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Surfactants at fluid interfaces not only lower and cause gradients in surface tension but
can induce additional surface rheological effects in response to dilatational and shear
deformations. Surface tension and surface viscosities are both functions of surfactant
concentration. Measurement of surface tension and determination of its effects on
interfacial flows are now well established. Measurement of surface viscosities, however,
is notoriously difficult. Consequently, quantitative characterization of their effects in
interfacial flows has proven challenging. One reason behind this difficulty is that, with
most existing methods of measurement, it is often impossible to isolate the effects
of surface viscous stresses from those due to Marangoni stresses. Here, a combined
asymptotic and numerical analysis is presented of the pinch-off of a surfactant-covered
Newtonian liquid jet. Similarity solutions obtained from slender-jet theory and numerical
solutions are presented for jets with and without surface rheological effects. Near
pinch-off, it is demonstrated that Marangoni stresses become negligible compared to other
forces. The rate of jet thinning is shown to be significantly lowered by surface viscous
effects. From analysis of the dynamics near the pinch-off singularity, a simple analytical
formula is derived for inferring surface viscosities. Three-dimensional, axisymmetric
simulations confirm the validity of the asymptotic analyses but also demonstrate that a
thinning jet traverses a number of intermediate regimes before eventually entering the
final asymptotic regime.

Key words: capillary flows

1. Introduction

Surfactants are routinely used in diverse applications involving interfacial or
free-surface flows. Well-known examples of such applications include: (a) coating flows
(Schunk & Scriven 1997; Shen et al. 2002), (b) flow through porous media as in enhanced
oil recovery where they are used to help mobilize or displace oil that is trapped in the pores
of crude-oil-containing rock formations (Ahmadi, Galedarzadeh & Shadizadeh 2015;
Negin, Ali & Xie 2017), (c) treatment of respiratory distress syndrome where surfactants
are injected into the lungs to enable inflation of alveoli and prevent them from collapsing
(Notter 2000; Zasadzinski et al. 2001), (d) crop spraying where surfactants facilitate
spreading of agricultural chemicals on the leaves of plants (Zhang & Basaran 1997) but
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also affect in a complex way the sizes and distributions of sizes of spray drops (Kooij et al.
2018) which may lead to increased spray drift or pollution (Hilz & Vermeer 2013) and (e)
during drop formation in myriad applications including ink jet printing (Basaran 2002;
Basaran, Gao & Bhat 2013; Castrejon-Pita et al. 2013). The primary action of surfactants
in these flows is attributable to their preferential adsorption onto interfaces and the
concomitant lowering of surface tension, and hence capillary pressure, by their presence
at interfaces. However, surfactant concentration is often non-uniform at an interface in
a free-surface flow because of interfacial area change by compression or expansion due
to normal dilatation and tangential stretching, and surfactant transport by convection and
diffusion. Gradients in surfactant concentration give rise to gradients in surface tension
and hence tangential interfacial – Marangoni – stresses. In addition to the lowering of
surface tension – the soluto-capillary effect – and the Marangoni effect, surfactants may
also induce surface rheological effects (Berg 2010) as surfactant molecules are transported
along an interface and give rise to frictional losses as the molecules deform against one
another. While the implication of these effects has been investigated in some interfacial
flows such as coating flows (Scheid et al. 2010, 2012), only a handful studies to date have
considered the effects of surface rheology on interface pinch-off or breakup (see below).
The major goal of this paper is to advance the understanding of the effects of surface
viscosities in jet breakup.

While the understanding of the role of the soluto-capillary and Marangoni effects on
the breakup of jets of Newtonian fluids is fairly complete (Ambravaneswaran & Basaran
1999; Craster, Matar & Papageorgiou 2002; Timmermans & Lister 2002; Liao, Franses &
Basaran 2006; Xu, Liao & Basaran 2007; Roché et al. 2009; de Saint Vincent et al. 2012;
Kovalchuk, Nowak & Simmons 2016; Kamat et al. 2018; Martínez-Calvo et al. 2020),
the understanding of the role of surface viscosities on pinch-off by comparison is in its
infancy. The reason for the disparity in the understanding of jet breakup with and without
surface rheological effects is due in part to the difficulty in measuring the rheological
properties of interfaces in comparison to surface tension. In the absence of surfactants
or for clean interfaces, surface tension is a material property that simply depends on
the thermodynamic state (Berg 2010). In the presence of surfactants, surface tension is
lower than that when the interface is clean and is reduced by an amount that depends
on the local surfactant concentration. As summarized in a number of review articles
and books (Franses, Basaran & Chang 1996; Tricot 1997; Berg 2010), there now exist
numerous robust methods for accurately measuring the surface tension of clean as well as
surfactant-laden interfaces.

In the presence of surface rheological effects, the standard framework is to describe
the interface as a compressible two-dimensional Newtonian fluid with surface shear
and dilatational viscosities obeying the Boussinesq–Scriven equations (Scriven 1960).
However, in contrast to measuring surface tension, measurement of material properties
of interfaces has proven elusive. For example, Stevenson (2005) has catalogued in a
review article that, in measurement of surface shear viscosity, researchers have reported
values that differ by orders of magnitude. The surface viscosities are typically measured
by monitoring the mechanical response of micro-scale probes to interfacial flows. One
possible reason for the discrepancies in measurements may be that many methods
generate a mixed interfacial flow, with both shear and dilatational components, and
the surface shear and dilatational viscosities cannot be unambiguously determined from
measurements of a single mixed-type flow (Elfring, Leal & Squires 2016). Another
complication comes from the fact that the flows induced in different experiments often
give rise to surface tension gradients and it is then virtually impossible to separate the
contributions of the resulting Marangoni stresses from those due to surface viscosities.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.801


Jet breakup 908 A38-3

Zell et al. (2014) have shown that a rotational shear flow can be created without
inducing Marangoni stresses. However, the situation appears much more complicated and
ambiguous in dilatational flows in that they are almost always accompanied by Marangoni
stresses (Elfring et al. 2016).

Motivated by the need to improve the understanding of the breakup of
surfactant-covered jets as well as drops in the presence of surface rheological effects and
at the same time develop a simple yet robust method for measuring surface viscosities,
we analyse theoretically in this paper the pinch-off dynamics of a jet of an incompressible
Newtonian liquid that is surrounded by a passive gas, e.g. air, in the situation in which the
liquid–gas interface is covered with a monolayer of insoluble surfactant. One attractive
feature of this flow with respect to measurement of surface viscosities is that Marangoni
stress can be shown to be subdominant to other stresses and hence is negligible as the
jet approaches pinch-off. Despite the wide-ranging practical and fundamental importance
of jet and drop breakup (Eggers 1997; Basaran 2002; Eggers & Villermaux 2008;
Basaran et al. 2013; Castrejon-Pita et al. 2013), surprisingly little work has been done
on the problem of pinch-off when surface rheological effects play a role. For example,
Ponce-Torres et al. (2017) have recently shown that the increase in surfactant accumulation
in satellite droplets during drop formation cannot be explained without accounting for
surface viscosities. Martínez-Calvo & Sevilla (2018) have shown that surface viscosities
have a stabilizing influence on the dynamics in the Rayleigh–Plateau instability of liquid
jets covered with a monolayer of insoluble surfactant. Wee et al. (2020) have analysed the
breakup of a surfactant-covered jet undergoing Stokes flow. Since it is now well known
that jet breakup when the interface is either clean (Eggers 1993; Lister & Stone 1998;
Basaran 2002; Eggers 2005; Castrejón-Pita et al. 2015; Li & Sprittles 2016) or covered
with surfactants but where surface rheological effects are absent (Liao et al. 2006; Kamat
et al. 2018) must asymptotically always involve inertia, a major goal of this paper is to
extend the results of Wee et al. (2020) to situations in which inertia is present.

The paper is organized as follows. Section 2 describes the mathematical formulation
of the problem. First, the three-dimensional but axisymmetric (3DA) or two-dimensional
(2-D) system of equations, boundary conditions, and initial conditions governing the
thinning and pinch-off of a Newtonian jet whose surface is covered with a monolayer
of insoluble surfactant is presented. Next, since the jet profile in the vicinity of the
pinch-off singularity is expected to be slender, a spatially one-dimensional (1-D) set of
slender-jet evolution equations are derived that governs the dynamics of capillary thinning
and breakup. In the following section, scaling laws are obtained for jets first in the absence
(§ 4.1) and then in the presence (§ 4.2) of surface rheological effects. Self-similar solutions
are obtained for the interface shape, surfactant concentration, and fluid velocity where
these variables have a scaling form with a power-law dependence on time remaining
until pinch-off with universal scaling exponents. The results presented in this section
constitute the extension of Eggers’ (1993) seminal analysis on the ‘universal pinching
of 3-D axisymmetric free-surface flow’ to situations where surfactants are present and
when surface rheology is either absent or present. In the laboratory, the final Eggers-like
inertial–viscous (IV) regime in the presence of surfactants may only be reached after a real
jet goes through a number of intermediate scaling regimes. Thus, in § 5, results of 3DA
simulations are reported where a real jet transitions between a number of intermediate
regimes but ultimately asymptotically tends to the counterpart of Eggers’ IV regime albeit
with surface rheological effects accounted for as discussed in § 4.2. The main body of the
paper ends in § 6 with concluding remarks and a brief discussion on possible directions for
future studies. In a couple of appendices, we also elucidate the consequences of adopting
a nonlinear as opposed to a linear constitutive equation for relating surface viscosity
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to surfactant concentration and analyse the effect of initial conditions on surfactant
concentration in capillary thinning of jets. It should be noted that consideration of these
latter two topics as well as accounting for inertia and solving the 2-D as well as the 1-D
system of equations governing capillary thinning as opposed to only the 1-D slender-jet
equations differentiate the present paper from the recent publication by Wee et al. (2020).

