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Abstract Let k be an algebraically closed field of characteristic two. Let R be the ring of Witt vectors
of length two over k. We construct a group stack Ĝ over k, the metaplectic extension of the Greenberg
realization of Sp2n(R). We also construct a geometric analogue of the Weil representation of Ĝ, this
is a triangulated category on which Ĝ acts by functors. This triangulated category and the action are
geometric in a suitable sense.

Keywords: Weil representation; characteristic two; metaplectic extension

AMS 2010 Mathematics subject classification: Primary 11R39; 14H60

1. Introduction

1.1. Apparently, a version of the Weil representation in characteristic two first appeared
in 1958 paper by Suprunenko [19, Theorem 11] (before the celebrated 1964 paper by
Weil [21]). This representation and its character were also studied in [12, 13]. Being
inspired mostly by [11] and [14], in this paper we propose a geometric analogue of this
representation.

Let k be a finite field of characteristic two. Let R be the ring of Witt vectors of length 2
over k. Given a free R-module Ṽ of rank 2n with symplectic form ω̃ : Ṽ × Ṽ → R, set
V = Ṽ ⊗R k. Write Sp(Ṽ ) for the group of isometries of the form ω̃. Pick a bilinear form
β̃ : Ṽ × Ṽ → R such that β̃(x̃, ỹ) − β̃(ỹ, x̃) = ω̃(x̃, ỹ) for all x̃, ỹ ∈ Ṽ . Let β : V × V →
2R ⊂ R be the map (x, y) �→ 2β̃(x̃, ỹ) for any x̃, ỹ ∈ Ṽ over x, y ∈ V . It gives rise to the
Heisenberg group H(V ) = V × R with operation

(v1, z1)(v2, z2) = (v1 + v2, z1 + z2 + β(v1, v2)).

The reason for using R instead of 2R in the definition of H(V ) is that in this way it
acquires a larger group of automorphisms acting trivially on the centre. The group Sp(Ṽ )
maps naturally to this group.

Fix a prime � �= 2 and a faithful character ψ : Z/4Z → Q̄∗
� . A version of the Stone–

von Neumann theorem holds in this setting giving rise to the metaplectic extension of
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Sp(Ṽ ) and its Weil representation Hψ (see § 2 for details). According to [11], it can be
seen as a group Mp(Ṽ ) that fits into an exact sequence

1 → Z/2Z → Mp(Ṽ ) → Sp(Ṽ ) → 1. (1.1)

In the geometric setting, assume k to be an algebraically closed field of characteristic
two. We propose geometric analogues of Mp(Ṽ ) and Hψ. Let Ṽ be a free R-module of rank
2n with a symplectic form. Write G for the Greenberg realization of the R-scheme Sp(Ṽ ).
View H(V ) as a group scheme over k, an extension of V by the Greenberg realization
of R.

Though we mostly follow the strategy of [14], there are new difficulties and phenom-
ena in characteristic two. To the difference with the case of other characteristics, the
metaplectic extension (1.1) is non-trivial. The geometric analogue of (1.1) is an algebraic
group stack Ĝ over k that fits into an exact sequence

1 → B(Z/4Z) → Ĝ → G → 1 (1.2)

of group stacks over k. Here for an algebraic group H over k we write B(H) for the
classifying stack of H over k. Actually, from our Remark 6.3 (ii) it follows that there is
a group stack Ĝb over k included into an exact sequence 1 → B(Z/2Z) → Ĝb → G → 1
such that (1.2) is its push-forward via the natural map B(Z/2Z) → B(Z/4Z). More
properly, Ĝb is the geometric analogue of Mp(Ṽ ), but Ĝb will not appear in this paper.

We do not know if Ĝ admits a presentation as the stack quotient G1/G0 for a morphism
G0 → G1 of algebraic groups over k, where G0 is abelian and maps to the centre of G1

(we would rather expect that Ĝ corresponds to a non-trivial crossed module).
We have not found a relation with the K-theory (or the universal central extension

of Sp2n by K2 constructed by Brylinski and Deligne [7]). Instead, our construction of Ĝ

goes as follows.
Let L(Ṽ ) be the Greenberg realization of the R-scheme of free Lagrangian submodules

in Ṽ . First, we define a certain Z/4Z-gerb

L̂(Ṽ ) → L(Ṽ )

via the geometric Maslov index (see § 6). It turns out that the corresponding class in
H2(L(Ṽ ), Z/4Z) is invariant under G, but the gerb itself is not G-equivariant. Then Ĝ is
defined as the stack of pairs (g, σ), where g ∈ G and

σ : g∗L̂(Ṽ ) ∼−→ L̂(Ṽ )

is an isomorphism of Z/4Z-gerbs over L(Ṽ ).
We generalize the theory of canonical intertwining operators from [14] to the case

of characteristic two (see § 7). This allows us to come up with a construction of the
Weil category W (Ṽ ), which is a geometric analogue of Hψ. Here W (Ṽ ) is a category of
certain perverse sheaves on L̂(Ṽ ) × H(V ). The group stack Ĝ acts on W (Ṽ ) by functors.
This action is geometric in the sense that it comes from the natural action of Ĝ on
L̂(Ṽ ) × H(V ).
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Similarly to the case of other characteristics, we also construct the finite-dimensional
theta-sheaf SṼ ,ψ, which is a geometric analogue of some matrix coefficient of the repre-
sentation Hψ. It serves as the key ingredient for the construction of W (Ṽ ).

1.2. Notation

Let A be a commutative ring and V a free A-module of rank d. As in [9, § 5.1], denote
by Sym!2(V ) ⊂ V ⊗V the submodule of S2-invariant vectors. It is the submodule spanned
by the vectors of the form v ⊗ v, v ∈ V . Let

∧2(V ) ⊂ V ⊗ V be the submodule spanned
by the vectors of the form v ⊗ u − u ⊗ v. Let Sym∗2(V ) be the quotient of V ⊗ V by∧2(V ). For any n let∧n

(V ) =
⋂

1�i�n−1

V ⊗i−1 ⊗
( ∧2

V

)
⊗ V ⊗d−1−i.

For any n write Sym!n(V ) ⊂ V ⊗n for the submodule of Sn-invariant tensors and
Sym∗n(V ) for the A-module of Sn-coinvariants of V ⊗n. We have canonically

Sym!n(V ∗) ∼−→ (Sym∗n(V ))∗ and
∧n

(V ∗) ∼−→
( ∧n

V

)∗
.

The space Sym!2(V ∗) can be seen as the space of symmetric bilinear forms on V . This
is the space of A-linear maps φ : V → V ∗ such that φ∗ = φ.

Let V be a free A-module of rank 2n. Say that V is a symplectic if it is equipped with
a non-degenerate bilinear form ω : V × V → A such that in a suitable base (ei, e−i, 1 �
i � n) we have ω(ei, e−j) = δij , ω(ei, ej) = ω(e−i, e−j) = 0 for i, j ∈ {1, . . . , n} and
ω(x, y) = −ω(y, x). We call such base a symplectic base. If V is a symplectic A-module
then we trivialize ω∧ : det V

∼−→ A by e �→ 1, where e = e1 ∧ · · · ∧ en ∧ e−1 ∧ · · · ∧ e−n

does not depend on a symplectic base (ei, e−i). For ωn ∈
∧2n

M∗ we have n!e = ±ωn.
The pairing between a free A-module and its dual is usually denoted by 〈· , ·〉. If A is

of characteristic p, write V (p) = V ⊗A A, where A → A, a �→ ap is the Frobenius map.

1.3. Generalities on quadratic forms

Let k be a field of characteristic two, which is either finite or algebraically closed. Let
R be the ring of Witt vectors of length two over k.

Let L be a finite-dimensional k-vector space. Let Ba(L∗) ⊂ (L ⊗ L)∗ be the subspace
of bilinear forms φ on L satisfying φ(x, x) = 0 for all x ∈ L. We call them alternating
bilinear forms. Write Q(L∗) for the k-space of quadratic forms on L. By definition, it
is included into an exact sequence 0 → Ba(L∗) → (L ⊗ L)∗ → Q(L∗) → 0, where the
second map sends a bilinear form φ to the quadratic form x �→ φ(x, x).

Write Qa(L∗) for the k-space of additive quadratic forms on L. The map L∗ →
Qa(L∗) sending y∗ to the quadratic form y �→ 〈y, y∗〉2, y ∈ L yields an isomorphism
(L∗)(2) ∼−→ Qa(L∗). One has an exact sequence 0 → Ba(L∗) → Sym!2(L∗) → Qa(L∗) → 0
of k-vector spaces. One also has an exact sequence

0 → Qa(L∗) → Q(L∗) → Ba(L∗) → 0,

where the second map sends q to the bilinear form (x, y) �→ q(x + y) − q(x) − q(y).
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Assume given a free R-module L̃ with an isomorphism L̃⊗R k
∼−→ L of k-vector spaces.

Note that Ba(L∗) ⊂ Sym!2(L̃∗) can be seen as the R-submodule consisting of ϕ satisfying
ϕ(x̃, x̃) = 0 for all x̃ ∈ L̃. Let Q!(L∗) be the quotient of Sym!2(L̃∗) by Ba(L∗), this is an
R-module included into an exact sequence 0 → Qa(L∗) → Q!(L∗) → Sym!2(L∗) → 0 of
R-modules. The action of GL(L̃) on Q!(L∗) factors through an action of GL(L).

Equivalently, one may define Q!(L∗) as the R-module of maps q : L → R such that

• the map bq : L×L → R given by bq(x1, x2) = q(x1+x2)−q(x1)−q(x2) is bi-additive,
and bq(ax1, x2) = ãbq(x1, x2) for any ã ∈ R over a ∈ k;

• q(ax) = ã2q(x) for x ∈ L and ã ∈ R over a ∈ k.

These R-valued ‘quadratic forms’ on L have been considered, for example, in [11,15,22].

1.4. We refer the reader to § 2 for motivations, in § 3 we give a detailed description of
the main results and explain the structure of the paper.

2. Classical Weil representation and motivations

2.1. In this section we recall the construction of the Weil representation in characteristic
two following essentially [11]. This is our subject to geometrize.

2.2. Let k be a finite field of characteristic two with q elements, R be the ring of Witt
vectors of length two over k. Let Ṽ be a free R-module of rank 2n with symplectic form
ω̃ : Ṽ ⊗ Ṽ → R. Set V = Ṽ ⊗R k. Let ω : V × V → 2R be given by ω(x, y) = 2ω̃(x̃, ỹ) for
any x̃, ỹ ∈ Ṽ over x, y ∈ V .

Pick a bilinear form β̃ : Ṽ × Ṽ → R such that

β̃(x̃, ỹ) − β̃(ỹ, x̃) = ω̃(x̃, ỹ) (2.1)

for all x̃, ỹ ∈ Ṽ . Let β : V × V → R be the map (x, y) �→ 2β̃(x̃, ỹ) for any x̃, ỹ ∈ Ṽ over
x, y. It gives rise to the Heisenberg group H(V ) = V × R with operation

(v1, z1)(v2, z2) = (v1 + v2, z1 + z2 + β(v1, v2)), vi ∈ V, zi ∈ R. (2.2)

Its centre is Z(H(V )) = {(0, z) ∈ H(V ) | z ∈ R}.
Gurevich and Hadani consider the group of all automorphisms of H(V ) acting trivially

on the centre Z(H(V )). For the purposes of geometrization, we modify their definition
slightly as follows. Let ASp(V ) be the set of pairs (g, α), where g ∈ Sp(V ) and α : V → R

satisfies

• α(v1 + v2) − α(v1) − α(v2) = β(g(v1), g(v2)) − β(v1, v2) for all vi ∈ V ;

• α(av) = ã2α(v) for any v ∈ V and ã ∈ R over a ∈ k.
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An element (g, α) ∈ ASp(V ) yields an automorphism of H(V ) given by (v, z) �→ (gv, z +
α(v)). In this way ASp(V ) maps injectively into the group of automorphisms of H(V )
acting trivially on Z(H(V )). The composition in ASp(V ) is given by

(g, αg)(h, αh) = (gh, h−1(αg) + αh)

with h−1(αg)(v) = αg(hv) for all v ∈ V . We will refer to ASp(V ) as the affine symplectic
group. For a k-vector space L write

FQa(L∗) = {α : L → R | α(x1 + x2) = α(x1) + α(x2) and α(ax) = ã2α(x),
ã ∈ R over a ∈ k, x ∈ L}.

An element of FQa(L∗) writes in Witt coordinates as (0, α1), where α1 : L → k is additive
and α1(ax) = a4α1(x) for all a ∈ k, x ∈ L. So, FQa(L∗) ∼−→ (L∗)(4). The group ASp(V )
fits into an exact sequence

1 → FQa(V ∗) → ASp(V ) → Sp(V ) → 1.

Though it is not reflected in the notation, ASp(V ) depends not only on ω̃ but also on β̃.
Let G = Sp(Ṽ ). We have a surjective homomorphism ξ : G → ASp(V ) sending g̃ to

(g, αg̃), where g ∈ Sp(V ) is the image of g̃, and αg̃ : V → R is given by

αg̃(v) = β̃(g̃ṽ, g̃ṽ) − β̃(ṽ, ṽ)

for any ṽ ∈ Ṽ over v ∈ V .

2.3. Fix a prime � �= 2. Let ψ : Z/4Z → Q̄∗
� be a faithful character. We denote by

the same symbol ψ the composition R
tr−→ Z/4Z → Q̄∗

� . A version of the Stone–von Neu-
mann theorem holds in this setting, namely there exists a unique (up to isomorphism)
irreducible Q̄�-representation of H(V ) with central character ψ [11].

Given an irreducible Q̄�-representation (ρ, Hψ) of H(V ) with central character ψ, one
gets in the usual way a version of the metaplectic group

Mp(Hψ) = {(g, M [g]) | g ∈ ASp(V ), M [g] ∈ Aut(Hψ),

ρ(gh) ◦ M [g] = M [g] ◦ ρ(h) for all h ∈ H(V )}

included into an exact sequence

1 → Q̄∗
� → Mp(Hψ) → ASp(V ) → 1. (2.3)

It comes together with the Weil representation of Mp(Hψ) on Hψ given by (g, M [g]) �→
M [g] ∈ Aut(Hψ).

Among various results of [11–13,19] let us cite the following two, which are our main
motivation for geometrization.
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Proposition 2.1 (Gurevich and Hadani [11]).

(1) There exists a group AMp(V ) included into an exact sequence

1 → µ4(Q̄�) → AMp(V ) → ASp(V ) → 1

such that (2.3) is its push-forward via µ4(Q̄�) ↪→ Q̄∗
� .

(2) There is a group Mp(Ṽ ), which is an extension of G by µ2(Q̄�) and a morphism of
exact sequences extending ξ

1 �� µ4(Q̄�) �� AMp(V ) �� ASp(V ) �� 1

1 �� µ2(Q̄�) ��

��

Mp(Ṽ ) ��

��

G ��

ξ

��

1

2.4. Models of the Weil representation

2.4.1. Write L(V ) for the set of Lagrangians in V . We modify slightly the notion of an
enhanced Lagrangian from [11] as follows. An enhanced Lagrangian in V is a pair (L, α),
where L ∈ L(V ) and α : L → R satisfies

α(l1 + l2) − α(l1) − α(l2) = β(l1, l2)

for li ∈ L and α(al) = ã2α(l) for l ∈ L, a ∈ k and ã ∈ R over a. Sometimes we will refer to
it as the enhanced structure on L. Let ELag(V ) be the set of enhanced Lagrangians in V .
Then ELag(V ) is a torsor under the vector bundle on L(V ) whose fibre at L is FQa(L∗).

