for the same parameter values
as in figure 6. The data demonstrate that for each Ra value there always exists a three-
dimensional perturbation that is more unstable than its two-dimensional counterpart.
However, as long as the base state is unstable to two-dimensional perturbations,
their growth rates are consistently higher than the values that one would obtain by
extrapolating the three-dimensional curve to β = 0. This indicates that the two- and
three-dimensional modes are fundamentally different in nature, which is confirmed
by figure 8. In this context, it is interesting to compare with the unbounded geometry
results of Batchelor & Nitsche (1991). These authors consider disturbances that are
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Figure 6. Dispersion relationships of three-dimensional perturbations for δ = 0.1 and various Ra.
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Figure 7. Detail of figure 6 for the small-wavenumber regime. The open symbols on the ordinate,
which represent results obtained for two-dimensional perturbations, are connected by dotted lines
to the solid symbols for three-dimensional disturbances. To the left of the dashed line, the unstable
modes are of the shape shown in figure 10, whereas to the right of this line they resemble figure 9.

two-dimensional in nature, and they observe that the growth rate approaches zero as
the wavenumber becomes smaller and smaller. In the present case, we allow for three-
dimensional perturbations, and as a result variations in the cross-gap direction have
the potential of triggering instabilities even as the spanwise wavenumber approaches
zero.

The general shape of the eigenfunctions for the dominant three-dimensional pertur-
bations can be seen from figure 9. The three-dimensional nature of these perturbations
is clear not only from the existence of a spanwise velocity component û, but also from
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Figure 8. Isocontours of the concentration eigenfunction ĉ for different wavenumbers β with
Ra = 105 and δ = 0.1.
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Figure 9. Eigenfunction contours for Ra = 105, δ = 0.1, and β = 10.
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Figure 10. Eigenfunction contours for Ra = 105, δ = 0.1, and β = 0.25.

the fact that at a given spanwise location both the concentration and the vertical ve-
locity perturbations are of a single sign only. For long wavelengths, the eigenfunctions
are of the general shape shown in figure 10.

For larger values of δ, the corresponding dispersion relationships are presented in
figure 11. We observe a general trend of decreasing growth rates and smaller cutoff
wavenumbers for increasing interface thicknesses.

Figure 12 displays the eigenvalue σmax of the most amplified wavenumber as a
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Figure 11. Dispersion relationships for (a) δ = 0.5, (b) 1 and (c) 2, and for various
Rayleigh numbers.
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Figure 12. Eigenvalue σmax corresponding to the most amplified wavenumber as a function of Ra
for different values of δ.

function of the Rayleigh number for various interface thickness parameters. While
this graph resembles figure 2 for the two-dimensional case in that it reaches a
plateau for large Rayleigh numbers, the eigenvalues are generally higher, and for the
same δ the unstable range extends to lower values of Ra. We did not analyse the
regime Ra < 50, since the dominant waves become quite long, resulting in a large
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Figure 13. βmax as a function of the Rayleigh number for various interface thickness parameters δ.
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Figure 14. The high-Ra limit of σmax along with the corresponding wavenumber βmax as a function
of the interface thickness parameter δ.

computational domain and correspondingly expensive computations. With respect to
two-dimensional perturbations, all possible base states had been stable for Ra < 489,
whereas under three-dimensional disturbances, all δ values are still unstable for
Ra = 50. It is interesting to see that for small Ra values the curves for different δ
appear to move closer together.

The wavenumber of maximum growth βmax is shown in figure 13 as a function of Ra
for various values of δ. It is interesting to observe that βmax reaches a plateau as well
for large Rayleigh numbers. In general, the most amplified wavelength increases with
the interfacial thickness. For a given interface thickness, it increases with decreasing
Ra.

Figure 14 displays the plateau values of the maximum growth rate σmax along with
the corresponding wavenumber βmax as functions of δ in a semi-logarithmic fashion.
The largest three values of δ suggest a logarithmic dependence, which, if it persists
to even higher δ values, indicates that beyond a critical thickness parameter of O(10)
all perturbations are stable. However, we did not explicitly check for the existence of
such a critical value.