2. Problem formulation

2.1. Mathematical statement and 3DA equations
The system is isothermal and consists of an infinite liquid column or jet of an
incompressible Newtonian fluid of constant density ρ and constant viscosity μ of
unperturbed radius R that is surrounded by a dynamically passive ambient gas that simply
exerts a constant pressure on the jet which is taken here to be the pressure datum. The
surface of the jet – the liquid–gas (L–G) interface – is covered with a monolayer of an
insoluble surfactant and the surface tension of the L–G interface when it is devoid of
surfactant is given by σp (figure 1). The dynamics is taken to be axisymmetric about the
centreline of the initially cylindrical column. Thus, it proves convenient to use a cylindrical
coordinate system (r̃, θ, z̃) with its origin located along the centreline of the initially
cylindrical column and where z̃ is the axial coordinate measured along the column’s axis,
r̃ is the radial coordinate measured from that axis and θ is the usual angle measured
around the symmetry axis r̃ = 0. When subjected to axisymmetric shape perturbations
of infinitesimal amplitude whose wavelength in the axial direction is given by λ̃, a
quiescent cylindrical column of liquid undergoes capillary or Rayleigh–Plateau instability
if λ̃ > 2πR or k̃R < 1 where k̃ = 2π/λ̃ is the wavenumber (Plateau 1873; Rayleigh 1878;
Michael 1981). In this paper, the capillary pinching of a surfactant-covered, quiescent
liquid column is initiated by subjecting its surface S̃(t̃), where t̃ is time, at time t̃ = 0 to a
shape perturbation of sufficiently long wavelength but of arbitrary amplitude so that the
column’s profile is given by

r̃(z̃, t̃ = 0)

R
=
√

1 − ε2

2
+ ε cos k̃z̃. (2.1)

When the disturbance amplitude is small, ε � 1, (2.1) simplifies to r̃(z̃, 0)/R = 1 +
ε cos k̃z̃. Two types of initial conditions are considered for surfactant concentration. In
most cases, the jet is taken at t̃ = 0 to be coated uniformly with surfactant at concentration
Γ̃0. In some cases, the concentration at the surface of a uniformly coated perfectly
cylindrical column is perturbed in an analogous manner as its shape (see below).

The dynamics of the thinning and breakup of the jet is analysed by solving the transient
free boundary problem consisting of the continuity and Navier–Stokes equations for fluid
velocity ṽ and pressure p̃ within the jet Ṽ(t̃) and the convection–diffusion equation for
surfactant concentration Γ̃ on S̃(t̃):

∇̃ · ṽ = 0 in Ṽ(t̃), (2.2)

ρ

(
∂ ṽ

∂ t̃
+ (ṽ · ∇̃)ṽ

)
= ∇̃ · T̃ in Ṽ(t̃), (2.3)

∂Γ̃

∂ t̃
+ ∇̃s ·

(
Γ̃ ṽ
)

= Ds∇̃2
s Γ̃ on S̃(t̃). (2.4)
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(b)

(a)

(c)

FIGURE 1. Definition sketch. (a) A liquid jet the surface S̃(t̃) of which is covered by a monolayer
of an insoluble surfactant. To initiate capillary thinning and pinch-off, the surface of a perfectly
cylindrical column of radius R is subjected at time t̃ = 0 to an axially periodic sinusoidal
perturbation of wavelength λ̃ = 2π/k̃. (b) Domain of interest for 3DA or 2-D analysis. Here,
the interface is parametrized by arc length s̃. (c) The 1-D domain. In both the 2-D and 1-D
analyses, the axial extent of the domain is 0 ≤ z ≤ λ̃/2 = π/k̃.

In (2.3), T̃ = −p̃I + μ[∇̃ṽ + (∇̃ṽ)T] is the total stress tensor for a Newtonian fluid and I
is the identity tensor. In (2.4), Ds is the surfactant diffusivity, ∇̃s ≡ I s · ∇̃ is the surface
gradient operator and I s ≡ I − nn is the surface identity tensor with n denoting the
outward pointing unit normal to S̃(t̃).

As (2.2) and (2.3) are balances of mass and momentum conservation in the bulk Ṽ(t̃),
the corresponding principles of mass and momentum conservation at the L–G interface
S̃(t̃) are the kinematic and traction boundary conditions (Scriven 1960; Aris 2012). In
the absence of bulk flow or mass transfer across the interface, the kinematic boundary
condition is given by

n · (ṽ − ṽs) = 0, (2.5)

where ṽs is the velocity of points on the interface. If the surface of the jet is described
as a compressible, two-dimensional Newtonian fluid, surface rheological effects that
arise over and beyond the ordinary capillary and Marangoni stress effects obey the
Boussinesq–Scriven constitutive equation (Scriven 1960). Then the traction or the
stress-balance boundary condition at the free surface is given by

n · T̃ = 2H̃σ̃ n + ∇̃sσ̃ + 2H̃ (μd − μs)
(
∇̃s · ṽ

)
n

+ ∇̃s

[
(μd − μs)

(
∇̃s · ṽ

)]
+ ∇̃s ·

[
μs

(
∇̃sṽ · I s + I s ·

(
∇̃sṽ

)T
)]

. (2.6)

Here, 2H̃ ≡ −∇̃ · n is twice mean curvature of the free surface. The first two terms on
the right-hand side of (2.6) correspond to the capillary pressure and the Marangoni stress
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due to surface tension gradients. The remaining terms account for surface rheological
effects. Surface tension σ̃ = σ̃ (Γ̃ ) as well as the surface shear μs = μs(Γ̃ ) and the surface
dilatational μd = μd(Γ̃ ) viscosities are all functions of surfactant concentration Γ̃ (see
below).

Here, surface tension σ̃ is related to surfactant concentration Γ̃ via the Szyszkowski
equation of state (Liao et al. 2006)

σ̃ = σp + Γ̃mRgT ln

(
1 − Γ̃

Γ̃m

)
, (2.7)

where Γ̃m is the maximum packing density of surfactant, Rg is the gas constant and T
is the absolute temperature. It will be shown below that the particular equation of state
adopted to relate surface tension to surfactant concentration is immaterial as the pinch-off
singularity is approached.

Since surface rheological effects arise when surfactants deform against themselves at
interfaces, it accords with intuition that surface viscosities are functions of Γ̃ . Although
it is not known whether the functional form of μd(Γ̃ ) is identical to that of μs(Γ̃ ),
the simplifying assumption is adopted in this paper that μd varies with Γ̃ in the same
way as μs. Throughout the body of the paper, following recent works in the literature
(Ponce-Torres et al. 2017), the surface viscosities are taken to vary linearly with Γ̃ with
respect to a reference state

μs = μsrΓ̃ /Γ̃r, μd = μdrΓ̃ /Γ̃r, (2.8a,b)

where μsr and μdr are the reference surface viscosities at the reference surfactant
concentration Γ̃r. As shown in appendix A, some of the key results presented in this paper
can be readily generalized so that they are independent of the constitutive equation used
to relate surface viscosities to surfactant concentration.

Because the dynamics is axisymmetric about the z̃-axis, the shear stress and the radial
velocity have to vanish at r̃ = 0, viz. er · T̃ · ez = 0 and ũ ≡ ṽ · er = 0 where er and ez
stand for the unit vectors in the radial and axial directions. On account of the periodicity
of the imposed initial perturbation of the jet’s surface, the problem only needs to be solved
over an axial distance equal to one half of the wavelength of the imposed perturbation.
Thus, along the two symmetry planes located at z̃ = 0 and z̃ = π/k̃ = λ̃/2, both the
shear stress and the axial velocity must vanish, viz. ez · T̃ · er = 0 and ṽ ≡ ṽ · ez = 0.
Also because of symmetry, surfactant concentration must obey ez · ∇̃sΓ̃ = 0 at z̃ = 0 and
z̃ = π/k̃.

2.2. The 1-D slender-jet equations
Since the jet radius is small relative to the length of the jet, a set of 1-D slender-jet or
long-wavelength equations can be derived to analyse the dynamics of jet breakup. Thus, in
this limit, both the axial velocity and the pressure to leading order are simply functions of
the axial coordinate and time, viz. ṽ = ṽ(z̃, t̃) and p̃ = p̃(z̃, t̃). From (2.2), it then follows
that the radial velocity is small or to leading order of O(r̃), and is given by ũ(r̃, z̃, t̃) =
−(r̃/2)∂ṽ/∂ z̃.