Given L ∈ L(V ), the subgroup L×R ⊂ H(V ) is abelian. The novelty in characteristic
two (compared to the case of other characteristics) is that this is not a direct product of
subgroups. This is an extension of L by R in the sense of commutative unipotent group
schemes over k, and an enhanced structure on L yields a splitting of this extension.

Let (L, α) be an enhanced Lagrangian in V . Then τ : L → H(V ) given by τ(x) =
(x, α(x)) is a group homomorphism. One associates to the enhanced Lagrangian (L, α)
a model of the Weil representation

HL = {f : H(V ) → Q̄� | f(zτ(x)h) = ψ(z)f(h), x ∈ L, z ∈ R, h ∈ H(V )},

on which H(V ) acts by right translations. Write ρ : H(V ) → Aut(HL) for this action.
The group ASp(V ) acts on the left on ELag(V ), namely g ∈ ASp(V ) sends τ : L →

H(V ) to Adg τ : gL → H(V ) given by

(Adg τ)(x) = gτ(g−1x), x ∈ gL.

This action map is denoted by act : ASp(V ) × ELag(V ) → ELag(V ). The projection
ELag(V ) → L(V ) is ASp(V )-equivariant. Set

Mp(HL) = {(g, M [g]) | g ∈ ASp(V ), M [g] ∈ Aut(HL),

ρ(gh) ◦ M [g] = M [g] ◦ ρ(h) for h ∈ H(V )}.
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It fits into an exact sequence

1 → Q̄∗
� → Mp(HL) → ASp(V ) → 1. (2.4)

Remark 2.2. Each g ∈ ASp(V ) yields an isomorphism HL
∼−→ HgL of Q̄�-vector spaces

sending f to gf . Here (gf)(h) = f(g−1h) for h ∈ H(V ). Write StL for the stabilizer of
the enhanced Lagrangian L in ASp(V ). Then StL acts naturally in HL, namely g ∈ StL
sends f to gf . This is a splitting of (2.4) over StL.

2.4.2. Write L(Ṽ ) for the set of free Lagrangian R-submodules in Ṽ . Write ε : L(Ṽ ) →
ELag(V ) for the map sending L̃ to (L, αL̃), where αL̃ : L → R is given by αL̃(x) = β̃(x̃, x̃)
for any x̃ ∈ L̃ over x ∈ L.

The surjection ξ : G → ASp(V ) is compatible with ε, namely the diagram

G × L(Ṽ )
act ��

ξ×ε

��

L(Ṽ )

ε

��
ASp(V ) × ELag(V ) act �� ELag(V )

(2.5)

commutes, where the top horizontal map sends (g̃, L̃) to g̃L̃. For L̃ ∈ L(Ṽ ) set also
HL̃ = HL, where L = ε(L̃). Let P (L̃) be the stabilizer of L̃ in G. Then ξ restricts to a
homomorphism ξ : P (L̃) → StL, and Remark 2.2 yields a canonical splitting of the pull-
back of (2.4) under the composition P (L̃) ↪→ G

ξ−→ ASp(V ). The group P (L̃) fits into an
exact sequence 1 → Sym!2(L̃) → P (L̃) → GL(L̃) → 1.

2.5. Intertwining operators

For a pair L1, L2 ∈ ELag(V ) consider the non-normalized intertwining operator
FL1L2 : HL2 → HL1 given by

(FL1L2 [f ])(h) =
∑

m∈L1

f(τ1(m)h) (2.6)

for f ∈ HL2 , h ∈ H(V ), where τi : Li → H(V ) is the enhanced structure for Li. It
commutes with the actions of H(V ). It is easy to check that FL1,L2 does not vanish if
and only if τ1 and τ2 coincide on L1 ∩ L2, and in this case it is an isomorphism.

Let now L1, L2, L3 ∈ ELag(V ) with L1 ∩ L2 = L1 ∩ L3 = 0. We write τi : Li → H(V )
for the enhanced structure for Li. Let r : L2 → L1 be the k-linear map such that L3 =
{r(x) − x ∈ L1 ⊕ L2 | x ∈ L2}. Let us calculate

FL1,L2FL2,L3 : HL3 → HL1 .

Define the quadratic form QL1,L2,L3 : L2 → R by the following equality in H(V )

τ3(r(m) − m)τ2(m)τ1(−r(m)) = (0, QL1,L2,L3(m)) (2.7)
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for any m ∈ L2. In other words,

QL1,L2,L3(m) = α2(m) + α1(r(m)) − α3(m − r(m)) + β(m, r(m)). (2.8)

Then QL1,L2,L3 ∈ Q!(L∗
2), and (2.8) implies for m1, m2 ∈ L2

QL1,L2,L3(m1 + m2) − QL1,L2,L3(m1) − QL1,L2,L3(m2) = ω(r(m1), m2).

This is a symmetric bilinear form L2 × L2 → 2R.
Define the Gauss sum of QL1,L2,L3 by

C(L1, L2, L3) =
∑

m∈L2

ψ(QL1,L2,L3(m)). (2.9)

Lemma 2.3. Assuming only L1 ∩ L2 = L1 ∩ L3 = 0 one has

FL1,L2FL2,L3 = C(L1, L2, L3)FL1,L3 .

So, C(L1, L2, L3)FL2,L1FL1,L3 = qnFL2,L3 .

Proof. Let f ∈ HL3 . For h ∈ H(V ) we get

(FL1,L2FL2,L3f)(h) =
∑

u∈L1,m∈L2

f(τ2(m)τ1(u)h)

=
∑

u∈L1,m∈L2

f(τ3(r(m) − m)τ2(m)τ1(u)h).

We make a change of variables replacing (u, m) by (v, m), where v ∈ L1 is given by
v = r(m) + u. The above sum equals∑

v∈L1, m∈L2

f(τ3(r(m) − m)τ2(m)τ1(−r(m))τ1(v)h).

Our first assertion follows now from (2.7). The second assertion follows from the fact
that FL2,L1FL1,L2 = qn. �

Remark 2.4. Given L1 ∈ ELag(V ), the variety {L ∈ ELag(V ) | L∩L1 = 0} is naturally
a homogeneous space under Q!(L1). Namely, given L2 and L3 in this variety one gets
QL1,L2,L3 as above. Identify further L1 with L∗

2 via the form ω, so QL1,L2,L3 ∈ Q!(L1).
Conversely, given L2 in this variety and QL1,L2,L3 ∈ Q!(L∗

2), let φ be its image in
Sym!2(L∗

2). Define r : L2 → L1 by ω(r(m1), m2) = φ(m1, m2) for all mi ∈ L2. Let L3 =
{r(x) − x ∈ L1 ⊕ L2 | x ∈ L2}. Now there is a unique τ3 : L3 → H(V ), τ3(y) = (y, α3(y))
such that (2.7) holds. The fact that this τ3 is a homomorphism is checked using (2.8).

Remark 2.5. For any pair of enhanced Lagrangians L1, L2 ∈ ELag(V ) define the inter-
twining operator F �

L1L2
: HL2 → HL1 as follows. There is w ∈ V (its image in V/(L1+L2)

is uniquely defined) such that for all x ∈ L1 ∩ L2 we have α2(x) − α1(x) = Fr(ω(x, w)),
here Fr: R → R is the Frobenius.
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Write L̄1 for the subgroup L1×R ⊂ H(V ), similarly for L1 ∩ L2 ⊂ H(V ). Let ψ1 : L̄1 →
Q̄∗

� be the unique character such that ψ1(τ1(x)(0, z)) = ψ(z) for all x ∈ L1, z ∈ R. Given
f ∈ HL2 , the function sending u ∈ L̄1 to

f((w, 0)uh)ψ−1
1 (u)

actually depends only on the image of u in L1 ∩ L2\L̄1. Then we set

(F �
L1L2

f)(h) =
∑

u∈L1∩L2\L̄1

f((w, 0)uh)ψ−1
1 (u). (2.10)

To see that F �
L1,L2

is non zero, take f �= 0 supported at L̄2 then (F �
L1L2

f)(w, 0) �= 0.
Finally, if L1 ∩ L2 = 0 take w = 0 then (2.10) coincides with (2.6). The operator (2.10)
does depend on a choice of w.

3. Main results

3.1. Notation

From now on k denotes an algebraically closed field of characteristic two. Write W2 for
the k-scheme of Witt vectors of length 2 over k. Let R = W2(k) be the corresponding
ring of Witt vectors. Fix a prime � �= 2. Let ψ : Z/4Z → Q̄∗

� be a faithful character. For
a k-stack of finite type S write D(S) for the bounded derived category of Q̄�-sheaves on
S. Write P(S) ⊂ D(S) for the full subcategory of perverse sheaves. Write D : D(S) →
D(S) for the Verdier duality. Since we are working over an algebraically closed field,
we systematically ignore the Tate twists. (Certain isomorphisms that we call canonical
actually contain the Tate twists, for example those of Lemma 7.2.) Write µ2 for the group
scheme Spec k[x]/(x2 − 1) over k.

Recall the definition of the Artin–Schreier–Witt local system Lψ on W2,k. One has
the Lang isogeny La : W2 → W2 sending x to Fr(x) − x, where Fr: W2 → W2 is the
Frobenius morphism [18, § 0.1.2]. It can be seen as a Z/4Z-torsor over W2. Denote by
Lψ the smooth Q̄�-sheaf of rank one on W2 obtained from this torsor via extension of
scalars ψ : Z/4Z → Q̄∗

� . This is a character sheaf, for the sum s : W2 ×W2 → W2 we have
s∗Lψ

∼−→ Lψ � Lψ canonically, and Lψ is canonically trivialized at 0 ∈ W2.
For a scheme Z over R we denote by the same symbol Z its Greenberg realization over

k [10] (the precise meaning being understood from the context).
For an R-module of finite type M the same symbol M stands for the k-scheme whose

set of k-points is M . It can be defined as follows. Pick a resolution M−1
f−→ M0 of M by

free R-modules of finite type. The k-scheme associated to M is defined as the cokernel of
the corresponding morphism between the Greenberg realizations of Mi. One checks that
k-scheme so obtained is defined up to a unique isomorphism.

For a morphism f : Y1 → Y2 of irreducible k-schemes of finite type write dim. rel(f) =
dim Y1 − dim Y2.

3.2. In § 4 we study the geometric analogues of Gauss sums attached to R-valued
quadratic forms on a finite-dimensional k-vector space L. Namely, we introduce an
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irreducible perverse sheaf S̄ψ on Q!(L∗), whose fibre at q ∈ Q!(L∗) is the Gauss
sum attached to q and the character ψ. The scheme Q!(L∗) is naturally stratified,
we describe the restriction of Sψ to each stratum (Proposition 4.14). Generically, Sψ

is a (shifted) local system of rank one and order four, and we describe generically
the Z/4Z-covering, on which the corresponding local system trivializes (see § 4.5). The
sheaf S̄ψ is GL(L)-equivariant, write S̄ψ for the perverse sheaf on the stack quotient
Q!(L∗)/GL(L) equipped with an isomorphism pr∗ S̄ψ[dim. rel(pr)] ∼−→ S̄ψ for the projec-
tion pr : Q!(L∗) → Q!(L∗)/GL(L).

In § 5 we generalize the results of Thomas [20] on the Maslov index (of a finite collection
of Lagrangian subspaces in a symplectic space) to the case of characteristic two. More
precisely, we consider a free R-module Ṽ of rank 2n with a symplectic form. To a finite
collection of free Lagrangian R-submodules L̃1, . . . , L̃m ⊂ Ṽ we attach R-modules with
symmetric bilinear forms K1,...,m and T1,...,m, here T1,...,m is the quotient of K1,...,m by
the kernel of the form. This is the Maslov index of the collection {L̃i}. In addition to
the standard properties of the Maslov index (Propositions 5.6 and 5.8), we also obtain
some new isometries in the case m = 4, which actually hold also in other characteristics.
(These new isometries are used in § 6.3.2 for the construction of the gerb Ŷ .)

Let L(Ṽ ) be the Greenberg realization of the R-scheme of Lagrangian free R-sub-
modules in Ṽ . In § 6 we use the Maslov index to construct a Z/4Z-gerb L̂(Ṽ ) → L(Ṽ ).
Let G be the Greenberg realization of Sp(Ṽ ). The gerb L̂(Ṽ ) is not G-equivariant, but
rather gives rise to a central extension

1 → B(Z/4Z) → Ĝ → G → 1,

of group stacks over k. We call Ĝ the metaplectic group (in a sense, this is a geometric
analogue of Mp(Ṽ ) from Proposition 2.1).

Set Y = L(Ṽ ) × L(Ṽ ). Let Ŷ → Y be the Z/4Z-gerb obtained from L̂(Ṽ ) × L̂(Ṽ ) by
extending the structure group via Z/4Z × Z/4Z → Z/4Z, (a, b) �→ b − a. We show that
Ŷ is naturally G-equivariant, that is, can be seen as a gerb over the stack quotient Y/G.
We construct an irreducible G-equivariant perverse sheaf SṼ ,ψ on Ŷ , which we call the
finite-dimensional theta sheaf (see Definition 6.5).

Let U23 be the scheme classifying (L̃1, L̃2, L̃3) ∈ L(Ṽ )3 with L̃1∩L̃2 = L̃1∩L̃3 = 0. We
define a morphism ν̂23 : U23 → Ŷ extending the projection ν23 : U23 → Y , (L̃1, L̃2, L̃3) �→
(L̃2, L̃3) (see § 6.3.1).

Let L̃ be a free R-module of rank n, set L = L̃ ⊗R k. The Maslov index of a triple
of Lagrangians yields a morphism to the stack quotient πU : U23 → Sym!2(L̃∗)/GL (L̃)
(see § 5.4).

The key property of SṼ ,ψ is Corollary 6.7, which is the main result of § 6. It establishes
a canonical isomorphism of perverse sheaves on U23

π∗
Up∗

LS̄ψ[dim. rel(pL ◦ πU )] ∼−→ ν̂∗
23SṼ ,ψ[dim. rel(ν23)],

where pL : Sym!2(L̃)/GL(L̃) → Q!(L∗)/GL(L) is the natural map. So, similarly to the
case of other characteristics, the Gauss sum of the Maslov index of (L̃1, L̃2, L̃3) ∈ U23 is
‘almost independent’ of L̃1.
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Let V = Ṽ ⊗R k. The Heisenberg group H = H(V ) = V × R with operation (2.2)
is viewed as an algebraic group over k (an extension of V by the Greenberg realization
of R).

In § 7 we generalize the theory of canonical intertwining operators [14] to the case of
characteristic two. The main result here is Theorem 7.1, which establishes the existence of
an irreducible perverse sheaf F ∈ P(L̂(Ṽ )×L̂(Ṽ )×H) of canonical intertwining operators
between the Heisenberg models of the Weil representation. The proof follows the strategy
from [14]. However, a new technical point is that we need to consider an action of an
algebraic group stack on an algebraic stack (our perverse sheaves are equivariant under
the action of a group stack∗). Generalities on such actions are collected in Appendix A.
The theta-sheaf SṼ ,ψ is one of the main ingredients in the construction of F .

Finally, we construct a category W (Ṽ ) of certain perverse sheaves on L̂(Ṽ ) × H, which
provides a geometric analogue of the Weil representation Hψ from § 2.3. The group stack
Ĝ acts on W (Ṽ ) by functors. This action is geometric in the sense that it comes from
a natural action of Ĝ on L̂(Ṽ ). As in [14], we also construct the non-ramified Weil
category W (L̂(Ṽ )), which is a category of certain perverse sheaves on L̂(Ṽ ). This is
another geometric realization of the Weil representation (one has an obvious functor
W (Ṽ ) → W (L̂(Ṽ )), we do not know if this is an equivalence).