The cutoff wavenumber βcrit is shown in figure 15 as function of the Rayleigh
number for various interface thickness parameters δ. The dashed line suggests that
in the limit of large Ra values, βcrit grows approximately in proportion to Ra10/33.
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Figure 15. Cutoff wavenumber βcrit as a function of Ra for various δ. The dashed line represents
the power law βcrit ∼ Ra10/33.

3.3. Comparison with stability analysis based on the Hele-Shaw approach

3.3.1. Properties of the extended Hele-Shaw equations

It is well known that for a single fluid of constant density and viscosity in a
Hele-Shaw cell, the three-dimensional Stokes equations are solved exactly by

u(x, y, z) = 3
2
u0(x, y)

(
1− 4

z2

e2

)
, (3.2)

v(x, y, z) = 3
2
v0(x, y)

(
1− 4

z2

e2

)
, (3.3)

w(x, y, z) = 0, (3.4)

∂p

∂x
= −12µ

e2
u0(x, y), (3.5)

∂p

∂y
= −12µ

e2
v0(x, y), (3.6)

provided that the gap-averaged velocities u0 and v0 in the plane of the Hele-Shaw
cell satisfy the equations of two-dimensional, incompressible irrotational flow. Several
authors have extended this approach and analysed Stokes flows involving two miscible
fluids of different densities, which are governed by the set of equations (2.1)–(2.3), on
the basis of a set of ‘augmented’ Hele-Shaw equations, which are also referred to as
the Darcy equations

∂u0

∂x
+
∂v0

∂y
= 0, (3.7)

∂p

∂x
= −12µ

e2
u0, (3.8)

∂p

∂y
= −12µ

e2
v0 − ρg, (3.9)

∂c

∂t
+ u0 · ∇c = D∇2c. (3.10)
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It is well known, however, that solutions to these equations no longer satisy the
corresponding three-dimensional Stokes equations.

Secondly, the simplified convection–diffusion equation (3.10) for the concentration
field neglects several important effects contained in the full equation (2.3). It does
not account for a cross-gap velocity component, and probably more importantly, it
neglects the important effect of Taylor dispersion (Taylor 1953; Horne & Rodriguez
1983; Zimmerman & Homsy 1991; Petitjeans et al. 1999), i.e. the broadening of the
front due to gradients in the velocity field. Given the above shortcomings of the
Darcy equations, it is thus desirable to compare the stability results they give with
those of the full three-dimensional Stokes equations.

By making the Darcy equations dimensionless with the same parameters (2.6)–(2.8)
as the original Stokes equations, and then rewriting them in the streamfunction and
vorticity formulation, we obtain

∇2ψ = −ω, (3.11)

12ω = − ∂c
∂x
, (3.12)

∂c

∂t
+ u0 · ∇c = D∇2c. (3.13)

Linearizing these equations, and assuming perturbations of the form

ψ′(x, y, t) = ψ̂(y) sin(βx) eσt, (3.14)

ω′(x, y, t) = ω̂(y) sin(βx) eσt, (3.15)

c′(x, y, t) = ĉ(y) cos(βx) eσt, (3.16)

leads to the eigenvalue problem

∂2ψ̂

∂y2
− β2ψ̂ = −ω̂, (3.17)

12ω̂ = βĉ, (3.18)

σĉ− β ∂c0

∂y
ψ̂ =

1

Ra

(
∂2ĉ

∂y2
− β2ĉ

)
. (3.19)

By once again incorporating a Reynolds-number-like term in the vorticity equation
for better convergence properties, discretization by a Chebyshev approach leads to
the matrix form of the eigenvalue problem as

∂2

∂y2
− β2 I 0

0 12I −β
βc̄ 0

1

Ra

(
∂2

∂y2
− β2

)

 ψ̂

ω̂
ĉ

 = σ

 0 0 0
0 ReI 0
0 0 I

 ψ̂
ω̂
ĉ

 . (3.20)

This matrix problem can be solved with the ARPACK package, as described above.
As far-field boundary conditions in the y-direction, we specify ψ̂ = ω̂ = ĉ = 0.