If the free-surface shape is represented as r̃ = h̃(z̃, t̃) (figure 1), substitution of the
leading-order expressions for ũ and ṽ into (2.5) leads to the 1-D mass balance or the
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kinematic boundary condition (KBC) that governs the transient evolution of the jet radius

∂ h̃
∂ t̃

+ ṽ
∂ h̃
∂ z̃

+ h̃
2

∂ṽ

∂ z̃
= 0. (2.9)

Similarly, the 1-D convection–diffusion equation can be obtained from (2.4)
(Ambravaneswaran & Basaran 1999) that governs the transient evolution of the surfactant
concentration

∂Γ̃

∂ t̃
+ ṽ

∂Γ̃

∂ z̃
+ Γ̃

2
∂ṽ

∂ z̃
− Ds

h̃

∂

∂ z̃

(
h̃
∂Γ̃

∂ z̃

)
= 0. (2.10)

To derive the 1-D momentum balance, a slightly different approach is adopted here
than the one used by Eggers (1993) for jets with clean interfaces and Martínez-Calvo
& Sevilla (2018) for surfactant-covered jets. The analysis is expedited by noting that the
various components of the stress tensor are given by T̃ rr ≡ er · T̃ · er, T̃ rz ≡ er · T̃ · ez,
and T̃ zz ≡ ez · T̃ · ez. Although it is clear that the normal stresses T̃ zz and T̃ rr are uniform
over the cross-section of the jet for a Newtonian fluid because T̃ zz = −p̃ + 2μ(∂ṽ/∂ z̃)
and T̃ rr = −p̃ + 2μ(∂ ũ/∂ r̃) = −p̃ − μ(∂ṽ/∂ z̃), most of the following derivations can
be generalized to situations where the stress tensor is arbitrary, e.g. when the fluid is
viscoelastic, by assuming that the normal stresses are uniform in the cross-sectional plane
(see, e.g. Bird, Armstrong & Hassager 1987) regardless of the constitutive equation used
to describe the fluid’s rheology. In general, without assuming that the jet is Newtonian, it
is straightforward to show that at the L–G interface,

n · T̃ · n = 1

1 + (∂ h̃/∂ z̃)2

⎧⎨
⎩T̃ rr − 2

∂ h̃
∂ z̃

T̃ rz +
(

∂ h̃
∂ z̃

)2

T̃ zz

⎫⎬
⎭ (2.11)

and

n · T̃ · t = 1

1 + (∂ h̃/∂ z̃)2

⎧⎨
⎩∂ h̃

∂ z̃

(
T̃ rr − T̃ zz

)+
⎡
⎣1 −

(
∂ h̃
∂ z̃

)2
⎤
⎦ T̃ rz

⎫⎬
⎭ , (2.12)

where t is the unit tangent to the free surface.
Taking the dot or inner product of (2.6) with n, using (2.11) and keeping the

highest-order contributions leads to

T̃ rr|r̃=h̃(z̃,t̃) = 2H̃σ̃ + 1

2h̃

∂ṽ

∂ z̃
(3μs − μd). (2.13)

Here, following Eggers (1993), the expression for the full curvature is retained in the
capillary pressure term. As T̃ rr does not vary with r̃, the expression (2.13) gives the radial
normal stress throughout the cross-section of the jet. Taking the inner product of (2.6) with
t, using (2.12) and keeping the highest-order contributions leads to

T̃ rz|r̃=h̃(z̃,t̃) = ∂ h̃
∂ z̃

(
T̃ zz − T̃ rr

)+ ∂σ̃

∂ z̃
+ ∂

∂ z̃

(
3μs + μd

2
∂ṽ

∂ z̃

)
+ 3μs

h̃

∂ h̃
∂ z̃

∂ṽ

∂ z̃
. (2.14)

It is worth noting that, while ṽ, T̃ rr and T̃ zz do not vary with r̃, T̃ rz is a function of r̃; it
vanishes at r̃ = 0 because of axisymmetry and takes on the value given by (2.14) at the
L–G interface.
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Now that expressions have been obtained to leading order for all components of the
stress tensor, the 1-D force balance or the momentum equation can be derived. Multiplying
the z̃-component of (2.3) at leading order by r̃ and integrating over the cross-section of the
jet yields

ρ

(
∂ṽ

∂ t̃
+ ṽ

∂ṽ

∂ z̃

)
= 2

h̃
T̃ rz|r̃=h̃(z̃,t̃) + ∂ T̃ zz

∂ z̃
. (2.15)

Equation (2.15) is valid irrespective of the rheology of the jet fluid. When ((2.13)–(2.14))
are substituted into (2.15), the 1-D momentum equation for a surfactant-covered jet is
obtained

ρ

(
∂ṽ

∂ t̃
+ ṽ

∂ṽ

∂ z̃

)
= ∂

∂ z̃

(
2H̃σ̃

)
+ 2

h̃

∂σ̃

∂ z̃
+ 1

h̃2

∂

∂ z̃

[
h̃2(T̃ zz − T̃ rr)

]

+ 1

2h̃2

∂

∂ z̃

(
μdh̃

∂ṽ

∂ z̃

)
+ 9

2h̃2

∂

∂ z̃

(
μsh̃

∂ṽ

∂ z̃

)
. (2.16)

For a Newtonian fluid, T̃ zz − T̃ rr = 3μ(∂ṽ/∂ z̃) and the previous equation can be rewritten
as

ρ

(
∂ṽ

∂ t̃
+ ṽ

∂ṽ

∂ z̃

)
= ∂

∂ z̃

(
2H̃σ̃

)
+ 2

h̃

∂σ̃

∂ z̃
+ 3μ

h̃2

∂

∂ z̃

(
h̃2 ∂ṽ

∂ z̃

)

+ 1

2h̃2

∂

∂ z̃

(
μdh̃

∂ṽ

∂ z̃

)
+ 9

2h̃2

∂

∂ z̃

(
μsh̃

∂ṽ

∂ z̃

)
. (2.17)

The various terms in the 1-D force balance correspond to inertial force, capillary force,
Marangoni force, bulk viscous force and surface viscous forces associated with surface
dilatation and shear deformation, respectively. It is noteworthy that in the slender-jet
model, surface shear and dilatational viscous forces take on the same mathematical forms.
Thus, we set μd = μs for the sake of simplicity and only use μs in the rest of the paper.

As the 3DA equations, the slender-jet equations too are solved over half a wavelength of
the imposed perturbation. In this limit, the boundary conditions on the dependent variables
reduce to ∂ h̃/∂ z̃ = 0, ∂Γ̃ /∂ z̃ = 0 and ṽ = 0 at z̃ = 0 and z̃ = π/k̃ = λ̃/2.

3. Numerical and analytical solution methods

3.1. The 3DA simulations
The transient system of 3DA or 2-D ((2.2)–(2.4)) is solved numerically by means of a
fully implicit, arbitrary Lagrangian–Eulerian method-of-lines (MOL) algorithm in which
the Galerkin finite element method (G/FEM) is used for spatial discretization (Basaran
1992; Feng & Basaran 1994; Gresho & Sani 1998; Gockenbach 2006) and an adaptive,
implicit finite difference method is employed for time integration (Gresho, Lee & Sani
1980; Patzek et al. 1991; Wilkes & Basaran 2001; Gockenbach 2006). As jet breakup is a
free boundary problem that involves a highly deformable L–G interface, an elliptic mesh
generation technique (Christodoulou & Scriven 1992) is employed to track the moving
boundary and determine the radial and axial coordinates of each grid point in the moving,
adaptive mesh simultaneously with the velocity and pressure unknowns in the jet as well
as the free-surface profile and surfactant concentration along the interface. In the 3DA
algorithm, the interface is parametrized in terms of arc length s̃ (see, e.g. Notz & Basaran
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(2004) and figure 1). This parametrization, as opposed to using one where the interface
shape is a single-valued function of the axial coordinate, coupled to the elliptic mesh
generation algorithm allows simulation of the jet dynamics in which the interface may
overturn (Notz & Basaran 2004). At each time step, the resulting system of nonlinear
algebraic equations is solved iteratively using Newton’s method where the Jacobian is
computed analytically. Similar versions of the algorithm have already been used to analyse
the breakup of jets, drops and filaments with and without surfactants (Notz & Basaran
2004; Liao et al. 2006; Kamat et al. 2018; Anthony et al. 2019; Anthony, Harris & Basaran
2020).

3.2. The 1-D simulations
The system of 1-D slender-jet equations ((2.9), (2.10), (2.17)) is solved numerically using
a fully implicit MOL algorithm. The algorithm is based on the use of the G/FEM for
spatial discretization and the same adaptive, implicit finite difference method as in the
3DA algorithm described above for time integration. Similar versions of this algorithm
have already been used to solve 1-D evolution equations in analysing the breakup of liquid
bridges and jets with and without surfactants and the dripping of leaky faucets (Zhang,
Padgett & Basaran 1996; Ambravaneswaran & Basaran 1999; Ambravaneswaran, Phillips
& Basaran 2000; Ambravaneswaran, Wilkes & Basaran 2002; Ambravaneswaran et al.
2004; Liao et al. 2006; Subramani et al. 2006; Wee et al. 2020).

3.3. Similarity solutions
In the vicinity of the space–time pinch-off singularity, similarity solutions can be
constructed to the slender-jet equations. Such analyses are presented in the next section
(§ 4). Solutions of the slender-jet equations that are obtained from simulations (§ 3.2) are
used together with analyses carried out in similarity space to obtain in § 4 insights into
pinch-off of jets in the absence and presence of surface rheological effects. Results of
these analyses are then compared in § 5 with ones obtained from full 3DA simulations.