In Appendix B we turn back to the classical setting and show that the Weil repre-
sentation from § 2 is obtained by some reduction from the Weil representation over the
non-Archimedean local field of characteristic zero and residual characteristic two.

3.3. Comments on open problems

From our point of view, the following problems would be interesting to solve. Find
an interpretation of the construction of Ĝ in terms of K-theory (as for characteristics
different from two). Find a description of L̂(Ṽ ) and of Ŷ as the moduli stack classifying
some geometric objets related to Ṽ . Geometrization of the Howe correspondence in the
case of characteristic two. If there could be one, find a description of Ĝ by a crossed
module.

4. The sheaf S̄ψ

4.1. Let L̃ be a free R-module of rank n, set L = L̃ ⊗R k. Let π : L̃ → Sym∗2(L̃) be
the map sending x to x ⊗ x, here Sym is taken over R. The map π is constant along
the fibres of the projection L̃ → L, so yields a map π̄ : L → Sym∗2(L̃). The latter map
induces a closed immersion of k-schemes π̄ : L(2) → Sym∗2(L̃).

Since Sym∗2(L̃) and Sym!2(L̃∗) is a dual pair of commutative unipotent group schemes
over k, one has the Fourier transform functor

Fourψ : D(Sym∗2(L̃)) → D(Sym!2(L̃∗))

∗ The actions we consider are ‘free’ in a suitable sense, so that the quotient could be defined as a
1-stack [8, § 2.4.4].
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introduced in [18]. In this particular case, one also has the evaluation map

ev : Sym∗2(L̃) × Sym!2(L̃∗) → W2,

and Fourψ is given by

Fourψ(K) = pr2!(pr∗
1 K ⊗ ev∗Lψ)[n(n + 1)]

for K ∈ D(Sym∗2(L̃)). By [18], Fourψ is an equivalence, commutes with Verdier duality
and preserves perversity.

Remark 4.1. Let Z be an algebraic stack locally of finite type, G → Z be a group
scheme of finite type and smooth of relative dimension m over Z. Let f : Y → Z be
a G-torsor over Z. Then the functor K �→ f∗K[m] is an equivalence of the category of
perverse sheaves on Z with the category of G-equivariant perverse sheaves on Y [16, A.2].

Definition 4.2. As in [16, § 4.1] set

Sψ = Fourψ(π̄!Q̄�[n]).

Since π̄!Q̄�[n] is an irreducible perverse sheaf, so is Sψ. The sheaf Sψ is naturally
GL(L̃)-equivariant (by GL(L̃) we mean here its Greenberg realization over k). Let qL̃ :
Sym!2(L̃∗) → Sym!2(L̃∗)/GL(L̃) be the stack quotient. Write Sψ for the perverse sheaf
on Sym!2(L̃∗)/GL(L̃) equipped with an isomorphism

q∗
L̃
Sψ[dim. rel(qL̃)] ∼−→ Sψ.

By Remark 4.1, the perverse sheaf Sψ is defined up to a unique isomorphism.

Set Q∗(L) = HomR(Q!(L∗), R). So, Q∗(L) ⊂ Sym∗2(L̃) is the R-submodule of those
A ∈ Sym∗2(L̃) which vanish on Ba(L∗). The map π̄ : L → Sym∗2(L̃) factors as

L
πQ−−→ Q∗(L) ↪→ Sym∗2(L̃).

Again, Q∗(L) and Q!(L∗) is a dual pair of commutative unipotent group schemes over k,
one has the evaluation map ev : Q∗(L) × Q!(L∗) → R and the Fourier transform

Fourψ : D(Q∗(L)) → D(Q!(L∗))

as above. Let S̄ψ be the irreducible perverse sheaf on Q!(L∗) defined by

S̄ψ = Fourψ(πQ!Q̄�[n]).

Clearly, S̄ψ is GL(L)-equivariant. We have canonically DS̄ψ
∼−→ S̄ψ−1 . We write nS̄ψ if

we need to express the dependence on n. One has a canonical isomorphism

pr∗ S̄ψ[n(n + 1)/2 − n] ∼−→ Sψ,

where pr : Sym!2(L̃∗) → Q!(L∗) is the projection.
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We say that the Gauss sum for q ∈ Q!(L∗) is the ∗-fibre of S̄ψ at q. The Gauss sum
for φ̃ ∈ Sym!2(L̃∗) is the Gauss sum for its image in Q!(L∗).

4.2. Let Q!
0(L

∗) ⊂ Q!(L∗) be the open subscheme of q ∈ Q!(L∗) whose image in
Sym!2(L∗) is a non degenerate symmetric bilinear form, that is, a symmetric isomorphism
L

∼−→ L∗ of k-vector spaces.

Lemma 4.3. Over Q!
0(L

∗) the sheaf S̄ψ is a rank one local system placed in usual degree
−n − n(n + 1)/2 = − dim Q!(L∗). One has canonically over Q!

0(L
∗)

Sψ ⊗ Sψ−1
∼−→ Q̄�[−3n − n2].

Proof. Let us explain the argument at the level of functions, its geometrization is
straightforward. Let φ : L̃ → L̃∗ be a symmetric isomorphism of R-modules. For l ∈ L

write l̃ for any lifting of l to an element of L̃. Let us calculate∑
l,u∈L

ψ(〈l̃, φ(l̃)〉 − 〈ũ, φ(ũ)〉). (4.1)

For f(l̃, ũ) := 〈l̃, φ(l̃)〉 − 〈ũ, φ(ũ)〉 and ṽ ∈ L̃ we have

f(l̃ + ṽ, ũ + ṽ) = f(l̃, ũ) + 2〈φ(l̃ − ũ), ṽ〉.

First, summate along the fibres of the map L×L → L, (l, u) �→ l−u. The above formula
shows that the result is supported by {0} ⊂ L. So, (4.1) equals

∑
l∈L

ψ(〈l̃, φ(l̃)〉 − 〈l̃, φ(l̃)〉) =
∑
l∈L

1.

�

The group scheme W ∗
2 of invertible elements with respect to the multiplication identi-

fies canonically with Gm ×Ga. Let B̄2 be the k-stack classifying a rank one free R-module
W̃ with a bilinear form W̃ ⊗ W̃ → R. This is the stack quotient W2/W ∗

2 , where b ∈ W ∗
2

acts on a ∈ W2 as b2a. Let B2 ⊂ B̄2 be the open substack given by the condition that
the bilinear form in non degenerate. Recall the group scheme µ2 from § 3.1.

Lemma 4.4. There is a canonical isomorphism of k-stacks B2
∼−→ B(µ2 × Ga) × A1.

Proof. An S-point of B2 is a W ∗
2 -torsor on S with trivialization of its tensor square.

A W ∗
2 -torsor is a pair: a Gm-torsor F1 and a Ga-torsor F2. Since k is of characteristic

two, for any Ga-torsor F2, its tensor square is canonically trivialized, and the additional
trivialization yields a point of A1. Our assertion follows. �

Lemma 4.5. There is a natural map Disc : Q!(L∗) → B̄2, its restriction to Q!
0(L

∗) ⊂
Q!(L∗) factors as Q!

0(L
∗) Disc−−−→ B2 ↪→ B̄2.
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Proof. The map sending a symmetric bilinear form φ̃ : L̃ → L̃∗ to det φ̃ : det L̃ → det L̃∗

factors through Sym!2(L̃∗) → Q!(L∗). Indeed, fix a base in L̃, so view Sym!2(L̃∗) as
symmetric n × n-matrices B over R. Then Ba(L∗) becomes the set of zero-diagonal
symmetric matrices C with entries in 2R. For such B and C we claim that det(B +C) =
det B. To see this, one must prove

∑
σ∈Sn

(sign σ)
n∑

j=1

cj,σ(j)

n∏
i=1,i �=j

bi,σ(i) = 0

in R. If σ �= σ−1 then the contributions of σ and σ−1 are the same, so there remains the
sum over σ ∈ Sn such that σ2 = id. We claim that for σ ∈ Sn with σ2 = id we have

n∑
j=1

cj,σ(j)

n∏
i=1,i �=j

bi,σ(i) = 0.

Indeed, the above sum is actually over those j which are not fixed by σ. Such j are
divided into pairs (j, σ(j)), and the contribution of each pair vanishes. �

We will refer to Disc : Q!(L∗) → B̄2 as the discriminant map. Write disc : Q!
0(L

∗) → A1

for the composition Q!
0(L

∗) Disc−−−→ B2 → A1, where the second map is the projection.

4.3. Recall the classical result of Albert [1]. If n is odd then GL(L) acts transitively on
the variety of non-degenerate symmetric bilinear forms φ on L. If n is even then GL(L)
has two orbits on this variety: they are distinguished by the fact that the image of φ in
Qa(L∗) vanishes or not.

For any n let Sym!2(L∗)0 ⊂ Sym!2(L∗) be the open subscheme given by the condition
that the image of φ ∈ Sym!2(L∗) in Qa(L∗) does not vanish, and φ is non-degenerate.
This is the open orbit of GL(L) on Sym!2(L∗).

Let U(L∗) ⊂ Q!(L∗) be the open subscheme classifying q ∈ Q!(L∗) such that its image
φ ∈ Sym!2(L∗) lies in Sym!2(L∗)0. For u ∈ k denote by Q!

0(L
∗)u ⊂ Q!

0(L
∗) the closed

subscheme given by the condition that the discriminant equals u. Write also U(L∗)u for
the fibre of the discriminant map disc : U(L∗) → A1 over a k-point u.

Let φ ∈ Sym!2(L∗)0 be a k-point and let r(y) = φ(y, y), y ∈ L be the corresponding
additive quadratic form. Let y∗ ∈ L∗ be such that r(y) = 〈y, y∗〉2. Write L1 for the kernel
of y∗ : L → k.

If n is odd then the restriction of φ to L1 is non-degenerate, so φ is a non-degenerate
alternating form on L1. Writing L2 = L⊥

1 we get L
∼−→ L1 ⊕ L2. The stabilizer O(φ)

of φ in GL(L) is Sp(L1, φ) × µ2, it is not reduced, and its reduced part identifies with
Sp(L1, φ).

If n is even then L2 = L⊥
1 ⊂ L1. Again, the group O(φ) is not reduced (it acts on L2

via a quotient µ2). Its reduced part is an extension of Sp(L1/L2, φ) by a unipotent group
Uφ. The group Uφ fits into an exact sequence 1 → L⊗2

2 → Uφ → Hom(L1/L2, L2) → 1,
so Uφ looks like a Heisenberg group. Actually, the latter exact sequence splits, because
k is of characteristic two.
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Lemma 4.6.

(i) Let φ̃ ∈ Sym!2(L̃∗) be a lifting of φ ∈ Sym!2(L∗)0. Let q ∈ U(L∗) be the image of
φ̃. The stabilizer O(q) of q in GL(L) is as follows.

(1) If n is odd then this is O(L1, q) × µ2 ⊂ Sp(L1, φ) × µ2.

(2) If n is even then we have two cases. First, if q is non-zero on L2, then O(q)
fits into an exact sequence 1 → Z/2Z → O(q) → Spn−2 → 1. Second, if q

vanishes on L2 then q yields a quadratic form q̄ : L1/L2 → 2R, and O(q) fits
into an exact sequence 1 → Hom(L1/L2, L2) → O(q) → O(L1/L2, q̄) → 1.
The bilinear form on L1/L2 associated to q̄ is symplectic.

(ii) If n is odd then we have a transitive action of GL(L) × A1 on U(L∗), and the map
disc : U(L∗) → A1 is A1-equivariant, where A1 acts on itself by translations.

Assume n even. Then q vanishes on L2 if and only if the discriminant of q equals

0, n = 0 mod 4,

1, n = 2 mod 4.

}
(4.2)

Besides, for any u ∈ k and any n > 0 the action of GL(L) on U(L∗)u is transitive.

Proof. (i) For x, y ∈ L one has

q(x+y)−q(x)−q(y) = φ̃(x̃+ ỹ, x̃+ ỹ)− φ̃(x̃, x̃)− φ̃(ỹ, ỹ) = 2φ̃(x̃, ỹ) = (0, φ(x, y)2), (4.3)

the last expression being written in Witt coordinates.

(1) Let n be odd. Then φ yields a decomposition L = L1 ⊕ L2 as above, and φ is
alternating on L1. The restriction of q to L1 is a map q1 : L1 → 2R. By (4.3), we see that
the symmetric bilinear form associated to q is φ. It follows that O(L1, q) ⊂ Sp(L1, φ).
The stabilizer of (L2, q) is µ2.

(2) Let n be even. Then φ yields a decomposition L2 ⊂ L1 ⊂ L as above. The restric-
tion of q to L1 is a map q1 : L1 → 2R. First, assume q non-trivial on L2, then the
intersection of the unipotent radical of O(φ) with O(q) is isomorphic to Z/2Z (real-
ized as a closed subgroup of Ga). So, dim O(q) � dim Spn−2 = (n − 2)(n − 1)/2. It
follows that dim(O(φ)/O(q)) � n − 1, because dim O(φ) = n(n − 1)/2. Let Yφ be
the preimage of φ under Q!(L∗) → Sym!2(L∗). Let Yφ,q be the closed subscheme in
Yφ given by the condition that the discriminant equals the discriminant of q. Since
dim Yφ,q = n − 1, we learn that each orbit of O(q) on Yφ,q is open. So, one gets an exact
sequence 1 → Z/2Z → O(q) → Spn−2 → 1.

Now consider the case when q vanishes on L2. Then for x ∈ L2, y ∈ L1 we get from (4.3)
that q(x+y)− q(y) = 0. So, q yields a map q̄ : L1/L2 → 2R given by q̄(y mod L2) = q(y)
for any y ∈ L1. It is easy to see that O(q) ∩ L⊗2

2 = 0. Since dim O(q̄) = (n − 2)(n − 3)/2,
we get

dim O(q) � dim Hom(L1/L2, L2) + dim O(q̄) = n − 2 + (n − 2)(n − 3)/2.
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So, dim GL(L)/O(q) � (n−1)+n(n+1)/2. On the other hand, GL(L)/O(q) is contained
in the locus of Q!

0(L
∗) with fixed discriminant, which is of dimension less than or equal

to (n − 1) + n(n + 1)/2. Thus, 1 → Hom(L1/L2, L2) → O(q) → O(q̄) → 1 is exact.

(ii) If n is odd we let a ∈ A1 act on q ∈ U(L∗) sending it to (1, a)q ∈ U(L∗), here
(1, a) ∈ R is written in Witt coordinates. For any q ∈ U(L∗) the GL(L) × A1-orbit
on U(L∗) through q is of dimension equal to that of U(L∗). Since U(L∗) is an open
subscheme of an affine space, it is irreducible. So, the action of GL(L) × A1 on U(L∗) is
transitive.

Now let n be even, let φ̃, φ, q be as in (i). We have the corresponding flag L2 ⊂ L1 ⊂ L

on L. Pick l ∈ L − L1 with q(l) mod 2 = 1. Adding to l a suitable element of L2 we may
assume that q(l) = 1. Let l̃ ∈ L̃ be a vector over l. Pick any l̃2 ∈ L̃ such that its image
l2 in L lies in L2 and φ̃(l̃2, l̃) = 1. We have in Witt coordinates φ̃(l̃2, l̃2) = (0, ε) for some
ε ∈ k. The bilinear form φ̃ is non degenerate over Rl̃2 ⊕ Rl̃, so we get an orthogonal (with
respect to φ̃) decomposition of L̃ into a direct sum of free R-submodules (Rl̃2 ⊕ Rl̃) ⊕ W̃ .
Let W be the image of W̃ in L then L1 = L2 ⊕ W . So, q : W → 2R.