3.3.2. Comparison of stability results

Figure 16 presents a comparison of the dispersion relationships obtained from
the full three-dimensional Stokes equations and from Darcy’s law for δ = 0.5 and
various Rayleigh numbers. Only for the smallest Ra value of 102 does there exist
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Figure 16. Dispersion relationships obtained from the three-dimensional Stokes equations (solid
lines) and the extended Hele-Shaw equations (dashed lines) for δ = 0.5 and various Rayleigh
numbers. Only for the smallest Ra value do we observe at least qualitative agreement.

at least rough agreement between the two different sets of results. This is not
unexpected, as for small Rayleigh numbers the diffusive spreading of the concentration
front outweighs the convective Taylor dispersion, so that the concentration field is
nearly independent of the cross-gap coordinate z. Under these conditions, the w-
velocity component remains small, and the Hele-Shaw approach of employing a
simplified, two-dimensional convection–diffusion equation for the concentration field
is reasonably accurate.

For the Ra values of 104 and 107, there is not even qualitative agreement between
the Hele-Shaw and the Stokes results. Naturally, Darcy’s law cannot predict the
predominantly two-dimensional ‘gap mode’ described earlier, which was observed in
the experiments and nonlinear simulations by FKMP. Furthermore, in the limit of
large Ra, the Stokes dispersion relationships show a pronounced maximum growth
rate along with a high-wavenumber cutoff, whereas the Hele-Shaw growth rates keep
increasing for large wavenumbers.

Figure 17 depicts the maximum growth rates obtained from the Stokes and Hele-
Shaw equations, respectively, for various interface thickness parameters δ. The best
agreement is observed for thick interfaces, where concentration variations in the
cross-gap direction are small. For thinner interfaces, on the other hand, the Hele-
Shaw growth rates are too large by more than a factor of two, and there is no clear
indication of an asymptotic plateau.

For the extended Hele-Shaw approach, with increasing Rayleigh numbers maximum
growth occurs at larger and larger wavenumbers, and the asymptotic plateau observed
for the Stokes equation results in figure 13 is not reproduced. At Ra = 107, for example,
the Hele-Shaw and Stokes results for the dominant wavelength at δ = 0.5 differ by a
factor of O(50).

3.4. Comparison with stability analysis based on the modified Brinkman equation

For density-driven miscible flows in a vertical Hele-Shaw cell, FKPM present stability
results based on a modified Brinkman equation, cf. also the more detailed account
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Figure 17. Maximum growth rate as a function of Ra for different δ. The solid lines are based on
the Stokes equations, whereas the dashed lines represent results based on the extended Hele-Shaw
approach.

provided by Fernandez et al. (2001). While this approach still involves a certain
amount of averaging across the gap, it is not quite as restrictive as the extended
Hele-Shaw equations described above. As a result, it was seen to provide a reasonably
accurate prediction of growth rate and dominant wavenumber across the entire range
of Rayleigh numbers. It is thus of interest to compare the predictions of the modified
Brinkman approach with those of the full three-dimensional Stokes equations.

For a step profile of the concentration, and for the present definitions of the
dimensionless growth rate and Rayleigh number, the modified Brinkman approach
results in the implicit dispersion relationship

σ =
12

Ra
+
β

24

[
1− β√

12 + β2

]
− β

2σRa

[
1− β√

β2 + σRa

]
, (3.21)

from which the growth rate can easily be determined as a function of β and Ra
by means of a Newton iteration procedure. Figure 18 shows a comparison between
the present Stokes results and those obtained from the Brinkman equation, for both
the maximum growth rate and the corresponding wavenumber. While our present
computational approach for the full three-dimensional Stokes equations cannot pro-
vide data for the step profile, extrapolating the data for different interface thickness
parameters to δ = 0 indicates that the modified Brinkman equation predicts the dom-
inant wavenumbers quite accurately, whereas the predicted growth rates are probably
somewhat too low. Nevertheless, there is no doubt that the Brinkman approach gives
vastly superior results compared to the extended Hele-Shaw equations.