4. The 1-D results: similarity solutions and simulations

4.1. Pinch-off without surface rheological effects
In the absence of surfactants, Eggers (1993) has shown that as pinch-off is approached,
jets with clean interfaces asymptotically thin according to

h̃min

lμ
= 0.0304

τ̃

tμ
, (4.1)

where τ̃ ≡ t̃b − t̃ is time until pinch-off, and t̃b is the time at which pinch-off occurs.
In the so-called IV scaling law given in (4.1), h̃min and τ̃ are measured in units of or
are normalized with the viscous length lμ ≡ μ2/ρσp and the viscous time tμ ≡ μ3/ρσ 2

p ,
respectively (Eggers 1993; Castrejón-Pita et al. 2015). These characteristic scales in (4.1)
are intimately tied to the dynamical balance between the three forces at play: capillary
(surface tension), inertia and bulk viscous forces. In this case, the power-law exponent
of unity that determines how the minimum radius scales with time measured from
pinch-off, viz. h̃min ∼ τ̃ , and the amplitude of 0.0304 in the non-dimensional scaling law in
(4.1), are universal, or observed irrespective of the experiment performed (Eggers 1993).
Remarkably, when surfactants are present but surface rheological effects are neglected and
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diffusion is weak, the exact same balance of forces is observed to hold (Timmermans &
Lister 2002; Liao et al. 2006; McGough & Basaran 2006; Kamat et al. 2018) and it has
been shown computationally by Liao et al. (2006), Kamat et al. (2018) and McGough &
Basaran (2006) that (4.1) still describes the thinning of a surfactant-covered jet. To date,
however, no self-similar analysis predicting this thinning rate has been carried out nor has
an expression analogous to (4.1) for surfactant concentration been proposed. In the next
few paragraphs, we provide these analyses in both the absence and presence of surface
rheological effects.

In what follows, we use lμ, tμ and Γp ≡ σp/RgT as characteristic length, time and
surfactant concentration scales to non-dimensionalize the problem. The characteristic
velocity is then given by lμ/tμ ≡ σp/μ, the visco-capillary velocity. Henceforward, a
variable without a tilde represents the dimensionless counterpart of a variable with a tilde,
e.g. h̃min is dimensional but hmin ≡ h̃min/lμ is dimensionless. Following Eggers (1993), we
introduce the following (dimensionless) self-similar ansatz that the jet radius h ≡ h̃/lμ,
axial velocity v ≡ ṽ/(σp/μ) and surfactant concentration Γ ≡ Γ̃ /Γp have scaling forms
given by

h(z, t) = ταh H(ξ), v(z, t) = ταv V(ξ),

Γ (z, t) = ταΓ G(ξ), ξ ≡ (z − zb)/τ
αz,

}
(4.2)

where ξ is the similarity variable, zb is the axial location where the jet will pinch off, αh,
αv, αΓ and αz are scaling exponents and H, V and G are scaling functions. These relations
are then substituted into the governing 1-D equations ((2.9), (2.10), and (2.17)) resulting in
a set of ordinary differential equations (ODEs). By requiring that the ODEs in similarity
space cannot depend on τ and using physical arguments, the scaling exponents can be
deduced. The rates of jet thinning and surfactant depletion are then readily obtained by
determination of the similarity functions to leading order.

When the 1-D convection–diffusion equation (2.10) is non-dimensionalized using the
aforementioned scales, a single dimensionless group, the Péclet number Pe, emerges from
the analysis

Pe ≡ (σp/μ)lμ
Ds

= μ

ρDs
. (4.3)

If the solvent is water, Pe ≈ 103 for common surfactants (Liao et al. 2006). For
glycerol–water mixtures, the value of the Péclet number would yet be larger and range
as 103 < Pe < 106 (Liao et al. 2006). Therefore, we let Pe → ∞ in the remainder of this
section. We note that in this limit, the 1-D mass balance equation (2.9) for h̃ and the 1-D
convection–diffusion equation (2.10) for Γ̃ become identical.

4.1.1. Determination of scaling exponents
The analysis when the interface is covered with surfactant is made more complicated

than when the interface is clean by the presence of the Marangoni stress ((2/h)(∂σ/∂z))
and the nonlinearity of the Szyszkowski equation of state. Progress toward solving
this problem is expedited by making the simple realization that the relationship
between surfactant concentration Γ and surface tension σ is greatly simplified as
breakup is approached. When the 1-D mass balance equation (or KBC) and the 1-D
convection–diffusion equation (for Pe → ∞), which are both spatially 1-D transient
partial differential equations (PDEs), are cast onto similarity space, the requirement
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that the resulting ODEs be independent of τ reveals from each of these equations that
αv = αz − 1. With the use of this result, the 1-D mass balance equation and the 1-D
convection–diffusion equation can be rewritten as

H′

H
= −(1/2)V ′ − αh

V + αzξ
, (4.4)

G′

G
= −(1/2)V ′ − αΓ

V + αzξ
, (4.5)

where prime denotes differentiation with respect to ξ . As a consequence of the
boundedness of V(ξ), there exists a point ξ0 where the denominator on the right-hand sides
of (4.4) and (4.5) vanish (Eggers 1993; Papageorgiou 1995). To ensure that the scaling
function for the interface shape H(ξ) and that for concentration G(ξ) are well behaved,
the numerators on the right-hand sides of these equations must also vanish at ξ0, revealing
that (1/2)V ′(ξ0) = αh = αΓ . Physically speaking, this regularity condition implies that, as
pinch-off is approached (τ → 0) and the radius of the jet tends to zero (αh > 0), surfactant
concentration must also tend to zero – a realization that accords with intuition in the limit
of Pe → ∞. Moreover, this fact allows the Szyszkowski equation of state to be linearized
so that σ = 1 − Γ as τ → 0.

Now that it has been shown that αh = αΓ and that αv = αz − 1, two scaling exponents,
say αh and αz, still remain unknown but can be uniquely determined by considering the
dominant balance of forces in the momentum equation. When (4.2) is used in (2.17) (with
the terms involving surface viscosity omitted), the latter can be written as

αzξV ′ + VV ′ − αvV = τ 2−2αz−αh

H2

[
H′ − ταh(HG)′ + 3ταh−1(H2V ′)′] . (4.6)

The left-hand side of (4.6) consists of the inertial terms. The terms on the right-hand
side account for the capillary, Marangoni and bulk viscous forces, respectively. Using the
physical requirement that the thread radius must decrease as pinch-off is approached (αh >
0), comparison of the Marangoni force with either capillary force or bulk viscous force
immediately reveals that Marangoni force cannot enter the asymptotic dominant balance
of forces. Balancing capillary and bulk viscous forces or requiring that the exponent of τ in
the bulk viscous term vanish leads to αh = 1. The requirement that the ODE in similarity
space be independent of τ or that capillary and bulk viscous forces balance inertia as
τ → 0 then reveals that αz = 1/2. Therefore, in summary, the dominant balance of forces
is that between inertial, capillary and bulk viscous forces as thread radius tends to zero and
the scaling exponents are given by αh = αΓ = 1, αz = 1/2 and αv = −1/2. Recognition
of the asymptotic insignificance of Marangoni stress and use of the scaling exponents
that have just been determined then permits the set of ODEs governing the three scaling
functions H, G, and V in similarity space to be rewritten as

H′

H
= 2 − V ′

2V + ξ
, (4.7)

G′

G
= 2 − V ′

2V + ξ
, (4.8)

(
Vξ + V2)′ H2 = 2H′ + 6(H2V ′)′. (4.9)

It should be noted that the scaling function G that enters the expression for the surfactant
concentration in (4.2) is decoupled from the momentum equation (4.9) in similarity space.
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This is a point that will be returned to and further elaborated on below. The physics dictates
that the dynamics far from the pinch point must evolve much more slowly than that in
vicinity of the singularity. Thus, solutions must be independent of τ as z − zb → ±∞. In
similarity space, the far-field conditions on the scaling functions are hence given by

V(ξ) ∼ ξαv/αz = ξ−1, (4.10)

H(ξ) ∼ ξαh/αz = ξ 2, (4.11)

G(ξ) ∼ ξαΓ /αz = ξ 2, (4.12)

as |ξ | → ∞.

4.1.2. Determination of thinning rate
Now that the scaling exponents, the system of ODEs governing the scaling functions

in similarity space, and the boundary conditions on the scaling functions have been
established, the rate of thinning of the jet can be determined. To accomplish this goal,
first the scaling functions are expressed in terms of a power series in ξ about the point ξ0,

H(ξ) =
∞∑

k=0

Hk(ξ − ξ0)
k, V(ξ) =

∞∑
k=0

Vk(ξ − ξ0)
k, G(ξ) =

∞∑
k=0

Gk(ξ − ξ0)
k,

(4.13a–c)
and these series expansions are substituted into ((4.7)–(4.9)). The regularity condition,
V ′(ξ0) = 2, allows the coefficients in the series expansions to be expressed in terms of
recurrence relations⎡

⎣k(12H0 + 1) k(k + 1)(3H2
0) 0

5k H0(k + 1) 0
0 G0(k + 1) 5k

⎤
⎦
⎡
⎣ Hk

Vk+1
Gk

⎤
⎦ =

⎡
⎣f1(Hk−1, Vk)

f2(Hk−1, Vk)

f3(Vk, Gk−1)

⎤
⎦ . (4.14)

The terms on the right-hand side, f1, f2 and f3, depend on lower-order coefficients. The
presence of zeros in the first two rows of the third column of the coefficient matrix in (4.14)
is noteworthy and further demonstrates that the surfactant problem is decoupled from the
other two equations as a result of the insignificance of Marangoni stress near pinch-off.
Therefore, the similarity equations and far-field conditions for the scaling functions for the
velocity and jet profile are identical in the presence and absence of surfactants. Hence, the
rate of thinning of a surfactant-covered jet is expected to be the same as that in Eggers’ case
where the surface of the jet is clean or devoid of surfactant. Alternatively, one can proceed
along the following lines presented below to determine the thinning rate. In order for a
solution of these recurrence relations to exist, the determinant of the coefficient matrix
must be non-zero for all k. While it is obvious from the governing equations, it is easy to
see that the determinant vanishes independent of G0 at values of H0 given by

Hsin
0 (n) = 1

(15n − 12)
, n = 1, 2, 3, . . . . (4.15)