The bilinear form φ on W is symplectic, this is the bilinear form associated to q on W .
So, q can be seen as a non-degenerate quadratic form on W with values in k. It follows
that the determinant of φ̃|W equals (−1)(n−2)/2. Indeed, there is a base ei, e−i of W in
which the form q on W writes in Witt coordinates

q(x) =
(

0,
∑

i

x2
i x

2
−i

)
∈ 2R

for x =
∑

i(xiei + x−ie−i). Actually, we have proved that in a suitable base of L the
form q writes as

q(y, y2, xi, x−i) = (0, ε)ỹ2
2 + 2ỹỹ2 + ỹ2 + 2

(n−2)/2∑
i=1

x̃ix̃−i (4.4)

in n variables {y, y2, xi, x−i} with 1 � i � (n − 2)/2. Here ỹ, ỹ2, x̃i, x̃−i are any liftings
of the corresponding variables with respect to R → k. In particular, for each u the action
of GL(L) on U(L∗)u is transitive.

Since the determinant of φ̃ over Rl̃2 ⊕ Rl̃ equals (1, 1 + ε) in Witt coordinates, we get
that the discriminant of such q equals

ε, n = 0 mod 4,

ε + 1, n = 2 mod 4.

Our assertion follows. �

Remark 4.7.

(i) For n even the normal form (4.4) can be seen as a section s : A1 → U(L∗) of
disc : U(L∗) → A1.
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(ii) For any q ∈ U(L∗) the stabilizer of q in GL(L) has two connected components (see
also § 4.4). So, for any u ∈ k the shifted local system S̄⊗2

ψ over U(L∗)u is constant.
It follows that there exists a local system Wn on A1 together with an isomorphism
over Q!

0(L
∗)

S̄⊗2
ψ [−3n − n2] ∼−→ disc∗ Wn,

here disc : Q!
0(L

∗) → A1. One checks that for any n the local system Wn on A1 is
of order two, it becomes constant on the covering A1 → A1, b �→ b2 + b.

Actually, for n even we can say more. The restriction s∗S̄ψ under the section
s : A1 → U(L∗) is of order 4 and can be calculated using the formula (4.4). Let
iR : A1 → W2 be the map sending x to (x, 0) in Witt coordinates. There exists an
isomorphism over A1

s∗S̄ψ[− dim U(L∗)] ∼−→ i∗RLψ.

This follows easily from the fact that, at the level of functions, for ε, y ∈ k the sum∑
y2∈k

ψ((0, ε)ỹ2
2 + 2ỹỹ2 + ỹ2)

vanishes unless ε = y4.

Definition 4.8. For n = 1 and L = k one has canonically Q!(L∗) ∼−→ R. In this case
write E ∈ D(Spec k) for the fibre of S̄φ[−2] at 1 ∈ Q!(L∗). Then E is a one-dimensional
Q̄�-vector space placed in usual degree zero.

Proposition 4.9. For any n we have canonically over Q!
0(L

∗)

S̄⊗4
ψ |Q!

0(L∗)[−6n − 2n2] ∼−→ E⊗4n.

Proof. (1) Assume n even. Set u = 0 ∈ k. By Remark 4.7, S̄⊗2
ψ [−3n − n2] is a constant

local system on Q!
0(L

∗)u. Choosing a base in L̃, we get a k-point in Q!
0(L

∗), the image
of the symmetric bilinear form φ̃ ∈ Sym!2(L̃∗) with the identity matrix. The fibre of
S̄⊗2

ψ [−3n − n2] at this k-point is E2n. This yields an isomorphism

S̄⊗2
ψ [−3n − n2] ∼−→ E2n

over Q!
0(L

∗)u.

(2) Considering the map Q!
0(L

∗) → Q!
0(L

∗ ⊕ L∗)u sending φ to φ ⊕ φ : L̃ ⊕ L̃ → L̃∗ ⊕ L̃∗,
we are reduced to (1). �

If n = 1 then the local system S̄⊗2
ψ |Q!

0(L∗) is non-constant. Indeed, consider the
closed immersion κR : A1 → W ∗

2 sending x to (1, x) ∈ R∗ in Witt coordinates. Then
RΓ c(A1, κ∗

RS̄⊗2
ψ ) is easy to calculate, which shows that κ∗

RS̄⊗2
ψ is non-constant. Actually,

κ∗
RS̄⊗2

ψ trivializes on the covering A1 → A1, z �→ z2 + z. This is a consequence of the
following lemma.
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Lemma 4.10. Let īR : A1 → W2 be the map sending x to (x+1, 0) ∈ R in Witt coordin-
ates. For n = 1 one has an isomorphism

ī∗RLψ
∼−→ κ∗

R(1S̄ψ[−2]).

Proof. Consider the quadratic form q(x, y) = (1, a)x̃2 + ỹ2 with x̃, ỹ ∈ R over x, y ∈ k.
Consider a new base {u, u2} of k2 given by u = (0, 1) and u2 = (1, 1). The value of q at
yu + y2u2 ∈ k2 is

(0, a + 1)(y2
2 , 0) + (0, y2y2

2) + (y2, 0) = (0, a + 1)ỹ2
2 + 2ỹỹ2 + ỹ2.

So, the assertion follows from Remark 4.7. �

Definition 4.11. Fix once and for all an isomorphism E4 ∼−→ Q̄�. Then S̄ψ[−n −
n(n + 1)/2] is a local system on Q!

0(L
∗) whose fourth power is trivialized canonically

by Proposition 4.9. In view of the homomorphism ψ : Z/4Z → Q̄∗
� we have fixed in § 3.1,

S̄ψ yields a Z/4Z-torsor Cov(Q!
0(L

∗)) → Q!
0(L

∗). The restriction of S̄ψ to Cov(Q!
0(L

∗))
is equipped with a canonical trivialization.

Definition 4.12. Let Q0(L̃) ⊂ Sym!2(L̃∗) be the open subscheme of φ : L̃ → L̃∗,
which are isomorphisms of R-modules. Write Cov(Q0(L̃)) → Q0(L̃) for the Z/4Z-torsor
obtained from Cov(Q!

0(L
∗)) by the base change Q0(L̃) → Q!

0(L
∗).

4.4. Arf invariant of quadratic forms

This subsection is independent of the rest of the paper.

4.4.1. Let S be a scheme and E a vector bundle on S. A quadratic form on E is a
morphism of sheaves q : E → OS such that for local sections s ∈ OS , e ∈ E one has
q(se) = s2q(e) and the map

bq : E × E → OS , (e1, e2) �→ q(e1 + e2) − q(e1) − q(e2)

is OS-bilinear. Then the Clifford algebra C(E) is a sheaf of OS-algebras on S defined as
the quotient of the tensor algebra T (E) of E by the two-sided sheaf of ideals generated
by local sections of the form e ⊗ e − q(e). This is a Z/2Z-graded sheaf of OS-algebras,
write C(E)+ and C(E)− for even and odd parts respectively.

For example, if q = 0 then C(E) is Z-graded and

C(E) ∼−→
⊕
n�0

∧n
(E)

(the Z/2Z-gradation is given by the parity of n).
Write Z[C(E)+] for the centre of the sheaf of OS-algebras C(E)+. By [2, Theorem 3.6,

p. 39], if E is of rank 2n for some n and bq is non-degenerate then Z[C(E)+] is a sheaf
of quadratic separable algebras over S, that is, Spec(Z[C(E)+]) is an étale two-sheeted
covering of S. This is the Arf invariant of the quadratic form q : E → OS .
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4.4.2. Assume that S = Spec k with k algebraically closed of characteristic two. Let E

be a k-vector space of dimension 2n. A quadratic form q : E → k is called non-degenerate
if the bilinear form bq(x, y) = q(x + y) − q(x) − q(y) on E is non-degenerate. The group
GL(E) acts transitively on the variety of non-degenerate quadratic forms on E [3], and
the bilinear form bq is symplectic. Let q : E → k be a non-degenerate bilinear form on E.

Lemma 4.13. The stabilizer O(q) of q in GL(E) has two connected components. We
write SO(q) for the connected component of unity, although O(q) ⊂ Sp(bq) ⊂ SL(E). The
group O(q) acts naturally on C(E), so on Z[C(E)+]. The action of SO(q) on Z[C(E)+]
is trivial, and the group O(q)/SO(q) induces a unique non-trivial k-automorphism of the
k-algebra Z[C(E)+].

Proof. This follows from [4, Exercise 9, p. 155]. Namely, if {ei, e−i} (1 � i � n) is
a symplectic base in E then {1, z} is a k-base of Z[C(E)+], where z =

∑
eie−i. If

W is the Weyl group of O(q) for the corresponding torus, we have an exact sequence
1 → Sn → W → (Z/2Z)n → 1. The image of σ ∈ Sn in W sends ei to eσi and e−i to
e−σi (1 � i � n). The group W contains also the elements wi permuting ei and e−i. Let
W+ be the subgroup of those w ∈ W whose image a in (Z/2Z)n satisfies

∑n
i=1 ai = 0.

Let W− = W − W+. Then

SO(q) =
⋃

w∈W+

BwB and O(q) − SO(q) =
⋃

w∈W −

BwB.

Since any w ∈ W− acts on the base {1, z} as {1, z + 1}, we are done. �

Now if S is a k-scheme, let q : E → OS be a vector bundle of rank 2n with a non-
degenerate quadratic form. This is nothing but a torsor for O(q0), where q0 is the split
quadratic form of rank 2n. So it induces via extension of scalars O(q0) → O(q0)/ SO(q0)
a Z/2Z-torsor, which identifies canonically with SpecZ[C(E)+]. Another way is to say
that GL(E)/O(q0) is the stack classifying non-degenerate quadratic forms of dimension
2n, and (E , q) is a datum of a map τ : S → GL(E)/O(q0). Then the Arf invariant of (E , q)
is the restriction under τ of the Z/2Z-torsor GL(E)/SO(q0) → GL(E)/O(q0).

4.5. Description of Cov(Q!
0(L

∗)) generically

4.5.1. Use the notation of § 4.3. Let q ∈ Q!(L∗), so q : L → R. Say that a one-dimensional
k-subspace E ⊂ L is multiplicative if for any non-zero e ∈ E we have in Witt coordinates
q(e) = (a, 0) for some a ∈ k. This condition does not depend on a choice of e.

For a point q ∈ U(L∗) let r be the image of Fr(q) in Qa(L∗), where Fr: U(L∗) → U(L∗)
is the Frobenius map. Let the hyperplane L1 ⊂ L be the kernel of r. As q varies these
hyperplanes form a vector bundle over U(L∗).

If n is odd, we consider the vector bundle E1 over U(L∗) whose fibre at q is L1 for the
corresponding r. It is equipped with the quadratic form q : L1 → 2R, which organize into a
quadratic form on E1. As in Lemma 4.6, the bilinear form (x, y) �→ q(x+y)−q(x)−q(y) on
L1 is symplectic. The corresponding Clifford algebra over U(L∗) is denoted C(E1). Write
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Ũ(L∗) for SpecZ[C(E1)], this is a Z/2Z-Galois étale covering over U(L∗). The group
GL(L) acts naturally on Ũ(L∗), the projection η : Ũ(L∗) → U(L∗) is GL(L)-equivariant.

By Remark 4.7, the local system η∗S̄ψ[− dim U(L∗)] descends with respect to the
composition Ũ(L∗)

η−→ U(L∗) disc−−→ A1. More precisely, there exists an isomorphism over
Ũ(L∗)

η∗S̄ψ[− dim U(L∗)] ∼−→ η∗ disc∗ κ∗
R(1S̄ψ[−2]),

where κR is the map from Lemma 4.10.

4.5.2. Now consider the case of n even. For q ∈ U(L∗) write r ∈ Qa(L∗) and φ ∈
Sym!2(L∗)0 for its images in Qa(L∗) and Sym!2(L∗)0 respectively. We also have the
corresponding flag L2 ⊂ L1 ⊂ L, where L1 is the kernel of r, and L2 = L⊥

1 with respect
to φ.

Assume that q is non-zero on L2, then there is a unique subspace W ⊂ L1 such that
L2 ⊕W = L1 and W is preserved by the stabilizer O(q) of q in GL(L). The bilinear form
φ|W is symplectic. Let W⊥ ⊂ L be its orthogonal complement in L, so L2 ⊂ W⊥ and
W⊥/L2

∼−→ L/L1 naturally.
Then the form q|W ⊥ lies in U((W⊥)∗), that is, it has the same properties as q itself but

now for dimension two. One checks that there are exactly two one-dimensional multiplica-
tive subspaces in W⊥ for q. The stabilizer O(q) ⊂ GL(L) of q in GL(L) acts transitively
on these two multiplicative subspaces.

Let (A1)0 ⊂ A1 be the open subscheme given by the condition that a ∈ A1 is not
the critical value given by (4.2). Let U(L∗)0 ⊂ U(L∗) be the preimage of (A1)0 under
disc : U(L∗) → A1.

We get a 2-sheeted étale covering

η : Ũ(L∗)0 → U(L∗)0,

which classifies a point q ∈ U(L∗)0 together with a one-dimensional multiplicative sub-
space E ⊂ W⊥. The section s : A1 → U(L∗) from Remark 4.7 extends to a section
s̃ : (A1)0 → Ũ(L∗)0, namely, in the notation of formula (4.4) we have a distinguished
multiplicative subspace given by y2 = xi = x−i = 0.

By Lemma 4.6, η∗S̄ψ descends with respect to the composition

Ũ(L∗)0
η−→ U(L∗)0 disc−−→ A1.

More precisely, there is an isomorphism over Ũ(L∗)0

η∗S̄ψ
∼−→ η∗ disc∗ s∗(S̄ψ).

Recall that the shifted local system s∗(S̄ψ) is of rank one and order four, it is described
in Remark 4.7.

4.6. Description of S̄ψ on strata

Write Sym!2
i (L∗) ⊂ Sym!2(L∗) for the locus of symmetric bilinear forms on L whose

kernel is of dimension i. Let Q!
i(L

∗) be the preimage of Sym!2
i (L∗) under the projection
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Q!(L∗) → Sym!2(L∗). Write ′Qi(L∗) ⊂ Q!
i(L

∗) for the closed subscheme classifying those
q ∈ Q!

i(L
∗) which vanish on the kernel of φ, where φ ∈ Sym!2

i (L∗) is the image of q. Then
′Qi(L∗) can be seen as a scheme classifying an i-dimensional subspace M ⊂ L and q ∈
Q!

0((L/M)∗). The corresponding map L → R is then the composition L → L/M
q−→ R.

Proposition 4.14. For any i the ∗-restriction of S̄ψ to Q!
i(L

∗) is the extension by zero
from ′Qi(L∗). The corresponding sheaf

S̄ψ|′Qi(L∗)

[
i − n − n(n + 1)

2

]

is a local system of rank one and order four (except for the last stratum ′Qn(L∗) =
Spec k, over which it is a trivial local system of rank one). If M ⊂ L is a subspace and
q ∈ Q!

0((L/M)∗) then the fibre of S̄ψ at L → L/M
q−→ R is the shifted Gauss sum for q.

Proof. Let q ∈ Q!
i(L

∗) and φ be its image in Sym!2
i (L∗). Let M ⊂ L be the kernel of φ.

Then for x ∈ L, y ∈ M we have q(x + y) = q(x) + q(y). At the level of functions, for any
x ∈ L the sum

∑
y∈M ψ(q(x + y)) will vanish unless q ∈ ′Qi(L∗). The geometrization is

straightforward, our assertion easily follows. �

5. Maslov index in characteristic two

In §§ 5.1–5.3 we generalize the results of [20] to the case of characteristic two.