3.5. Comparison with experimental measurements

FKPM conducted density-driven experiments for fluids of constant viscosities in
vertically arranged Hele-Shaw cells of different gap widths. They recorded both the
wavelength of the dominant perturbation and its growth rate, as a function of the
Rayleigh number. Consequently, we can perform direct comparisons of our stability
results with their experimental observations. In order to do so, we have to multiply the
growth rates obtained from the stability analysis by a factor of 12, and to divide Ra
by the same factor. This is due to the slightly different definition of the characteristic
quantities in the present stability analysis.
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Figure 18. Comparison between the modified Brinkman and Stokes equation results for the
maximum growth rate and the corresponding wavenumber.
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Figure 19. Experimental data of FKPM (open symbols) and stability results based on the Stokes
(solid lines) and modified Brinkman (dashed line) equations for the maximum amplification rate as
a function of the Rayleigh number.

Figure 19 displays growth rates as a function of Ra. The experimental data include
fluids of different viscosities, while stability data are provided for various interface
thickness parameters δ. For the sake of completeness, the modified Brinkman equation
results for the step profile are included as well. Overall, the quantitative agreement
between the experimental data and the stability results is quite good. A few interesting
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Figure 20. Experimental data of FKPM (open symbols) for the dominant wavelength as a function
of the Rayleigh number. For comparison, stability results are provided based on the Stokes (solid
lines) and modified Brinkman (dashed line) equations.

observations can be made. In general, the experimental data for the more viscous cases
display higher growth rates than for the less viscous cases. From the Stokes–Einstein
relation (e.g. Bird, Stewart & Lightfoot 1960) we know that the diffusion coefficient
is approximately inversely proportional to the dynamic viscosity. The thickness of a
diffused concentration layer originating from a step profile, in turn, is proportional to
the square root of the diffusion coefficient and the elapsed time. If we assume that in
the experiments the filling of the apparatus took roughly the same time independently
of the fluid combination, the interface thickness should thus be proportional to the
inverse of the square root of the viscosity. Consequently, the experimental data for
µ = 1 should correspond to a δ value that is O(4–5) larger than the data for µ = 20.
While the considerable scatter in the experimental data prevent an accurate check,
the data certainly show the correct tendency. There is a noticable overshoot of the
low-viscosity experimental data for Rayleigh numbers of O(101–102), which cannot
be explained on the basis of the present stability analysis.

Figure 20 shows the corresponding experimental data and linear stability results for
the wavelength of the dominant perturbation. Again the overall agreement is quite
good. As for the growth rate, the experimental data for the more viscous fluids are
seen to agree better with the stability results for thin interfaces, while the less viscous
data correspond to thicker interfaces.

4. Conclusions
The above comparisons with experiments demonstrate that the discrepancy between

experimental observations and stability results regarding the dominant wavelength in
Hele-Shaw flows can be resolved by basing the linear theory on the three-dimensional
Stokes equations, instead of Darcy’s law. The agreement between the Stokes-based
results and the experiments on one hand, and the disagreement between both of
these and the Hele-Shaw results on the other hand, indicate the importance of the
velocity component normal to the plane of the Hele-Shaw cell, and of concentration
gradients across the gap. This is particularly true at high Rayleigh numbers. For low
Ra values and large interfacial thickness parameters, the Hele-Shaw-based results are
in better agreement, since the diffuse front prevents the development of significant
three-dimensional effects.
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For unstable density-driven flows in a vertical Hele-Shaw cell, the present linear
stability analysis provides a clear resolution of the discrepancy between experimental
observations and linear stability results derived on the basis of the gap-averaged Hele-
Shaw approach. At the same time, the basic approach employed here of analysing
a two-dimensional base state can be extended to address the stability of a variety
of other, related flows. An analysis of viscously driven unstable flows will require
the consideration of a main, net flow in the stability analysis, and the separate
calculation of the two-dimensional base flow around which the linearization can
subsequently be performed. The earlier simulations of Chen & Meiburg (1996) will
be useful in this regard. Further possible extensions could address the effects of finite
Reynolds numbers, temperature effects or chemical reactions at the front. Efforts in
this direction are currently underway.
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