Although no similarity solution exists when n = 1, 2, 3, . . ., Brenner, Lister & Stone
(1996) in the absence of surfactants and Liao et al. (2006), McGough & Basaran
(2006) and Kamat et al. (2018) in the absence of surface rheological effects have shown
that the computed rate of thinning 0.0304 differs by less than a half of a per cent
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FIGURE 2. Transient evolution of minimum jet radius and surfactant concentration at that
location and axial length and axial velocity predicted from 1-D simulations. Computed variation
with τ of hmin (green square � symbols), z′ ≡ z1.04hmin − zmin (orange diamond 
 symbols),
v′ ≡ v1.04hmin (red circle ◦ symbols) and Γmin ≡ Γ |hmin (blue triangle � symbols) for a jet of
Pe = ∞, Γm = 0.3 and Γ0 = 0.15 in the absence of surface rheological effects. The solid black
lines that are superimposed on the simulation results for hmin , z′ and v′ as τ → 0 correspond
to theoretical scaling results and for which the indicated slopes are the power-law exponents
predicted from theory. The pink dotted line, with the indicated slope of one, is Eggers’ solution,
hmin = 0.0304τ , for either a jet with a clean interface (Eggers 1993) or a surfactant-covered jet
without surface rheological effects (this paper).

from Hsin
0 (3) = 0.03. That this is indeed the case is demonstrated once again in figure 2

which shows results obtained from a 1-D simulation of the variation with time remaining
until breakup τ of the thread’s minimum radius hmin , the axial length scale z′ ≡ zΛhmin −
zmin where 1 < Λ < 1.2 and zmin and zΛhmin stand for the axial location where the jet radius
is a minimum and that where the jet radius equals Λ times hmin , respectively, the axial
velocity scale v′ ≡ vΛhmin which is the value of the axial velocity evaluated at the axial
location where the jet radius equals Λhmin and surfactant concentration where the thread’s
radius is a minimum Γmin ≡ Γ |hmin in the absence of surface rheological effects. (We note
that the scaling of the axial length can equivalently be determined from the scaling of the
planar curvature.) Figure 2 makes plain that all dynamical variables – thread radius or
radial length scale, axial length scale, axial velocity and surfactant concentration – exhibit
the scaling behaviour that is discussed above and where it is shown that these variables
have power-law dependencies on τ with the power-law or scaling exponents of 1, 1/2,
−1/2 and 1, respectively.

4.1.3. Determination of surfactant depletion rate
While the analysis involving the recurrence relation presented in the previous subsection

has resulted in the determination of H0, which in turn has made it possible to predict
from theory the variation of hmin with τ , that analysis has neither led to the value of
G0 nor determined how Γmin varies with τ . Moreover, the universality and/or validity
of (4.1) irrespective of the initial conditions that have been imposed have not yet been
demonstrated. Progress towards this goal is made by recognizing that if H(ξ) and V(ξ)
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FIGURE 3. The 1-D simulation results of the computed variation with τ of (a) hmin and (b)
Γmin for jets of Pe = ∞ and Γm = 0.3 in the absence of surface rheological effects that are
subjected to different initial conditions. The pink dotted line in (a) is that for which hmin =
0.0304τ . All simulation data for hmin versus τ eventually collapse onto this line (Eggers’ scaling
law) irrespective of the initial conditions. By contrast, simulation data for Γmin versus τ do not
collapse onto a single line, which clearly illustrates that the evolution in time of Γmin is dependent
on initial conditions. Inset to figure 3(b) shows rescaled Γmin , viz. Γ ∗

min ≡ Γmin/c0, where c0 =
Γ0/h0. The collapse of the data obtained from simulations with different initial conditions onto
one line Γ ∗

min = 0.0304τ , which is also denoted by a pink dotted line, makes plain that as τ → 0,
Γmin = (0.0304Γ0/h0)τ .

are solutions to (4.7) and (4.9), then G(ξ) = c0H(ξ), where c0 is a constant, is a solution
to (4.8). While the value of c0 cannot be determined by scrutinizing the governing ODEs
in similarity space, an examination of the transient PDEs in physical space reveals that
because the 1-D mass balance equation and the 1-D convection–diffusion equation are
identical in form, c0 = Γ0/h0 where h0 = hmin(zmin, t = 0) ≡ hmin(L, 0) (figure 1) and
Γ0 = Γ |h0 (see appendix B). Figure 3(a) shows that (4.1) clearly describes the asymptotic
variation of hmin with τ irrespective of the initial conditions but the variation of Γmin
with τ (figure 3b) clearly depends on Γ0 and h0. Moreover, by using the fact that
c0 = Γ0/h0, the variation of Γmin with τ can be collapsed onto a single line given by
Γ ∗

min ≡ Γmin/c0 = 0.0304τ as shown in the inset to figure 3(b).

4.2. Pinch-off with surface rheological effects (1D)

4.2.1. Determination of scaling exponents
Armed with a thorough understanding of the asymptotic breakup dynamics in the

absence of surface rheological effects when Pe → ∞, we are now better positioned
to begin to uncover how the physics of pinch-off is altered by their presence and
also appreciate certain salient features and implications of the resulting dynamics. It
is noteworthy to recall that surface rheological effects are accounted for by a single
additional term in the 1-D momentum balance equation (2.17) compared to when they
are absent. Therefore, the entire approach and analysis reported in the previous section
prior to obtaining solutions, i.e. the self-similarity ansatz, the 1-D mass balance, the
convection–diffusion equation, the linearization of the Szyszkowski equation, and the
far-field conditions, with the exception of the 1-D momentum equation, apply unaltered
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in the present situation. Thus, we borrow these earlier findings and exploit them to
investigate how surface rheological effects alter the dominant force balance, thinning rate
and surfactant depletion rate when Pe → ∞.

Therefore, αv = αz − 1 and αΓ = αh in the presence as well as absence of surface
rheological effects, and the 1-D momentum equation with surface rheological effects in
similarity space becomes

αzξV ′ + VV ′ − αvV = τ 2−2αz−αh

H2
[H′ − ταh(HG)′ + ταh−1(3(H2V ′)′ + 5Bo(GHV ′)′)],

(4.16)

where Bo ≡ μsr/μlμ is the Boussinesq–Scriven number and μsr is the reference surface
viscosity (μsr ≡ μs|Γ̃ =Γ̃p

). Written in this form, it is clear that the term accounting for
surface viscous effects (red) scales in exactly the same manner as the bulk viscous
term. Thus, the forces entering the dominant balance are changed so that the balance is
now between inertial, capillary, bulk viscous and surface viscous forces but the scaling
exponents are unaltered so that αh = αΓ = 1, αz = 1/2 and αv = −1/2. Therefore, the
power-law dependencies of the variation with τ of the jet radius, surfactant concentration,
axial length and axial velocity are unaffected by surfactants that give rise to surface
rheological effects compared to ones that do not. Thus, changes brought about by surface
rheological effects are undetectable by considering scaling exponents alone and an analysis
of the thinning rate is required. The modified rate of thinning can be determined by
substituting the power series expansions given in (4.13a–c) into (4.16) which is first
rewritten as

H2(ξV + V2)′ = 2H′ + 6(H2V ′)′ + 10Bo(GHV ′)′. (4.17)

Unlike the analysis in the absence of surface rheological effects, here, the momentum
equation in similarity space governing the asymptotic thinning of the jet (4.17) includes
effects brought on by surfactants.

4.2.2. Determination of thinning rate
When surface rheological effects are accounted for, the corresponding coefficient matrix

that arises in the recurrence relations reported in § 4.1.2 in their absence can be shown to
be given by

⎡
⎣(12H0 + 1 + 10BoG0)k (3H0 + 5BoG0)H0k(k + 1) 10BoH0k

5k H0(k + 1) 0
0 G0(k + 1) 5k

⎤
⎦ , (4.18)

where the new terms that arise because of surface rheological effects have been highlighted
in red. Here, the vanishing of the determinant of this matrix is clearly dependent upon G0
as a result of the terms that are shown in red. In this case, the singular values of H0 are
given by

Hsin
0 (n) = 1

(15n − 12)
− 5BoG0

3
, n = 1, 2, 3, . . . . (4.19)

Results of simulations highlighted in figure 4 when Bo = 2/3 and others in which the 1-D
evolution equations have been solved in physical space show that when surface rheological
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effects are accounted for, jets thin according to

hmin =
(

0.0304 − 5BoG0

3

)
τ. (4.20)

This scaling law, shown by the black dashed line in figure 4, is extremely close to hmin =
Hsin

0 (3)τ but is markedly different from the scaling law given by (4.1) which is shown
by the pink dotted line in figure 4. While figure 4 and the above analysis reveal that the
power-law scaling of jet radius with τ is unaltered by surface viscosity, surface rheological
effects profoundly affect the dynamics in that they reduce the asymptotic rate at which
a jet thins: whereas the prefactor in the expression relating hmin to τ equals 0.0304 in
the absence of surface rheological effects, the prefactor is reduced by 5BoG0/3 in their
presence. Using the same arguments as in § 4.1.3, it is clear that (4.20) can be rewritten as

hmin = 0.0304(
1 + 5BoΓ0

3h0

)τ. (4.21)

Written in this form, the term in the denominator that accounts for the reduction in the jet’s
thinning rate has a very simple physical interpretation. From the 1-D momentum equation
(2.17), it can readily be appreciated that the ratio of surface viscous force to bulk viscous
force locally scales as

Surface viscous force
Bulk viscous force

∼ 5
3

μs

μh̃
, (4.22)

where the term multiplying 5/3 can be thought of as a local Boussinesq–Scriven number.
Therefore, it now becomes clear that 5BoG0/3H0 = 5Boc0/3 = 5BoΓ0/3h0 represents the
scale of the relative importance of surface viscous force to its bulk counterpart as τ →
0. Moreover, when written in the form given in (4.21), it is plain that the prefactor or
amplitude in the scaling law is dependent on the initial conditions imposed on the jet. As
a further check on the validity of this scaling law, it is shown in the inset to figure 5 that
the thinning dynamics that arise for three different initial conditions all collapse onto one
line the equation of which is given by h∗

min ≡ hmin(1 + 5BoΓ0/3h0) = 0.0304τ .