5.1. Let O be a discrete valuation ring, I ⊂ O be a non zero ideal and Ō = O/I. Let V̄

be a free Ō-module of rank 2n with a symplectic form ω : V̄ ⊗ V̄ → Ō. For a submodule
M ⊂ V̄ let M⊥ = {x ∈ V̄ | ω(x, m) = 0 for all m ∈ M}. One checks that (M⊥)⊥ = M .

For a Ō-module M set M∗ = HomŌ(M, Ō) in the category of Ō-modules. The functor
M �→ M∗ is exact on the category of finite type Ō-modules. For any Ō-module of finite
type M one has (M∗)∗ ∼−→ M canonically. If K is a bounded complex of free Ō-modules
of finite type then H0(HomŌ(K, Ō)) ∼−→ HomŌ(H0(K), Ō) canonically.

For any submodule M ⊂ V̄ we have an isomorphism of exact sequences of Ō-modules

0 �� M ��

��

V̄ ��

��

V̄ /M ��

��

0

0 �� (V̄ /M⊥)∗ �� V̄ ∗ �� (M⊥)∗ �� 0

5.2. Keep notation of § 3. Let L̃ be a free R-module of finite type with symmetric
bilinear form φ : L̃ → L̃∗. We say that φ is hyperbolic if there is a base {ei, e−i} of L̃ in
which the form is given by φ(ei, ej) = 0 unless i = −j, and φ(ei, e−i) = φ(e−i, ei) = 1.
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Lemma 5.1. If φ is an isomorphism then

(1) for any free submodule Ñ ⊂ L̃ its orthogonal complement Ñ⊥ ⊂ L̃ is free;

(2) if Ñ is a free isotropic submodule in L̃ then the induced symmetric bilinear form φ̄

on Ñ⊥/Ñ is non degenerate, and we have an isometry (Ñ⊥/Ñ) ⊕ (Ñ ⊕ M̃) ∼−→ L̃

for any free submodule M̃ ⊂ L̃ such that Ñ⊥ ⊕ M̃ = L̃; here Ñ ⊕ M̃ is equipped
with the form induced by φ (and Ñ ⊕ M̃ is not necessarily hyperbolic).

Proof. (2) We have an orthogonal decomposition (Ñ ⊕ M̃) ⊕ (Ñ ⊕ M̃)⊥ ∼−→ L̃, and
(Ñ ⊕ M̃)⊥ ⊂ Ñ⊥ maps isometrically onto Ñ⊥/Ñ⊥. �

Remark 5.2. If φ : L̃ → L̃∗ is non degenerate of rank 2r, and Ñ ⊂ L̃ is a free isotropic
submodule of rank r (it is automatically a direct summand), then (L̃, φ) is not always
hyperbolic. At the level of matrices the reason is that one can not in general present a
given symmetric matrix B ∈ Matr(R) as B = A + tA for another matrix A ∈ Matr(R).
However, the Gauss sum of such (L̃, φ) is canonically trivialized.

5.3. Let Ṽ be a free R-module of rank 2n with symplectic form ω̃ : Ṽ × Ṽ → R. Write
L(Ṽ ) for the variety of free Lagrangian R-submodules in Ṽ . We view it as a k-scheme
via its Greenberg realization.

For any submodule M̃ ⊂ Ṽ we have (M̃⊥)⊥ = M̃ . If M̃ ⊂ Ṽ is a free isotropic
submodule then M̃⊥ is free, and M̃⊥/M̃ is equipped with a symplectic form with values
in R. For a family of submodules M̃i ⊂ Ṽ we have

⋂
i(M̃

⊥
i ) = (

∑
i M̃i)⊥.

Let m � 2. As in [20], think of Z/mZ as the vertices of a graph whose set E of edges
is the set of pairs of consecutive numbers {i, i + 1}, i ∈ Z/mZ. For

v = (v{i,i+1}) ∈
⊕

{i,i+1}∈E

Ṽ

its derivative is

∂v = (∂vi) ∈
⊕

i∈Z/mZ

V, ∂vi = v{i,i+1} − v{i−1,i}.

Conversely, for
w = (wi) ∈

⊕
i∈Z/mZ

V

its antiderivative is

ŵ = (ŵ{i,i+1}) ∈
⊕

{i,i+1}∈E

V such that ∂(ŵ) = w.

An anti-derivative exists if
∑

i∈Z/mZ wi = 0 and is unique up adding a constant function.
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Definition 5.3. For L̃1, . . . , L̃m ∈ L(Ṽ ) let K1,2,...,m be the kernel of

⊕
i∈Z/mZ

L̃i

∑
−→ Ṽ .

The surjectivity of the above Σ is equivalent to requiring that
⋂

i L̃i = 0, and in this case
K1,...,m is a free R-module.

As in [20], K1,...,m is equipped with the R-valued symmetric bilinear form

q1,2,...,m(v, w) =
∑

i∈Z/mZ

ω̃(vi, ω̂{i,i+1})

for any anti-derivative ŵ ∈
⊕

{i,i+1}∈E V of w. The derivative restricts to a map

∂ :
⊕

{i,i+1}∈E

L̃i ∩ L̃i+1 → K1,...,m,

whose kernel is
⋂

i L̃i, and its image is contained in the kernel of q1,2,...,m. Set

T1,2,...,m = K1,...,m/Im ∂.

This is an R-module, which is not necessarily free, it is equipped with the induced sym-
metric bilinear form q1,2,...,m. For a R-module of finite type M write M∗ = HomR(M, R).

Lemma 5.4. The form q1,...,m induces an isomorphism of R-modules T1,...,m
∼−→ T ∗

1,...,m.

Proof. Consider the complex placed in degrees −1, 0, 1

V ∗ diag−−−→
⊕

i∈Z/nZ

L̃∗
i

∂∗
−→

⊕
{i,i+1}∈E

(L̃i ∩ L̃i+1)∗, (5.1)

where ∂∗ is the transpose to

∂ :
⊕

{i,i+1}∈E

(L̃i ∩ L̃i+1) →
⊕

i∈Z/mZ

L̃i.

The proof of [20, Proposition 3] goes through in this situation and yields in an isomor-
phism between K1,...,m/Im ∂ and H0 of (5.1). The cokernel of ∂∗ is (

⋂
i L̃i)∗. To finish

the proof use § 5.1 for Ō = R. �

Assume that
⋂

i L̃i = 0. Then T1,...,m is free if and only if for any {i, i + 1} ∈ E,
L̃i ∩ L̃i+1 is free (this is also equivalent to L̃i + L̃i+1 being free). A straightforward
analogue of [20, Proposition 5] yields the following.

Lemma 5.5. For any L̃i ∈ L(Ṽ ) there are canonical isometries T1,...,m
∼−→ T2,3,...,m,1 and

(T1,...,m, q1,...,m) ∼−→ (Tm,...,1, −qm,...,1).

One can also replace T by K in the both above isomorphisms.
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If N is an R-module of finite type with a non degenerate symmetric bilinear form
φ : N

∼−→ N∗ and M ⊂ N is an isotropic submodule, let M⊥ = {n ∈ N | 〈n, φ(m)〉 =
0 for all m ∈ M}. Then the R-module M⊥/M is equipped with a non degenerate sym-
metric bilinear form, and we say that M⊥/M is a quadratic subquotient of N . The proof
of [20, Proposition 6] applies without changes in our situation and yields the following.

Proposition 5.6. Let L̃1, . . . , L̃m ∈ L(Ṽ ) and k ∈ {2, . . . , m}.

(1) If L̃1 ∩ L̃k = 0 then there is a canonical isometry K1,2,...,k ⊕ K1,k,...,m
∼−→ K1,2,...,m

and also
T1,2,...,k ⊕ T1,k,...,m

∼−→ T1,2,...,m

(2) Without conditions, T1,2,...,k ⊕ T1,k,...,m is a quadratic subquotient of T1,2,...,m.

5.4. Maslov index in families

Let L̃ be a free R-module of rank n. Let U23 be the variety of triples L̃1, L̃2, L̃3 ∈ L(Ṽ )
such that L̃1 ∩ L̃2 = L̃1 ∩ L̃3 = 0. Define a morphism of k-stacks

πU : U23 → Sym!2(L̃∗)/GL(L̃) (5.2)

as follows (it is understood that we first take the Greenberg realizations of Sym!2(L̃∗)
and of GL(L̃) and then the stack quotient of one by the other).

Given (L̃1, L̃2, L̃3) ∈ U23 let r : L̃2 → L̃1 be the R-linear map such that

L̃3 = {r(x) − x ∈ L̃1 ⊕ L̃2 | x ∈ L̃2}.

Let φ̃ ∈ Sym!2(L̃∗
2) be given by φ̃(x̃, ỹ) = ω̃(r(x̃), ỹ) for x̃, ỹ ∈ L̃2.

Lemma 5.7. For (L̃1, L̃2, L̃3) ∈ U23 there is a canonical isometry (L̃2, φ̃) ∼−→ K1,2,3. It
identifies L̃2 ∩ L̃3 with the kernel of (K1,2,3, q1,2,3).

Proof. The map L̃2 → K1,2,3 given by x �→ (−r(x), x, r(x) − x) is the desired isometry.
�

We let πU send (L̃1, L̃2, L̃3) to (L̃2, φ̃). Note that the variety {Ñ ∈ L(Ṽ ) | Ñ ∩ L̃1 = 0}
admits a free transitive action of the R-module Sym!2(L̃1).

Write U3 ⊂ U23 for the open subscheme of triples (L̃1, L̃2, L̃3) ∈ U23 such that
L̃i ∩ L̃j = 0 for i �= j. We also denote by the same symbol

πU : U3 → Q0(L̃)/GL(L̃) (5.3)

the restriction of πU . Let Cov(U3) → U3 be the Z/4Z-torsor obtained from

Cov(Q0(L̃))/GL(L̃) → Q0(L̃)/GL(L̃)

by the base change πU .
Given a k-scheme S and a S-point (L̃1, L̃2, L̃3) ∈ U3, write C(L̃1, L̃2, L̃3) for the Z/4Z-

torsor over S obtained by restricting Cov(U3) under S → U3. This notation agrees with
(2.9) and [11].
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Proposition 5.8. There is a canonical isomorphism

C(L̃1, L̃2, L̃3) ⊗ C(L̃0, L̃1, L̃3) = C(L̃0, L̃2, L̃3) ⊗ C(L̃0, L̃1, L̃2)

of Z/4Z-torsors on the variety U4 classifying L̃0, . . . , L̃3 ∈ L(Ṽ ), which are pairwise
transverse.

Proof. The Gauss sum takes a direct sum to the tensor product of Z/4Z-torsors. So, it
suffices to show that, given L̃0, . . . , L̃3 ∈ U4, there is a canonical isometry of R-modules
with the corresponding symmetric bilinear forms

T1,2,3 ⊕ T0,1,3
∼−→ T0,1,2 ⊕ T0,2,3.

And these isometries naturally organize into a family over U4. Indeed, by Lemma 5.5 and
Proposition 5.6, one has canonical isometries

T1,2,3 ⊕ T1,3,0
∼−→ T1,2,3,0

∼−→ T0,1,2,3
∼−→ T0,1,2 ⊕ T0,2,3.

To finish, use the dihedral isometry T1,3,0
∼−→ T0,1,3 of Lemma 5.5. �

Remark 5.9. Let (L̃1, L̃2, L̃3) ∈ U23 and Li = ε(L̃i) be the corresponding enhanced
Lagrangians. Then the image of πU (L̃1, L̃2, L̃3) in Q!(L∗

2) is the form QL1,L2,L3 : L2 → R

defined by (2.7).

5.5. New isometries for the Maslov index

The following result will be used in § 6.3.2.

Lemma 5.10. Let L̃1, . . . , L̃m ∈ L(Ṽ ). There is a canonical isometric inclusion
K1,...,m−1 ↪→ K1,...,m.

Proof. Write v ∈ K1,...,m as v = (v1, . . . , vm) with
∑

i vi = 0, vi ∈ L̃i. Then the desired
isometry is given by the map (v1, . . . , vm−1) �→ (v1, . . . , vm−1, 0). �

Proposition 5.11. Let (Ñ , Ñ ′, Ñ ′′) and (L̃, M̃) be two collections of Lagrangians in
L(Ṽ ). Assume that each Lagrangian from the first collection is transverse to each Lagran-
gian from the second one. Then

KÑ ′′,M̃,Ñ ′,L̃ ⊕ KÑ ′,M̃,Ñ,L̃ (5.4)

admits a free isotropic R-submodule D such that one has a canonical isometry

D⊥/D
∼−→ KÑ ′′,M̃,Ñ,L̃.

Proof. By Lemmas 5.5 and 5.10, (5.4) is canonically isometric to KM̃,Ñ ′,L̃,Ñ ′′ ⊕
KL̃,Ñ ′,M̃,Ñ and admits canonically the isometric subspace KM̃,Ñ ′,L̃ ⊕ KL̃,Ñ ′,M̃ . By
Lemma 5.5, one has an isometry

σ : (KM̃,Ñ ′,L̃, qM̃,Ñ ′,L̃) ∼−→ (KL̃,Ñ ′,M̃ , −qL̃,Ñ ′,M̃ ).
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Then D = {x + σ(x) ∈ KM̃,Ñ ′,L̃ ⊕ KL̃,Ñ ′,M̃ | x ∈ KM̃,Ñ ′,L̃} is the desired free isotropic
R-module of rank n. Indeed, one checks that D⊥ ⊂ KM̃,Ñ ′,L̃,Ñ ′′ ⊕ KL̃,Ñ ′,M̃,Ñ is the
submodule

{(m1, n
′
1, l1, n

′′
1) ∈ KM̃,Ñ ′,L̃,Ñ ′′ , (l2, n′

2, m2, n2) ∈ KL̃,Ñ ′,M̃,Ñ | n′
1 = n′

2} (5.5)

and
D = {(m1, n

′
1, l1, 0), (l1, n′

1, m1, 0) | (m1, n
′
1, l1) ∈ KM̃,Ñ ′,L̃} ⊂ D⊥.

The map sending a collection (5.5) to

(n′′
1 , m1 − m2, −n2, l1 − l2) ∈ KÑ ′′,M̃,Ñ,L̃

yields the desired isometry. �

6. Construction of the gerb L̂(Ṽ ) over L(Ṽ )

6.1. Use notation of § 5. Our aim now is to construct a Z/4Z-gerb L̂(Ṽ ) → L(Ṽ ) (see
Appendix A for a definition of a Z/4Z-gerb).

For L̃ ∈ L(Ṽ ) write U(L̃) = {M̃ ∈ L(Ṽ ) | L̃ ∩ M̃ = 0}. Note that U(L̃) depends only
on the image of L̃ under L(Ṽ ) → L(V ). We want to construct L̂(Ṽ ) by gluing the trivial
gerbs U(L̃) × B(Z/4Z) over the open subschemes U(L̃).

Definition 6.1. For m � 1 say that a finite family of Lagrangians L̃i ∈ L(Ṽ ), i ∈ I, is
m-sweeping if they are pairwise transverse and⋃

i∈I

U(L̃i)m = L(Ṽ )m,

here Y m denotes the mth Cartesian power of a scheme Y over k. Since L(Ṽ )m is quasi-
compact, for any m an m-sweeping family exists.

Pick a 1-sweeping family L̃i ∈ L(Ṽ ), i ∈ I. The Z/4Z-torsors C(L̃i, L̃j , L̃k) (with
i, j, k ∈ I) over Spec k satisfy the cocycle condition given by Proposition 5.8. So, we may,
and do, pick Z/4Z-torsors Bij over Spec k together with isomorphisms Bji

∼−→ B−1
ij and

C(L̃i, L̃j , L̃k)−1 ∼−→ Bij ⊗ Bjk ⊗ Bki (6.1)

for all i, j, k. We call an enriched sweeping family a collection {L̃i}i∈I together with Bij

and isomorphisms (6.1).
Set Ui = U(L̃i) and

Uij = Ui ∩ Uj , Uijk = Ui ∩ Uj ∩ Uk.

Let Cov(Uij) be the Z/4Z-torsor over Uij obtained from Cov(U3) by the base change
Uij → U3, L̃ �→ (L̃, L̃i, L̃j). The gluing data consists of the following.

• The Z/4Z-torsor Cov(Uij) ⊗ Bij over Uij giving rise to the automorphism

σji : Uij × B(Z/4Z) ∼−→ Uij × B(Z/4Z)

sending (L̃,F) to (L̃,F ⊗ Cov(Uij) ⊗ Bij). To be precise, for a scheme Z it sends
a Z-point (f,F) on the left to the Z-point (f,F ⊗ f∗ Cov(Uij) ⊗ Bij) on the right.
Here f : Z → Uij is a morphism, and F is a Z/4Z-torsor on Z.
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• A 2-morphism δkji : σkj ◦ σji
∼−→ σki making the following diagram 2-commutative

Uijk × B(Z/4Z)
σji ��

σki

���������������
Uijk × B(Z/4Z)

σkj

��
Uijk × B(Z/4Z)

It is given by the Z/4Z-torsor C(L̃i, L̃j , L̃k) over Spec k together with the isomor-
phism of Z/4Z-torsors over Uijk

C(L̃, L̃i, L̃j) ⊗ C(L̃, L̃j , L̃k) ∼−→ C(L̃, L̃i, L̃k) ⊗ C(L̃i, L̃j , L̃k) (6.2)

(when L̃ runs through Uijk the above isomorphisms of Z/4Z-torsors over Spec k

organize into an isomorphism of Z/4Z-torsors over Uijk). So, δkji can be seen as a
trivialization of the Z/4Z-torsor over Uijk, whose fibre at L̃ is

C(L̃, L̃i, L̃j) ⊗ Bij ⊗ C(L̃, L̃j , L̃k) ⊗ Bjk

C(L̃, L̃i, L̃k) ⊗ Bik

.

It is understood that (6.2) is the isomorphism given by Proposition 5.8. Finally, the
2-morphisms δ satisfy the following compatibility property: over any Uijks the diagram
of 2-morphisms commutes

σsk ◦ σkj ◦ σji
δkji ��

δskj

��

σsk ◦ σki

δski

��
σsj ◦ σji

δsji �� σsi

Though this is not reflected in our notation, the gerb L̂(Ṽ ) depends on the family
{L̃i}, i ∈ I.

Remark 6.2. Call an elementary transformation of an enriched 1-sweeping family the
procedure of adding or throwing away one Lagrangian L̃ ∈ L(Ṽ ) such that the obtained
family is still 1-sweeping (together with a compatible change of the family Bij). Clearly,
the gerb associated to the enriched 1-sweeping family obtained from the original one by an
elementary transformation is isomorphic to the initial gerb L̂(Ṽ ) over L(Ṽ ). One can pass
from one 1-sweeping family to another by a finite number of elementary transformations.
So, the isomorphism class of the gerb L̂(Ṽ ) does not depend on a choice of {L̃i}, i ∈ I,
and of Bij .

This also shows that the corresponding element of H2(L(Ṽ ), Z/4Z) is invariant under
the action of (the Greenberg realization of) Sp(Ṽ ).

Remark 6.3.

(i) Recall the variety ELag(V ) from § 2.4.1. A similar Z/4Z-gerb can be defined over
ELag(V ). It is not used in this paper.
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(ii) Consider the W ∗
2 -torsor over L(Ṽ ) whose fibre over L̃ is the set of generators of

det L̃. Since W ∗
2

∼−→ Gm ×A1 canonically, it can be seen as a pair: a Gm-torsor and
a A1-torsor over L(Ṽ ). Denote the corresponding A1-torsor by L(Ṽ )ex → L(Ṽ ). Let
L̂(Ṽ )ex be the Z/2Z-gerb over L(Ṽ ) obtained from L(Ṽ )ex via the exact sequence

0 → Z/2Z → A1 x
→x2+x−−−−−−→ A1 → 0.

One may show that L̂(Ṽ )ex identifies with the extension of L̂(Ṽ ) under the sur-
jective homomorphism of structure groups Z/4Z → Z/2Z. In particular, L̂(Ṽ )ex
admits a Sp(Ṽ )-equivariant structure. This will not be used in the present paper.

6.2. Set Y = L(Ṽ ) × L(Ṽ ), the product being taken over k. Let Ŷ be the Z/4Z-gerb
over Y obtained from L̂(Ṽ ) × L̂(Ṽ ) via the extension of the structure group

Z/4Z × Z/4Z → Z/4Z, (a, b) �→ b − a.

Let Y0 ⊂ Y be the open subscheme classifying (L̃1, L̃2) ∈ Y such that L̃1 ∩ L̃2 = 0.

Lemma 6.4. There exists a canonical section s of the gerb Ŷ → Y over Y0.

Proof. Assume that the collection ({L̃i}i∈I , Bij) giving rise to L̂(Ṽ ) is such that {L̃i}i∈I

is 2-sweeping.
Define s by gluing. Over the open subscheme Y0(L̃i) = {(L̃, M̃) ∈ Y0 | L̃, M̃ ∈ U(L̃i)}

we consider the Z/4Z-torsor, whose fibre at (L̃, M̃) is C(M̃, L̃, L̃i). For any i, j over
Y0(L̃i) ∩ Y0(L̃j) we glue the corresponding sections of our gerb via the isomorphism
(given by Proposition 5.8)

C(M̃, L̃, L̃i) ⊗ C(M̃, L̃i, L̃j)
C(L̃, L̃i, L̃j)

∼−→ C(M̃, L̃, L̃j).

The fraction in the above formula is, according to § 6.1, exactly the gluing data for the
gerb Ŷd. It is understood that we have chosen the same Bij in the numerator and the
denominator, so they have disappeared. �

Definition 6.5. Define a perverse sheaf SṼ ,ψ on Ŷ as follows. The section s yields an
isomorphism Ŷ |Y0

∼−→ Y0 × B(Z/4Z). Let Wψ be the rank one local system on B(Z/4Z)
corresponding to the representation ψ : Z/4Z → Q̄∗

� . If p : Spec k → B(Z/4Z) is the
quotient map then Wψ is the direct summand in p!Q̄� on which Z/4Z acts via ψ. Let
SṼ ,ψ be the intermediate extension of Q̄� � Wψ from Ŷ |Y0 to Ŷ . We refer to SṼ ,ψ as the
finite-dimensional theta-sheaf.

6.3.

6.3.1. Recall the variety U23 defined in § 5.4, it classifies triples (Ñ , L̃, M̃) in L(Ṽ ) such
that Ñ∩L̃ = Ñ∩M̃ = 0. Our purpose now is to define a morphism of stacks ν̂23 : U23 → Ŷ

extending the projection ν23 : (Ñ , L̃, M̃) → (L̃, M̃).
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Assume that the collection ({L̃i}i∈I , Bij) is such that {L̃i}i∈I is 3-sweeping. Define the
section ν̂23 of the gerb Ŷ over U23 by gluing sections on the open subschemes

U23(L̃i) := {(Ñ , L̃, M̃) ∈ Ũ23 | Ñ , L̃, M̃ ∈ U(L̃i)}.

Namely, over the open subscheme U23(L̃i) we consider the Z/4Z-torsor whose fibre at
(Ñ , L̃, M̃) is

C(M̃, Ñ , L̃i)
C(L̃, Ñ , L̃i)

.

Over the intersection U23(L̃i) ∩ U23(L̃j) we glue the above sections via the isomorphism

C(M̃, Ñ , L̃i)
C(L̃, Ñ , L̃i)

⊗ C(M̃, L̃i, L̃j)
C(L̃, L̃i, L̃j)

∼−→ C(M̃, Ñ , L̃j)
C(L̃, Ñ , L̃j)

(6.3)

obtained from the two isomorphisms (of Proposition 5.8)

C(· , Ñ , L̃i) ⊗ C(· , L̃i, L̃j)
∼−→ C(Ñ , L̃i, L̃j) ⊗ C(· , Ñ , L̃j),

where · is M̃ or L̃. This completes the definition of ν̂23 : U23 → Ŷ .

Proposition 6.6. The Z/4Z-coverings of U3 defined by the following two Cartesian
squares

Y0

s

��

Y0 ×Ŷ U3��

��

Cov(U3) ��

��

Cov(Q0(L̃))/GL(L̃)

��

Ŷ U3
ν̂23�� U3 �� Q0(L̃)/GL(L̃)

are canonically isomorphic.

Proof. Over Y0 we trivialize the Z/4Z-gerb Ŷ → Y via the section s. Then the map
ν̂23 : U3 → Y0 × B(Z/4Z) is given by some Z/4Z-torsor, say F , over U3. Note that
Y0 ×Ŷ U3 → U3 is the total space of F .

We identify F with the Z/4Z-torsor Cov(U3) → U3 by gluing. First, F itself is con-
structed by gluing. Over the open subscheme

U3(L̃i) := {(Ñ , M̃ , L̃) ∈ U3 | Ñ , M̃ , L̃ ∈ U(L̃i)},

F is given by the Z/4Z-torsor whose fibre at (Ñ , L̃, M̃) is

C(M̃, Ñ , L̃i)
C(L̃, Ñ , L̃i) ⊗ C(M̃, L̃, L̃i)

.

The fibre of Cov(U3) → U3 over (Ñ , L̃, M̃) is C(Ñ , L̃, M̃). The desired isomorphism of
Z/4Z-torsors over U3(L̃i) is the isomorphism

C(M̃, Ñ , L̃i)
C(L̃, Ñ , L̃i) ⊗ C(M̃, L̃, L̃i)

∼−→ C(Ñ , L̃, M̃)

given by Proposition 5.8. These isomorphisms are compatible with the gluing data, so
they yield the desired isomorphism over U3 =

⋃
i∈I U3(L̃i). �
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For any L̃ ∈ L(Ṽ ) there is an isomorphism Y0
∼−→ Sp(Ṽ )/GL(L̃), so Y0 is affine.

Note that U23 can be seen as a variety of triples (Ñ , L̃, φ̃), where (Ñ , L̃) ∈ Y0 and
φ̃ ∈ Sym!2(L̃∗). Therefore, the map (5.2) is smooth, and U23 is affine. Proposition 6.6
immediately yields the following.

Corollary 6.7. There is a canonical isomorphism

π∗
USψ[dim. rel(πU )] ∼−→ ν̂∗

23SṼ ,ψ[dim. rel(ν23)]

of perverse sheaves on U23.

6.3.2. An alternative description of Ŷ

For the map ν23 : U23 → Y consider the scheme UY := U23 ×Y U23, it classifies collec-
tions

(Ñ , L̃, M̃) ∈ U23, (Ñ ′, L̃, M̃) ∈ U23.

For such a point of UY consider the ordered collection of Lagrangians (Ñ ′, M̃ , Ñ , L̃).
Let KÑ ′,M̃,Ñ,L̃ be the corresponding free R-module with the symmetric bilinear form
given by Definition 5.3. It is crucial that in the collection Ñ ′, M̃ , Ñ , L̃ indexed by Z/4Z

each Lagrangian is transversal to the next one, so the bilinear form on KÑ ′,M̃,Ñ,L̃ is non
degenerate. Let K̃ be a free R-module of rank 2n. This gives a morphism

πUY : UY → Q0(K̃)/GL(K̃)

sending (Ñ ′, M̃ , Ñ , L̃) to KÑ ′,M̃,Ñ,L̃ with the corresponding bilinear form.
Let Cov(UY ) be the Z/4Z-torsor over UY obtained from Cov(Q0(K̃))/GL(K̃) by

the base change πUY . For a scheme S and an S-point (Ñ ′, M̃ , Ñ , L̃) of UY write
C(Ñ ′, M̃ , Ñ , L̃) for the Z/4Z-torsor over S obtained from Cov(UY ) by the base change
S → UY .

Lemma 6.8. Let S be a scheme and

(Ñ , L̃, M̃) ∈ U23, (Ñ ′, L̃, M̃) ∈ U23, (Ñ ′′, L̃, M̃) ∈ U23

be an S-point of U23 ×Y U23 ×Y U23. One has a canonical isomorphism of Z/4Z-torsors
on S

C(Ñ ′′, M̃ , Ñ ′, L̃) ⊗ C(Ñ ′, M̃ , Ñ , L̃) ∼−→ C(Ñ ′′, M̃ , Ñ , L̃). (6.4)

In particular, for (Ñ , L̃, M̃) ∈ U23 it yields a canonical trivialization of the Z/4Z-torsor
C(Ñ , M̃ , Ñ , L̃).

Proof. Combine Proposition 5.11 and Remark 5.2. �

Let Ŷd be the Z/4Z-gerb over Y obtained as the descent of the trivial gerb U23 ×
B(Z/4Z) with respect to the morphism ν23 : U23 → Y for the descent data given by

• the isomorphism
σUY : UY × B(Z/4Z) → UY × B(Z/4Z)

over UY sending a given Z/4Z-torsor F to F ⊗ Cov(UY );

• the isomorphism (6.4) of Z/4Z-torsors over U23 ×Y U23 ×Y U23.
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The gerb Ŷd is naturally Sp(Ṽ )-equivariant, thus it can be seen as a Z/4Z-gerb over
the stack quotient Y/Sp(Ṽ ). It is understood that Sp(Ṽ ) acts on Y diagonally.

Lemma 6.9.

(1) There exists a canonical isomorphism Ŷd
∼−→ Ŷ of Z/4Z-gerbs over Y .

(2) The restriction of Ŷd to the diagonal L(Ṽ ) ↪→ Y admits a canonical Sp(Ṽ )-equi-
variant section t : L(Ṽ ) → Ŷd.

Proof. Recall the original definition of Ŷ . One first picks a 2-sweeping family ({L̃i}i∈I).
For i ∈ I let Y (L̃i) = {(L̃, M̃) ∈ Y | L̃, M̃ ∈ U(L̃i)}. Then Ŷ is obtained by gluing
the trivial Z/4Z-gerbs Y (L̃i) × B(Z/4Z) over the open subschemes Y (L̃i) ∩ Y (L̃j) via
the isomorphism sending a Z/4Z-torsor Fi over Y (L̃i)∩Y (L̃j) to the Z/4Z-torsor whose
fibre at (L̃, M̃) ∈ Y (L̃i) ∩ Y (L̃j) is

(Fi)L̃,M̃ ⊗ C(M̃, L̃i, L̃j)
C(L̃, L̃i, L̃j)

.

From Proposition 5.6 and Lemma 5.5 one gets an isomorphism

C(M̃, L̃i, L̃j)
C(L̃, L̃i, L̃j)

∼−→ C(Lj , M, Li, L).