5. The 3DA results and discussion

In the previous section, analysis of the 1-D slender-jet equations by using theory and
simulations in the limit of Pe → ∞ has revealed the simple manner in which surface
rheological effects act to slow the capillary thinning of a surfactant-covered jet. However, a
number of real life complications may preclude the observation of dynamics that comports
with the simple formulae given in that section. Among others, these complications include
the following. For example, for a real system, Pe may be finite and surface viscosity may
be a nonlinear function of Γ̃ (see appendix A). Also, the Eggers-like asymptotic regime of
pinch-off reported earlier may not be observed until small length and time distances from
the singularity are attained. Moreover, the value of hmin for which the dynamics would
begin to follow the scaling laws given in that section may be smaller than the molecular
length scale. Furthermore, as first shown by Castrejón-Pita et al. (2015) and later by Li &
Sprittles (2016) during the capillary thinning of surfactant-free jets, the dominant balance
of forces in the vicinity of the jet’s minimum radius may change multiple times and
hence the dynamics may traverse a number of intermediate scaling regimes (Eggers 2005)
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FIGURE 4. Transient evolution of minimum jet radius and surfactant concentration at that
location and axial length and axial velocity predicted from 1-D simulations. Computed variation
with τ of hmin (green square � symbols), z′ ≡ z1.04hmin − zmin (orange diamond 
 symbols),
v′ ≡ v1.04hmin (red circle ◦ symbols) and Γmin ≡ Γ |hmin (blue triangle � symbols ) for a jet of
Pe = ∞, Γm = 0.3 and Γ0 = 0.15 in the presence of surface rheological effects (Bo = 2/3).
The solid black lines that are superimposed on the simulation results for Γmin , z′ and v′ as
τ → 0 correspond to theoretical scaling results and for which the indicated slopes are the
power-law exponents predicted from theory. The pink dotted line, with the indicated slope of
unity, is Eggers’ solution, hmin = 0.0304τ , for a jet with a clean interface (Eggers 1993) or a
surfactant-covered jet without surface rheological effects (this paper). The black dashed line,
also of slope unity, is the plot of the equation given by hmin = 0.0304τ/(1 + 5BoΓ0/3h0), i.e.
(4.21). The inset shows a blow-up or zoomed-in view of both hmin and Γmin versus τ and also
helps make clear the difference between these two scaling laws.

before finally settling down in the final asymptotic regime of pinch-off as τ → 0. Kamat
et al. (2018) have shown that such intermediate regimes are also encountered during the
capillary thinning of a surfactant-covered jet albeit in the absence of surface rheological
effects. Kamat et al. (2018) have further shown that the occurrence of the intermediate
regimes that are encountered as a surfactant-laden jet approaches pinch-off is associated
with a cascade of microthreads the occurrences of which are directly attributable to the
action of Marangoni stresses.

Thus, in the remainder of this section, we analyse the capillary thinning and breakup of
a surfactant-covered jet in the presence of surface rheological effects from simulations
carried out by solving the full 3DA equations governing the dynamics of the jet. As
in a real laboratory experiment that would be carried out with liquid jets or bridges,
we take the unperturbed radius of the jet R, the inertio-capillary time scale

√
ρR3/σp,

and the maximum packing density of surfactant Γ̃m as the characteristic length, time
and surfactant concentration scales to non-dimensionalize the problem. To distinguish
dimensionless variables using these new scales from ones used earlier, we use ‘hats’ so
that hatted variables represent the dimensionless counterparts of variables with tildes,
e.g. ĥmin ≡ h̃min/R is dimensionless whereas h̃min is dimensional. With the introduction
of these characteristic scales, it is found that the dynamics of surfactant-laden jets
with surface rheological effects are governed by a number of dimensionless groups.
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FIGURE 5. The 1-D simulation results on the computed variation with τ of hmin for a jet of
Pe = ∞ and Γm = 0.3 in the presence of surface rheological effects (Bo /= 0) that are subjected
to different initial conditions. Unlike the situations in the absence of surface rheological effects,
simulations reveal that when surface rheological effects are important the prefactor in the scaling
law relating hmin and τ as τ → 0 is not only a function of Bo but also of the initial conditions
(c0 = Γ0/h0). The inset shows the variation of the rescaled minimum jet radius, h∗

min ≡ hmin(1 +
5c0Bo/3), with τ . The collapse shown in the inset of the data obtained from simulations with
different initial conditions onto one line h∗

min = 0.0304τ (the pink dotted line) clearly reveals
that surfactant-covered filaments in the presence of surface rheological effects do indeed thin
according to (4.21).

They include: (a) the Ohnesorge number Oh ≡ μ/
√

ρRσp, and the dimensionless
wavenumber and amplitude of the initial shape perturbation k̂ ≡ k̃R and ε̂ ≡ ε̃/R as in the
case of jets with clean interfaces; the dimensionless initial surfactant coverage Γ̂0 ≡ Γ̃0/Γ̃m

and the surfactant strength parameter β ≡ Γ̃mRgT/σp as with surfactant-covered jets
without surface rheological effects; and the Boussinesq–Scriven number Bs = Bs0(Γ̂ /Γ̂0)
where Bs0 ≡ (μs|Γ̃ =Γ̃0

)/μR.

5.1. Scaling exponents
Figure 6 shows the variation with time remaining until breakup τ̂ of the jet’s minimum
radius ĥmin , the axial length scale ẑ′ ≡ ẑ1.09ĥmin

− ẑmin , the axial velocity scale v̂′ ≡ v̂1.09ĥmin

and surfactant concentration where jet radius is a minimum Γ̂min ≡ Γ̂ĥmin
for two jets

undergoing capillary thinning in the presence of surface rheological effects (Bs0 =
0.0143). The two sets of simulation results are distinghuished by the fact in one Γ̂0 = 0.55
(figure 6a) and in the other Γ̂0 = 0.5 (figure 6b). We note that in contrast to the results
shown in §§ 4.1 and 4.2, here Pe is large but finite (Pe = 1000).

Among others, two interesting features stand out in figure 6 compared to the 1-D results
shown in figures 2–5: in figure 6(a,b), there exist several instants in time at which v̂′

suddenly plummets and short periods of time where Γ̂min /= cĥmin . These complex features,
which are absent from the 1-D simulation results reported in §§ 4.1 and 4.2, are of course
due to the existence of intermediate regimes and the repeated formation of microthreads, as
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FIGURE 6. Transient evolution of minimum jet radius and surfactant concentration at that
location and axial length and axial velocity predicted from 3DA simulations. (a) Computed
variation with τ̂ of ĥmin (green square � symbols), ẑ′ ≡ ẑ1.09ĥmin

− ẑmin (orange diamond 

symbols), v̂′ ≡ v̂′

1.09ĥmin
(red circle ◦ symbols) and Γ̂min (blue triangle � symbols) for a jet of

Oh = 0.07, Pe = 1000, β = 0.3, Γ̂0 = 0.55 and Bs0 = 0.0143. (b) Same as (a) except Γ̂0 = 0.5.
Insets: zoomed-in views of ĥmin and Γ̂min versus τ̂ as τ̂ → 0. In both (a,b), the solid black
lines that are superimposed on the simulation results for Γ̂min , ẑ′ and v̂′ as τ → 0 correspond
to theoretical scaling results and for which the indicated slopes are the power-law exponents
predicted from theory. Also in both the main parts and the insets of (a,b), Eggers’ solution,
ĥ = 0.0304τ̂ /Oh, is denoted by the pink dotted line of slope unity. Similarly, the new scaling law,
ĥ = [0.0304/Oh(1 + 5Bs0ĉ0/3Γ̂0)]τ̂ , where ĉ0 ≡ limτ̂→0 Γ̂min/ĥmin , is denoted by the dashed
black line of slope unity.

has already been reported in simulations and experiments by Kamat et al. (2018). Indeed,
figure 7 shows the repeated formation of microthreads in (a) the presence and (b) absence
of surface rheological effects during jet thinning. Although the number of microthreads
in figure 7(a) – the number of times the stagnation zone approaches the axial location
where thread radius is a minimum (Kamat et al. 2018) – is the same as in figure 7(b), the
shape of the main thread is drastically different in the two cases. Furthermore, the number
of instants at which the velocity plummets was found to be different in the presence
and absence of surface rheological effects. The impact of this observation on thread
profiles and what factors determine the number of times at which the velocity plummets
remain open problems for future study. However, regardless of the differences that exist
between 1-D and 3DA results for τ̂ > 10−3, figure 6(a,b) make plain that the dynamics
asymptotically exhibits the same power-law scalings that are exhibited in the Eggers-like
regime reported in the previous section. Thus, as pinch-off nears, the 3DA simulations
reveal that the same dominant balance of forces exists here as in § 4.2.1 and that ĥmin ∼ τ̂ ,
v̂′ ∼ τ̂−1/2, ẑ′ ∼ τ̂ 1/2 and Γ̂min ∼ τ̂ as τ̂ → 0.