(2) For (Ñ , L̃, M̃) ∈ U23 the trivialization of C(Ñ , M̃ , Ñ , L̃) given by Lemma 6.8 shows
the following. After the diagonal base change L(Ṽ ) → Y , the tautological section of
the gerb (U23 ×Y L(Ṽ )) × B(Z/4Z) is compatible with the descent data with respect to
ν23 × id : U23 ×Y L(Ṽ ) → L(Ṽ ). It yields the desired section. �

Remark 6.10. The section s : Y0 → Ŷ0 can now be described as follows. Consider the
Z/4Z-torsor over U3 whose fibre at (Ñ , L̃, M̃) ∈ U3 is C(M̃, L̃, Ñ). It is compatible with
the descent data for Ŷd with respect to the morphism ν23 : U3 → Y0. Thus s : Y0 → Ŷ0 is
Sp(Ṽ )-equivariant. This implies that SṼ ,ψ is also Sp(Ṽ )-equivariant.

6.4. The metaplectic group

Let G be the Greenberg realization of Sp(Ṽ ). It acts naturally on L(Ṽ ). According
to Appendix A.2, the gerb L̂(Ṽ ) yields a group stack Ĝ over G. From Remark 6.2 we
conclude that the homomorphism Ĝ → G is surjective. We refer to Ĝ as the metaplectic
group.

In the rest of § 6.4 we prove the following.

Proposition 6.11. Any Z/2Z-torsor over L(Ṽ ) is trivial.

By § A.3, this implies that Ĝ fits into an exact sequence 1 → B(Z/4Z) → Ĝ → G → 1
and is algebraic. Besides, Ĝ acts naturally on L̂(Ṽ ), and the projection L̂(Ṽ ) → L(Ṽ ) is
equivariant with respect to Ĝ → G.
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Lemma 6.12. Let Z be a k-scheme, q : W → Z be the total space of a vector bundle
W on Z. One has a canonical isomorphism of sheaves of OZ-algebras

q∗O
∼−→

⊕
d�0

Sym∗d(W ∗).

Lemma 6.13. Let W be a vector bundle on P1
k of the form W =

⊕r
i=1 O(ni) ⊗ Wi,

where ni > 0 and Wi are fixed finite-dimensional k-vector spaces. Let W be the total
space of W . Then any Z/2Z-torsor on W is trivial.

Proof. Let q : W → P1 be the projection. By Lemma 6.12, H0(W, O) = k. One has the
exact sequence of groups 1 → Z/2Z → A1 a−→ A1 → 0 over Spec k, where a(x) = x2 + x.
So, it suffices to show that H1(W, O) a∗−→ H1(W, O) is injective. The space

H1(W, O) =
⊕
d�0

H1(P1, Sym∗d(W ∗))

is graded by d � 0. Let x ∈ H1(W, O) non zero, let xd be its non zero component of the
biggest degree d � 0. It suffices to show that x2

d ∈ H1(P1, Sym∗2d(W ∗)) does not vanish.
One has

Sym∗d(W ∗) ∼−→
∑

d1+···+dr=d

O
(

−
∑

i

dini

)
⊗ Sym∗d1(W ∗

1 ) ⊗ · · · ⊗ Sym∗dr (W ∗
r ).

So, our assertion follows from the fact that for m � 0 the map H1(P1, O(−m)) v∗−→
H1(P1, O(−2m)) is injective, where v : O(−m) → O(−2m), x �→ x2 is a homomorphism
of sheaves of abelian groups on P1

k. We also used the property that for a finite-dimensional
k-vector space U and u ∈ Sym∗d U the condition u2 = 0 in Sym∗2d U implies u = 0. �

Proof of Proposition 6.11. Let E be the vector bundle over L(V ) whose fibre at
L ∈ L(V ) is Sym!2(L∗). The projection L(Ṽ ) → L(V ) is a torsor under F ∗E , the inverse
image of E by the Frobenius map F . For n = 1 one has L(V ) ∼−→ P1

k, and F ∗E is isomorphic
to the line bundle O(4) on P1

k.
Let F be a Z/2Z-torsor over L(Ṽ ). It suffices to show that F is constant along the

fibres of L(Ṽ ) → L(V ).

Step 1. Pick an isometry V
∼−→ V1 ⊕ V2, where Vi are symplectic vector spaces, dim V1 =

2, dimV2 = 2n−2. Pick a k-point L2 ∈ L(V2). It yields a closed immersion L(V1) → L(V ),
L1 �→ L1 ⊕ L2. Let Z1 = L(V1) ×L(V ) L(Ṽ ).

Let E1 be the vector bundle on L(V1) whose fibre at L1 is Sym!2(L∗
1)⊕(L1⊗L2)∗. Then

Z1 → L(V1) is a torsor under the vector bundle F ∗(E1 ⊕ Sym!2(L∗
2)). Any such torsor is

trivial. Let Z be the total space of F ∗E1 then Z1
∼−→ Z × U , where U = F ∗ Sym!2(L∗

2)
is an affine space over k. By Lemma 6.13, the ∗-restriction F|Z1 descends under the
projection Z × U → U to a local system on U .
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Step 2. Pick a k-point L ∈ L(V ). Let T be the fibre of L(Ṽ ) → L(V ) over L. For any
decomposition L

∼−→ L1 ⊕ L2 into a direct sum of vector subspaces with dimL1 = 1, the
torsor F|T is equivariant under the action of the vector space F ∗(Sym!2(L∗

1)⊕(L1⊗L2)∗).
Indeed, this follows from Step 1. Since the decomposition L

∼−→ L1 ⊕ L2 was arbitrary,
the Z/2Z-torsor F|T is trivial. �

6.5. Case n = 1

6.5.1. Let us give some explicit formulae for L̂(Ṽ ) in the simplest case n = 1. Take Ṽ to
be the free R-module with a symplectic base e1, e2 such that ω̃(e1, e2) = 1. Then L(Ṽ )
is the Greenberg scheme of P1

R.
Let L̃i ⊂ Ṽ be the R-submodule generated by ei. Set Ui = U(L̃i) then U1 ∪U2 = L(Ṽ ).

We have the isomorphism R
∼−→ U1 sending a ∈ R to the R-submodule in Ṽ generated

by ae1 + e2. We have the isomorphism R
∼−→ U2 sending b to the R-submodule generated

by e1 + be2. So, U1 ∩ U2
∼−→ R∗ and the corresponding identification is given by b = a−1.

View L̃ ∈ U12 as a R-submodule in Ṽ generated by e1 + be2 with b ∈ R∗. In this
notation the Z/4Z-torsor Cov(U12) → U12 becomes the Z/4Z-torsor over R∗ whose fibre
over b = (b0, b1) is {z ∈ R | Fz − z = (b1b

−2
0 , 0)}, here b is written in Witt coordinates.

Indeed, this follows from Lemma 4.10 and the fact that C(L̃, L̃1, L̃2) is the Gauss sum
for the quadratic form x �→ −bx̃2 (here x̃ ∈ R is any lifting of x ∈ k).

Consider the R-torsor TL(Ṽ ) → L(Ṽ ) defined as the gluing of the trivial R-torsors over
Ui by the 1-cocycle h : U12 → R sending b = (b0, b1) to (b1b

−2
0 , 0). The R-torsor TL(Ṽ )

over L(Ṽ ) is non-trivial (even its extension of scalars via R → k is a non-trivial A1-torsor
over L(Ṽ )). The gerb L̂(Ṽ ) is obtained from this R-torsor via the exact sequence

0 → Z/4Z → R
z 
→Fz−z−−−−−−→ R → 0.

Set Sp1(V ) = {g ∈ Sp(Ṽ ) | g = id mod 2}. It is easy to check that TL(Ṽ ) admits a
Sp1(V )-equivariant structure.

6.5.2. Following [11], consider the variety L0(Ṽ ) classifying L̃ ∈ L(Ṽ ) together with a
generator oL̃ of the R-module det L. A point L̃0 = (L̃, oL̃) of L0(Ṽ ) is called an oriented
Lagrangian.

Let TL0(Ṽ) → L0(Ṽ ) be the R-torsor obtained from TL(Ṽ ) → L(Ṽ ) by the base
change L0(Ṽ ) → L(Ṽ ).

Let Vi ⊂ L0(Ṽ ) be the open subscheme classifying oriented Lagrangians L̃0 generated
by oL̃ = (a, b) ∈ R × R such that b ∈ R∗ (respectively, a ∈ R∗) for i = 1 (respectively,
for i = 2).

Let T 0(Ṽ ) → L0(Ṽ ) be the 2R-torsor defined as the gluing of the trivial 2R-torsors
over Vi via the cocycle over V12 = V1 ∩ V2 sending (a, b) to

(
0,

a1b1

a2
0b

2
0

)
∈ 2R.
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The R-torsor TL0(Ṽ) → L0(Ṽ ) is isomorphic to the extension of scalars of T 0(Ṽ ) under
the inclusion 2R → R.

One checks that the Sp(Ṽ )-orbit in H1(L0(Ṽ ), O) passing through the 2R-torsor T 0(Ṽ )
is not a point. For example, take v ∈ R and g ∈ Sp(Ṽ ) given by g(e1) = e1 and
g(e2) = e2 + ve1. The 2R-torsors g∗T 0(Ṽ ) and T 0(Ṽ ) are not isomorphic over L0(Ṽ )
unless v0 = 0, here v = (v0, v1) is written in Witt coordinates.

Actually, there exists a 2R-torsor, say T (Ṽ ) → L(Ṽ ), whose restriction to L0(Ṽ ) is
isomorphic to T 0(Ṽ ) → L0(Ṽ ).

7. Canonical intertwining operators

7.1. Our purpose now is to generalize the theory of canonical intertwining operators [14,
Theorem 1] to the case of characteristic two.

Recall that Ṽ is a free R-module of rank 2n with symplectic form ω̃ : Ṽ ⊗ Ṽ → R, and
V = Ṽ ⊗R k. Pick a bilinear form β̃ : Ṽ × Ṽ → R satisfying (2.1).

Let β : V × V → R be defined as in § 2.2. It gives rise to the Heisenberg group H =
H(V ) = V × R with operation (2.2). We view it as an algebraic group over k (the
Greenberg realization of the corresponding R-scheme). The centre of H is

Z(H) = {(0, z) ∈ H(V ) | z ∈ R}.

The affine symplectic group ASp(V ) is defined as in § 2.2 (it is understood that for
(g, α) ∈ ASp(V ) the map α : V → R must be a morphism of k-schemes), it is an algebraic
group over k acting on H by automorphisms.

Let G be the Greenberg realization of Sp(Ṽ ) over k. As in § 2.2, one defines a homomor-
phism ξ : G → ASp(V ) of algebraic groups over k. Let ELag(V ) be defined as in § 2.4.1.
The map ε : L(Ṽ ) → ELag(V ) defined as in § 2.4.2 is a morphism of schemes over L(V ),
the action of ASp(V ) on ELag(V ) is algebraic, and the diagram (2.5) commutes.

Given a k-point (L, τ) ∈ ELag(V ), write HL for the category of Q̄�-perverse sheaves on
H, which are equivariant with respect to L acting on H by the left multiplication via τ ,
and also (Z(H), Lψ)-equivariant. This is a full subcategory in P(H). Write DHL ⊂ D(H)
for the full subcategory of objects whose all perverse cohomologies lie in HL.

For a k-point L̃ ∈ L(Ṽ ) set HL̃ = HL for the enhanced Lagrangian L = ε(L̃). For a
k-point g ∈ G the inverse image under the map H → H, h �→ g−1h yields an equivalence
g : HL̃

∼−→ HgL̃, which we denote by g by some abuse of notation.

7.2. Write L̂ for a point of L̂(Ṽ ) over L̃ ∈ L(Ṽ ). For g ∈ Ĝ, L̂ ∈ L̂(Ṽ ) we write gL̂ for
the image of (g, L̂) under the action map (defined in § A.2)

Ĝ × L̂(Ṽ ) → L̂(Ṽ ).

Write (L̂ : M̂) for the image of a pair (L̂, M̂) ∈ L̂(Ṽ ) × L̂(Ṽ ) in Ŷ .
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For a pair of points L̂, M̂ ∈ L̂(Ṽ ) we will define a canonical intertwining operator

FL̂,M̂ : HM̃ → HL̃ (7.1)

depending only on the image (L̂:M̂) ∈ Ŷ . They will be equipped with isomorphisms

• FL̂,L̂

∼−→ id,

• FN̂,L̂ ◦ FL̂,M̂

∼−→ FN̂,M̂ ,

• for g ∈ Ĝ one has g ◦ FL̂,M̂ ◦ g−1 ∼−→ FgL̂,gM̂ ,

satisfying natural compatibility properties. As in [14], the functor FL̂,M̂ will be defined
as a convolution with a suitable complex on H, and as L̂, M̂ vary, these complexes will
organize into a perverse sheaf F on L̂(Ṽ ) × L̂(Ṽ ) × H.

Denote by C → L(Ṽ ) the vector bundle whose fibre at L̃ ∈ L(Ṽ ) is L = L̃ ⊗R k.
Consider the maps

pr, actlr : C × C × H → L(Ṽ ) × L(Ṽ ) × H,

where actlr sends (L̃, l ∈ L, M̃, m ∈ M, h) to (L̃, M̃ , τL̃(l)hτM̃ (m)), and pr sends the
above point to (L̃, M̃ , h). Say that a perverse sheaf K on L(Ṽ ) × L(Ṽ ) × H is actlr-equi-
variant if it admits an isomorphism

act∗
lr K

∼−→ pr∗ K

satisfying the usual associativity condition and whose restriction to the unit section is
the identity (such isomorphism is unique if it exists). One has a similar definition for
L̂(Ṽ ) × L̂(Ṽ ) × H. Let

actĜ : Ĝ × L̂(Ṽ ) × L̂(Ṽ ) × H → L̂(Ṽ ) × L̂(Ṽ ) × H

be the map sending (g, L̂, M̂ , h) to (gL̂, gM̂ , gh). This is an action map in the sense
of § A.2.1, so one has a notion of a Ĝ-equivariant perverse sheaf on L̂(Ṽ ) × L̂(Ṽ ) × H

(see § A.4).
For a scheme S and K, K ′ ∈ D(S ×H) define their convolution K ∗K ′ ∈ D(S ×H) by

K ∗ K ′ = mult!(pr∗
12 K ⊗ pr∗

13 K ′)[n + 2 − 2 dim L(Ṽ )],

where pr12, pr13 : S × H × H → S × H are the projections, and mult : H × H → H is
the product map sending (h1, h2) to h1h2. The above shift is chosen to that the formula
(7.6) below holds without any shift.

Let
i� : (L(Ṽ ) × H)� ↪→ L(Ṽ ) × H

be the closed subscheme of (L̃, h) ∈ L(Ṽ ) × H such that there exist x ∈ L, z ∈ Z(H)
with h = τL̃(x)z. Let α� : (L(Ṽ ) × H)� → Z(H) be the map sending the above point to
z ∈ Z(H).
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Theorem 7.1. There exists an irreducible perverse sheaf F on L̂(Ṽ ) × L̂(Ṽ ) × H with
the following properties.

• For the diagonal map i : L̂(Ṽ ) × H → L̂(Ṽ ) × L̂(Ṽ ) × H the complex i∗F identifies
canonically with the inverse image of

(i�)!α∗
�Lψ[2 dim L(Ṽ ) + n + 2]

under the projection L̂(Ṽ ) × H → L(Ṽ ) × H.

• F is actlr-equivariant and (Z(H), Lψ)-equivariant.

• F is Ĝ-equivariant.

• The convolution property for F holds, namely for ijth projections

qij : L̂(Ṽ ) × L̂(Ṽ ) × L̂(Ṽ ) × H → L̂(Ṽ ) × L̂(Ṽ ) × H

inside the triple L̂(Ṽ ) × L̂(Ṽ ) × L̂(Ṽ ) one has (q∗
12F ) ∗ (q∗

23F ) ∼−→ q∗
13F canonically.

The proof of Theorem 7.1 is given in §§ 7.3–7.5.