5.2. Thinning rate
Although the power-law scalings obtained theoretically using the 1-D slender-jet equations
are observed in the 3DA simulations (figure 6), the validity of the thinning rates predicted
by (4.1) and (4.21) in the final asymptotic regime of pinch-off shown in figure 6 has yet to
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FIGURE 7. Profiles at the incipience of pinch-off of jets with and without surface rheological
effects. (a) Zoomed-in views of microthreads at the instant in time when t = 11.413 for the same
jet as in figure 6(a) and for which surface rheological effects are present. (b) Same as (a) except
when surface rheological effects are absent or Bs0 = 0 at the instant in time when t = 11.357. It
should be noted that the parameter values in this case are identical to those used in figure 2 of
the paper by Kamat et al. (2018).

be demonstrated. With the characteristic length and time scales used in this section, (4.1)
and (4.21) can be rewritten as

ĥmin = 0.0304
Oh

τ̂ , (5.1)

ĥmin = 0.0304

Oh
(

1 + 5Bs0

3ĥ0

) τ̂ . (5.2)

It is easily seen from the insets to figure 6 that neither (5.1) (pink dotted line) nor
(5.2) (red dashed-dotted line) accurately describes the thinning of surfactant-covered jets:
the three lines corresponding to these two equations and the line corresponding to the
simulation results all have the same slopes (of unity) but the amplitudes or prefactors in
the expressions relating ĥmin to τ̂ evidently differ. While comparison of simulation data
to the theoretical expressions clearly demonstrates that the thinning is slowed due to the
effects of surface viscosity, the conditions implied in producing a closed form solution
to thinning rate (see § 4.2.2) appear to be violated in the 3DA simulations. Specifically,
the conditions under which the theory was developed cannot be naively applied in the
present situation. This unexpected difficulty arises because in contrast to the results shown
in figures 2 and 4, Γ̂min is not linearly proportional to ĥmin during the early (figure 6a,b,
τ̂ > 1) and intermediate (figure 6a, τ̂ ≈ 10−1) stages of thinning. Indeed, after the onset
of the Rayleigh–Plateau instability, the jets whose dynamics are depicted in figure 6 do
not immediately enter a final asymptotic Eggers-like regime. Thus, as shown in figure 6,
these jets, as their surfactant-free counterparts and surfactant-covered ones without surface
rheological effects, traverse a number of scaling regimes where the balance of forces
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differs from that in the Eggers-like regime of § 4.2.2 and where the scaling exponents
have different values than the ones in § 4.2.2. While the constant ĉ0 relating Γ̂ to ĥ in
the final asymptotic regime in an experiment or a 3DA simulation is no longer set by
the initial conditions, its value can be readily determined from the 3DA simulations by
computing the value of the ratio Γ̂min/ĥmin as τ̂ → 0. Therefore, the proper generalization
of (5.2) is obtained by replacing the ratio Bs0/ĥ0 by the ratio of the Boussinesq number
and minimum jet radius at the onset of the final asymptotic regime. If the time at which
the final asymptotic regime starts is denoted by t̂∗,

Bs

ĥmin

∣∣∣∣
t̂=t̂∗

=
Bs0

Γ̂min|t̂=t̂∗

Γ̂0

ĥmin|t̂=t̂∗
= Bs0

Γ̂0

Γ̂min

ĥmin

= Bs0ĉ0

Γ̂0

, (5.3)

where use has been made of the fact that in the final asymptotic regime, the ratio of
Γ̂min/ĥmin is a constant. In conclusion, the proper generalization of (5.2) is then given
by

ĥmin = 0.0304

Oh
(

1 + 5Bs0ĉ0

3Γ̂0

) τ̂ , where ĉ0 ≡ lim
τ̂→0

(
Γ̂min

ĥmin

)
. (5.4)

Since (5.4) applies as pinch-off nears, it can be rewritten so that it does not involve Oh by
using ĥmin = h̃min/R = (h̃min/lμ)Oh2 = hminOh2 and τ̂ = τ̃ /tc = (τ̃ /tμ)Oh3 = τOh3:

hmin = 0.0304

1 + 5Bs0ĉ0

3Γ̂0

τ, (5.5)

where ĉ0 ≡ Γ̂min/ĥmin as τ → 0.
The generalized approach and the result stated in (5.4) have been found to be valid for

every 1-D and 3DA simulation in which the spatially 1-D and 3DA transient PDEs, i.e. the
1-D and 3DA evolution equations, are solved, including the simulation results reported in
this paper. Investigation from 3DA simulations of the functional dependence of ĉ0 upon
the set of parameters governing the problem is left as an open problem.

6. Conclusions

In this paper, we have examined the capillary thinning and pinch-off of
surfactant-covered Newtonian jets when surfactant convection is dominant over surfactant
diffusion, viz. Pe � 1, along the interface. The dynamics close to the space–time pinch-off
singularity has been analysed theoretically in the limit of Pe = ∞ and by simulation.
In the theoretical approach, advantage has been taken of the fact that jet profiles in
the vicinity of the pinch-off singularity are slender and hence a set of 1-D slender-jet
equations have been used to probe the fluid dynamics. In the theoretical approach, the
separation of length and time scales near the singularity from those in the bulk of the jet
has been exploited to obtain self-similar solutions for the jet profile h ≡ h̃/lμ, surfactant
concentration Γ ≡ Γ̃ /Γp and axial velocity v′ ≡ ṽ′/(σp/μ). As such, the asymptotic
solutions presented in this paper are the counterparts of Eggers’s inertial–viscous solution
(Eggers 1993) for jets with clean interfaces.
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In the absence as well as the presence of surface rheological effects, the similarity
solutions have been shown to have a scaling form in which the dependence of jet radius
h, surfactant concentration Γ , axial length z′ and axial velocity v′ on time remaining
until pinch-off τ have power-law dependencies that are governed by universal scaling
exponents, viz.

h ∼ τ, Γ ∼ τ, z′ ∼ τ 1/2, v′ ∼ τ−1/2. (6.1a–d)

In the absence of surface rheological effects, as τ → 0, the jet thins as if surfactants are not
present and the expression relating jet radius, and hence the minimum neck radius hmin , to
τ is identical to that obtained by Eggers (1993). In this case, the surfactant concentration
at the location where jet radius is a minimum Γmin is proportional to hmin . Moreover, in
this case while the asymptotic variation of hmin with τ is independent of initial conditions,
these conditions do enter the asymptotic relation between Γmin and τ .

In the presence of surface rheological effects, the power-law scalings are unchanged
and h, Γ , z′ and v′ scale with time measured from pinch-off τ as in (6.1a–d). In this case,
however, the asymptotic rate of thinning is reduced by a factor proportional to the ratio of
surface to bulk viscous stresses at the onset of the asymptotic thinning regime.

In the absence of surface rheological effects, inertial, capillary and bulk viscous forces
balance as the jet tends toward pinch-off. In the presence of surface rheological effects,
however, inertial, capillary, bulk viscous and surface viscous forces balance as the jet nears
pinch-off. In both cases, Marangoni stresses do not contribute to the dominant balance
of forces near pinch-off. Also in both cases, hmin ∼ Γmin ∼ τ and the ratio of Γmin to
hmin remains constant as τ → 0. A remarkable but counterintuitive feature of the physics
when surface rheological effects are present is that surface viscosities can be important
even when surfactants are swept away from the pinching zone and, consequently, surface
viscosities vanish. This observation, however, can be readily rationalized because the ratio
of the jet’s surface area to its volume near the pinch point scales as 1/hmin which grows
without bound as the jet’s minimum radius hmin tends to zero. Since the thinning rate is
a function of the surface viscosity and Marangoni stresses are negligible as pinch-off is
approached, the results presented in this study on jet breakup can be used to develop a
feasible and robust probeless method for measuring surface viscosity.

Pioneering studies of pinch-off of liquid jets of pure Newtonian fluids had uncovered the
existence of three scaling regimes of breakup: an inertial–viscous regime where capillary,
inertial and viscous forces balance (Eggers 1993), a viscous regime where capillary and
viscous forces balance (Papageorgiou 1995) and an inertial regime where capillary and
inertial forces balance (Chen & Steen 1997; Day, Hinch & Lister 1998). In the aftermath
of the discovery of scaling laws governing pinch-off of jets with clean interfaces, it was
realized that the viscous and inertial regimes can only be initial regimes of capillary
thinning for slightly and highly viscous fluids and that the asymptotic regime of pinch-off
must always involve all three forces (Lister & Stone 1998; Basaran 2002; Eggers 2005).
In other words, when Oh � 1, a jet must undergo a transition from the inertial to the
inertial–viscous regime as τ → 0. Similarly, when Oh � 1, a jet must undergo a transition
from the viscous to the inertial–viscous regime as τ → 0. A jet of Oh ≈ 1 can, however,
remain in the inertial–viscous regime all the way until breakup. Subsequently, it was
shown that the fluid dynamics of capillary thinning is in fact much more complicated
than these earlier studies had implied (Castrejón-Pita et al. 2015; Li & Sprittles 2016).
Indeed, a jet of Oh � 1 can undergo a transition from an initial inertial regime to an
intermediate viscous regime and then eventually transition to the inertial–viscous regime
as the jet tends toward pinch-off. By contrast, a jet of Oh � 1 can undergo transitions from
an initial viscous to an intermediate inertial regime and then transition back to a second
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intermediate viscous regime before finally transitioning to the final inertial–viscous regime
as τ → 0. The existence of multiple intermediate or transient scaling regimes has already
been demonstrated for surfactant-covered jets in the absence of surface rheological effects
(Kamat et al. 2018). A short foray into the existence of such complexity is presented
in this paper in figure 6. A fruitful avenue of future research would entail a more
detailed examination of this complexity and transitions between different scaling regimes
through 3DA simulations and experiments. This promising avenue of research is left as
an open problem in fluid mechanics of capillary pinch-off. Another fascinating extension
of the present study that would have far reaching practical implications would involve
examination of the role of surface viscous stresses in determining drop sizes and drop size
distributions in fields as diverse as ink jet printing (Basaran et al. 2013; Castrejon-Pita
et al. 2013) and sprays and/or atomization (Hilz & Vermeer 2013; Kooij et al. 2018).
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Appendix A. General constitutive equation for surface viscosity

Rather than assuming the linear relation that Bs = Bs0Γ̂ /Γ̂0, one can take Bs = Bs0 f (Γ̂ )

where the function f is such that f (Γ̂0) = 1 and f (0) = 0. A Taylor series expansion of
f (Γ̂ ) about Γ̂ = 0 then reveals that

f (Γ̂ ) = f (0) + df

dΓ̂

∣∣∣∣
Γ̂ =0

Γ̂ + O(Γ̂ 2) = f ′(0)Γ̂ + . . . . (A 1)

Thus, Bs = Bs0 f ′(0)Γ̂ as Γ̂ → 0 in the pinching region. Hence, the generalization of
the results given earlier but now without any dependence whatsoever on a particular
constitutive relation can be obtained by replacing Bs0/Γ̂0 by Bs0 f ′(0) in those formulae.
Consequently, the generalization of (5.4) then becomes

ĥmin = 0.0304

Oh
(

1 + 5Bs0 f ′(0)ĉ0

3

) τ̂ , (A 2)

where 5Bs0 f ′(0)ĉ0/3 represents the relative importance of surface viscous force to its bulk
counterpart to leading order as τ → 0.

In order to show how (A 2) is applied, we take the Boussinesq–Scriven number to
vary linearly with surface pressure Π̃ = σp − σ̃ , viz. Bs = Bs0Π/Π0, where Π0 is the
surface pressure at Γ̂ = Γ̂0. In this example, f (Γ̂ ) = Π/Π0 and f ′(0) = −1/ ln(1 − Γ̂0)
where f ′(0) has been obtained from the Szyszkowski equation of state. As shown in
figure 8, scaling exponents for minimum jet radius, axial length, axial velocity and
surfactant concentration at the location where jet radius is minimum obtained from 3DA
simulations by using a nonlinear constitutive equation for surface viscosity perfectly
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FIGURE 8. Results obtained from 3DA simulations using a nonlinear constitutive equation
for surface viscosity: computed variation with τ̂ of ĥmin (green square � symbols), ẑ′ ≡
ẑ1.09ĥmin

− ẑmin (orange diamond 
 symbols), v̂′ ≡ v̂′
1.09ĥmin

(red circle ◦ symbols) and Γ̂min (blue

triangle � symbols) for a jet of Oh = 0.07, Pe = 1000, β = 0.3, Γ̂0 = 0.55 and Bs0 = 0.0143.
The solid black lines that are superimposed on the simulation results for Γ̂min , ẑ′ and v̂′ as
τ̂ → 0 correspond to theoretical scaling results and for which the indicated slopes are the
power-law exponents predicted from theory. Inset: zoomed-in view of ĥmin and Γ̂min versus τ̂ as
τ̂ → 0. Eggers’ solution, ĥ = 0.0304τ̂ /Oh, is denoted by the pink dotted line. The new scaling
law, ĥ = [0.0304/Oh(1 + 5Bs0 f ′(0)ĉ0/3)]τ̂ , where ĉ0 ≡ limτ̂→0 Γ̂min/ĥmin , is denoted by the
dashed black line.

match the theoretical predictions reported earlier in which surface viscosity is assumed to
vary linearly with surfactant concentration. Therefore, even when a nonlinear constitutive
equation is used, asymptotically inertial, bulk viscous, surface viscous and capillary forces
balance but Marangoni force is subdominant, and the rate of filament thinning, while it
deviates from Eggers’ scaling law for clean interfaces, proceeds according to (A 2).

Appendix B. Initial surfactant concentration profile

The 1-D mass balance (2.9) and 1-D convection–diffusion (2.10) are subjected to
the same homogeneous Neumann boundary conditions at the two ends of the domain.
Moreover, in the limit as Péclet number Pe or the relative importance of convection
to diffusion grows without bound, the 1-D mass balance equation (2.9) and 1-D
convection–diffusion equation (2.10) become identical in form

∂h
∂t

+ v
∂h
∂z

+ h
2

∂v

∂z
= 0,

∂Γ

∂t
+ v

∂Γ

∂z
+ Γ

2
∂v

∂z
= 0. (B 1a,b)

(In this appendix, we omit the tildes from all variables for simplicity.) If we then write

Γ (z, t) = c(z, t) h(z, t), (B 2)
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FIGURE 9. Time evolution of c(z, t) for jets of Pe = ∞, Γm = 0.3, λ = 8 and h0 = 0.9
subjected to different initial conditions on surfactant concentration. (a) Surfactant concentration
is initially taken to be proportional to the initial shape profile h(z, t = 0), viz. Γ (z, t = 0) =
c0h(z, t = 0). Here, c0 = 0.15. Because Dc/Dt = 0, c(z, t) must be spatially uniform and
temporally constant for all time, viz. c(z, t) ≡ c0. Thus profiles of c(z, t) at different times
determined from direct numerical simulations collapse onto one flat line, c = c0 = 0.15, as
shown in the figure. (b) The jet is initially uniformly coated with surfactant at concentration
Γ0 = 0.15. The different curves show the evolution in time of c(z, t) and highlight the growing
size of the axial extent where the profile of c is flat. Inset: variation of the computed value of
c(z = zmin, t) (denoted by diamond 
 symbols) with zmin where zmin denotes the axial location
where the thread radius is minimum. The green flat line in the inset corresponds to Γ0/h0, which
clearly shows limτ→0 Γmin/hmin = Γ0/h0. The red arrows in both the main figure and the inset
indicate the direction of increasing time.

and substitute the previous product solution into either of the two equations in (B 1), it is
found that

Dc
Dt

= ∂c
∂t

+ v
∂c
∂z

= 0. (B 3)

The initial condition on the jet radius, h(z, 0), is such that it corresponds to a sinusoidal
deformation of the interface (2.1). If we take the initial condition on the surfactant
concentration, Γ (z, 0), to be of the same functional form such that Γ (z, 0) = c0h(z, 0),
where c0 is a constant, it then follows from (B 3) that c(z, t) = c0 for all time. The
correctness of this statement is also confirmed by results of direct numerical simulations
that are shown in figure 9(a). Thus, in this situation, Γ (z, t) = c0h(z, t), a result that is
used in the asymptotic analyses carried out in the paper.

It is also common in computational studies to impose the initial condition that the
surfactant concentration is initially uniform, viz. Γ (z, 0) = Γ0 = constant, albeit the
fact that the interface is deformed at that instant. In this case, c(z, t) is no longer
spatially uniform and temporally constant but instead evolves according to Dc/Dt = 0.
Thus, because the material derivative of c is zero, the value of c remains constant
following the motion of any material point. Since c(z, t = 0) is continuous over z ∈ [0, L],
where L ≡ λ/2 = π/k, c(z, t = 0) is bounded with c(0, t = 0) ≤ c(z, t = 0) ≤ c(L, t =
0), viz. c(0, 0) ≤ c(z, 0) ≤ c(L, 0), because h(0, 0) ≥ h(z, 0) ≥ h(L, 0). Realization of
boundedness and the imposed initial conditions on Γ (z, t) and h(z, t) and the equation
governing c(z, t) reveals that c(0, 0) ≤ c(z, t) ≤ c(L, 0). At early times, the minimum
in the jet radius is located at z = L. As the jet continues to thin, the fluid accelerates
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as it flows from the neck, where pressure is highest, toward the swell (z = 0),
where pressure is lowest. Consequently, v < 0 for z ∈ (0, L) at early times. Since the
imposed initial conditions on h and Γ give rise to positive ∂c/∂z, c must increase as
∂c/∂t = −v ∂c/∂z > 0. Since c(z, t) is bounded, its value anywhere can at most rise
to its maximum value at the initial instant, c(L, 0) = Γ0/h0. Once the local value of c
reaches its maximum value, the value of c there is maintained to be c(L, 0) for all time
as c(z, t) develops flat profile over values of z where c(z, t) = c(L, 0). Because of inertia,
the location of minimum neck radius migrates from the end of the domain (z = L) to its
interior (Eggers 1993; Castrejón-Pita et al. 2015). As shown by Castrejón-Pita et al. (2015),
the occurrence of this new axial location 0 � z < L for the minimum value of jet radius
gives rise to a new stagnation zone in the vicinity of which the flow has slowed down
considerably and even reversed. At first sight, it might seem that c(z, t) can decrease from
its maximum value over the region where flow is reversed (v > 0). However, because
∂c/∂z = 0 over this region, c(z, t) remains fixed there equal to c(L, 0). Therefore, we
expect that c(z = zmin, t) = c(L, 0) = Γ0/h0 for all time, where zmin is the location where
thread radius is minimum. The correctness of this assertion has been confirmed by direct
numerical simulations. One example of such a simulation-based confirmation is shown in
the inset to figure 9(b).
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