7.3. Recall that Y0 ⊂ Y is the open subscheme classifying (L̃, M̃) ∈ Y such that L̃∩M̃ =
0. Define a perverse sheaf F0 on Y0 × H as follows. Let

α0 : Y0 × H → Z(H)

be the map sending (L̃, M̃ , h) to z, where z ∈ Z(H) is uniquely defined by the property
that there exist l ∈ L, m ∈ M such that h = τL̃(l)τM̃ (m)z. Set

F0 = α∗
0Lψ[dim(Y0 × H)].

Let U13 be the scheme classifying (L̃, Ñ , M̃) ∈ L(Ṽ )3 such that Ñ ∩ L̃ = Ñ ∩ M̃ = 0.
Let ν13 : U13 → Y send (L̃, Ñ , M̃) to (L̃, M̃). Define ν12, ν23 : U13 → Y0 by

ν12(L̃, Ñ , M̃) = (L̃, Ñ), ν23(L̃, Ñ , M̃) = (Ñ , M̃).

Let iU : Y0 → U13 send (Ñ , L̃) to (L̃, Ñ , L̃). The open subscheme U3 ⊂ U13 classifies
triples of pairwise transverse Lagrangians in L(Ṽ ). Let pY0 : Y0 → L(Ṽ ) send (Ñ , L̃) to
L̃. Recall the map πU defined by (5.3).

Lemma 7.2.

(1) The complex
(ν∗

12F0) ∗ (ν∗
23F0)[dimL(Ṽ )]

is an irreducible perverse sheaf on U13×H. For the map pY0×id : Y0×H → L(Ṽ )×H

one has canonically

i∗U ((ν∗
12F0) ∗ (ν∗

23F0))
∼−→ (pY0 × id)∗(i�)!α∗

�Lψ[2 dim L(Ṽ ) + n + 2]

over Y0 × H.
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(2) There is a canonical isomorphism

(ν∗
12F0) ∗ (ν∗

23F0)[dimL(Ṽ )] ∼−→ π∗
USψ ⊗ ν∗

13F0[2n2]

of perverse sheaves over U3 × H. Here, by abuse of notation, ν13 : U3 → Y0 is the
restriction of ν13.

Proof. (1) Let us give an argument at the classical level (of K-groups) and explain the
changes needed for geometrization. For a point (L̃, M̃) ∈ Y0 write FL̃,M̃ for the restriction
of F0 to this point, so FL̃,M̃ is a ‘function’ on H. Given (L̃, Ñ , M̃) ∈ U13, let us calculate
the convolution

(FL̃,Ñ ∗ FÑ,M̃ )(h) =
∫

h1∈H

FL̃,Ñ (hh−1
1 )FÑ,M̃ (h1) dh1 (7.2)

as a function of h ∈ H, here dh1 is a ‘Haar measure’. Write N = Ñ ⊗Rk, and similarly for
L, M . Because of equivariance properties of (7.2), we may assume h = τÑ (x) for x ∈ N .
Write h1 = τÑ (y)τM̃ (u)z with z ∈ Z(H), u ∈ M , y ∈ N . Then (7.2) equals the volume
of N × Z multiplied by∫

u∈M

FL̃,Ñ (τÑ (x)τM̃ (u)) du =
∫

u∈M

FL̃,Ñ (τM̃ (u))ψ(ω(x, u)) du. (7.3)

We have used the equality τÑ (x)τM̃ (u) = τM̃ (u)τÑ (x)(0, ω(x, u)). The formula (7.3)
shows that the resulting complex on N is the Fourier transform of a rank one local system
on M (the symplectic form induces an isomorphism M∗ ∼−→ N). So, our first assertion
follows from the fact that the Fourier transform preserves perversity and irreducibility.

Assume further that M̃ = L̃ then (7.3) equals

∫
u∈L

ψ(ω(x, u)) du =

{
0 for x �= 0,

vol(L) for x = 0.

The geometrization is straightforward, our second assertion follows.

(2) Assume that (L̃, Ñ , M̃) ∈ U3. Take x ∈ N and continue the calculation of (7.3)
from (1) as follows. Let r : N → L be the k-linear map such that M = {r(w) − w ∈
L ⊕ N | w ∈ N}. Consider Q := QL̃,Ñ,M̃ ∈ Q!(N∗) defined by (2.7), that is, Q : N → R

is given by
τM̃ (r(w) − w)τÑ (w)τL̃(−r(w)) = (0, Q(w)) (7.4)

for any w ∈ N . Now (7.3) equals∫
w∈N

FL̃,Ñ (τM̃ (r(w)−w))ψ(ω(x, r(w)−w)) dw =
∫

w∈N

ψ(Q(w)+ω(x, r(w))) dw. (7.5)

Recall that for w, w1 ∈ N one has

Q(w + w1) = Q(w) + Q(w1) + ω(r(w), w1)
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(see § 2.5). After the change of variables w = t + x, t ∈ N , the expression (7.5) can be
rewritten as

ψ(Q(x) + ω(x, r(x)))
∫

t∈N

ψ(Q(t)) dt.

Now (7.4) with w = x also yields

FL̃,M̃ (τÑ (x)) = ψ(Q(x) + ω(x, r(x))).

Recall the notation C(L̃, Ñ , M̃) =
∫

t∈N
ψ(Q(t)) dt given by (2.9). Combining with (1)

we get
(FL̃,Ñ ∗ FÑ,M̃ )(h) = vol(N × Z)C(L̃, Ñ , M̃)FL̃,M̃ (h).

Because of equivariance properties, the latter formula holds for all h ∈ H. By Remark 5.9,
Q is the image of πU (L̃, Ñ , M̃) in Q!(N∗). The above proof goes through also in the
geometric setting. �

7.4. Let Θψ be the rank one local system on Ŷ0 defined by Θψ = SṼ ,ψ|Ŷ0
[− dim Y0].

The map ν̂23 has been defined in § 6.3.1. Consider the diagram

Ŷ0 U3
ν̂12��

ν̂23

��

ν̂13 �� Ŷ0

Ŷ0

where ν̂12, ν̂13 are defined by ν̂13(L̃, Ñ , M̃) = ν̂23(Ñ , L̃, M̃) and ν̂12(L̃, Ñ , M̃) =
ν̂23(M̃, L̃, Ñ) for (L̃, Ñ , M̃) ∈ U3. From Lemma 5.5 one derives the following.

Lemma 7.3. One has canonical isomorphisms ν̂∗
12Θψ

∼−→ ν̂∗
23Θψ

∼−→ ν̂∗
13Θ

−1
ψ over U3.

Definition 7.4. Let F̂0 be the perverse sheaf on Ŷ0 × H given by F̂0 = pr∗
1 Θ−1

ψ ⊗F0. It is
understood that we take the inverse image of F0 under the projection Ŷ0 × H → Y0 × H.
Let F be the intermediate extension of F̂0 under Ŷ0 × H ↪→ Ŷ × H. The restriction of F

under the natural map L̂(Ṽ ) × L̂(Ṽ ) × H → Ŷ × H is also denoted by F . Note that F̂0

is Ĝ-equivariant (see Remark 6.10).

Combining Lemmas 7.2 and 7.3 with Corollary 6.7, one gets the following.

Corollary 7.5. There is a canonical isomorphism over U3 × H

(ν̂∗
12F̂0) ∗ (ν̂∗

23F̂0)
∼−→ (ν̂∗

23Θ
2
ψ) ⊗ ν̂∗

13F̂0. (7.6)

Denote also by ν̂13 : U13 → Ŷ the map ν̂13(L̃, Ñ , M̃) = ν̂23(Ñ , L̃, M̃) for (L̃, Ñ , M̃) ∈
U13. The Cartesian square

U3 × H
� � ��

ν̂13×id
��

U13 × H

ν̂13×id
��

Ŷ0 × H
� � �� Ŷ × H
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together with Lemma 7.2 yield a canonical isomorphism over U13 × H

(ν̂13 × id)∗F
∼−→ (ν∗

12F0) ∗ (ν∗
23F0) (7.7)

obtained by the intermediate extension from U3 × H. This gives an explicit formula for
F . Further, the diagram is canonically 2-commutative

Y0
iU ��

pY0

��

U13

ν̂13

��
L(Ṽ )

t �� Ŷ

Restricting (7.7) under iU × id : Y0 × H → U13 × H, one gets an isomorphism

(pY0 × id)∗(t × id)∗F
∼−→ (pY0 × id)∗(i�)!α∗

�Lψ[2 dim L(Ṽ ) + n + 2].

Since pY0 has connected fibres, the latter isomorphism descends under pY0 × id : Y0×H →
L(Ṽ ) × H to an isomorphism

(t × id)∗F
∼−→ (i�)!α∗

�Lψ[2 dim L(Ṽ ) + n + 2].

By construction, F̂0 is actlr-equivariant, (Z(H), Lψ)-equivariant, and Ĝ-equivariant
(this property holds over Ŷ0 × H and is preserved by the intermediate extension).

7.5. Consider the scheme Y ×L(Ṽ ) Y classifying ((L̃, Ñ) ∈ Y, (Ñ , M̃) ∈ Y ). Define the
gerb Ŷ ×L(Ṽ ) Ŷ over it as the Z/4Z×Z/4Z-gerb obtained from L̂(Ṽ ) × L̂(Ṽ ) × L̂(Ṽ ) by
extension of the structure group

Z/4Z × Z/4Z × Z/4Z → Z/4Z × Z/4Z, (a, b, c) �→ (b − a, c − b).

So, a point of Ŷ ×L(Ṽ ) Ŷ is a collection ((L̂:N) ∈ Ŷ , (N̂ :M̂) ∈ Ŷ ). Extending further
the structure group with respect to Z/4Z × Z/4Z → Z/4Z, (u, v) �→ u + v, one gets the
gerb Ŷ × L(Ṽ ), the corresponding morphism of stacks

γ′ : Ŷ ×L(Ṽ ) Ŷ → Ŷ × L(Ṽ )

sends ((L̂:N), (N̂ :M̂)) to ((L̂:M̂), Ñ). Write γ : Ŷ ×L(Ṽ ) Ŷ → Ŷ for pr1 ◦γ′. A straight-
forward calculation yields the following.

Lemma 7.6. Consider the diagram

Ŷ ×L(Ṽ ) Ŷ
γ �� Ŷ

p �� Y

U3

ν̂12×ν̂23

��

ν̂13

�������������

where p is the structure map sending (L̂:M̂) to (L̃, M̃). The two maps thus obtained
from U3 to Y coincide, but the triangle in the above diagram is not 2-commutative. More
precisely, the two sections so obtained of the gerb Ŷ over U3 differ by the Z/4Z-torsor
C(L̃, Ñ , M̃)2, where (L̃, Ñ , M̃) ∈ U3.
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For i = 1, 2 let γi : Ŷ ×L(Ṽ ) Ŷ → Ŷ denote the projection to the ith term. To finish the
proof of Theorem 7.1, it remains to establish the convolution property of F . We actually
prove it in the following form.

Proposition 7.7. There is a canonical isomorphism over (Ŷ ×L(Ṽ ) Ŷ ) × H

(γ∗
1F ) ∗ (γ∗

2F ) ∼−→ γ∗F. (7.8)

Proof.

Step 1. Let (Ŷ ×L(Ṽ ) Ŷ )0 ⊂ (Ŷ ×L(Ṽ ) Ŷ ) be the open substack obtained by the base
change U3 ⊂ Y ×L(Ṽ ) Y . In view of Lemma 7.6, the isomorphism of Corollary 7.5
descends under the covering

ν̂12 × ν̂23 : U3 → (Ŷ ×L(Ṽ ) Ŷ )0

to the desired isomorphism (7.8) over (Ŷ ×L(Ṽ ) Ŷ )0 × H.

Step 2. It suffices to show that (γ∗
1F ) ∗ (γ∗

2F ) is perverse, the intermediate extension
under the open immersion

(Ŷ ×L(Ṽ ) Ŷ )0 × H ⊂ (Ŷ ×L(Ṽ ) Ŷ ) × H.

Let us first explain the idea informally, at the level of ‘functions’. For (L̂:M̂) ∈ Ŷ write
FL̂ : M̂ for the restriction of F to this point, this is a ‘function’ on H. For (L̃, M̃) ∈ Y0

write FL̃,M̃ for the restriction of F0 to this point, this is also a ‘function’ on H (as in the
proof of Lemma 7.2).

Let ((L̂:N), (N̂ :M̂)) ∈ Ŷ ×L(Ṽ ) Ŷ . Pick any S̃, T̃ ∈ L(Ṽ ) such that

• (L̃, S̃, Ñ), (Ñ , T̃ , M̃) ∈ U13,

• ν̂13(L̃, S̃, Ñ) = (L̂:N), ν̂13(Ñ , T̃ , M̃) = (N̂ :M̂),

• S̃ ∩ T̃ = S̃ ∩ M̃ = 0.

By (7.7), we get (up to some explicit volumes that we omit)

FL̂:N ∗ FN̂ :M̂ = (FL̃,S̃ ∗ FS̃,Ñ ) ∗ (FÑ,T̃ ∗ FT̃ ,M̃ )

= C(S̃, Ñ , T̃ )FL̃,S̃ ∗ FS̃,T̃ ∗ FT̃ ,M̃

= C(S̃, Ñ , T̃ )C(S̃, T̃ , M̃)FL̃,S̃ ∗ FS̃,M̃

= C(S̃, Ñ , T̃ )C(S̃, T̃ , M̃)FL̂:M̂ ,

where (L̂:M̂) = ν13(L̃, S̃, M̃). Now we turn back to the geometric setting.

Step 3. Consider the scheme X classifying (L̃, S̃, Ñ) ∈ U13, (Ñ , T̃ , M̃) ∈ U13 such that
S̃ ∩ T̃ = S̃ ∩ M̃ = 0. Let

ζ : X → Ŷ ×L(Ṽ ) Ŷ

https://doi.org/10.1017/S147474801100017X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801100017X


Geometric Weil representation in characteristic two 261

be the map sending the above collection to (ν̂13(L̃, S̃, Ñ), ν̂13(Ñ , T̃ , M̃)). It is smooth and
surjective. It suffices to show that

ζ∗((γ∗
1F ) ∗ (γ∗

2F ))

is a shifted perverse sheaf on X × H, the intermediate extension from

ζ−1((Ŷ ×L(Ṽ ) Ŷ )0) × H.

Let µ : X → U13 be the map sending a point of X to (L̃, S̃, M̃). Applying (7.7) several
times as in Step 2, we learn that there is a rank one local system J on X such that

ζ∗((γ∗
1F ) ∗ (γ∗

2F )) ∼−→ J ⊗ µ∗ν̂∗
13F

over X × H. Since F is an irreducible perverse sheaf, our assertion follows. �

Thus, Theorem 7.1 is proved.

7.6. Given k-points L̂, M̂ ∈ L̂(Ṽ ), let FL̂,M̂ be the ∗-restriction of F under (L̂, M̂) × id :
H → L̂(Ṽ ) × L̂(Ṽ ) × H. Define the functor FL̂,M̂ : D HM̃ → D HL̃ by

FL̂,M̂ (K) = FL̂,M̂ ∗ K.

By Theorem 7.1, for L̂, N̂ , M̂ ∈ L̂(Ṽ ) the diagram is canonically 2-commutative

D HM̃

FN̂,M̂ ��

FL̂,M̂ ����
��

��
��

�
D HÑ

FL̂,N̂

��
D HL̃

To see that FL̂,M̂ preserves perversity, pick Ñ ∈ L(Ṽ ) such that Ñ ∩ M̃ = Ñ ∩ L̃ = 0
and use the commutativity of the latter diagram. This reduces the question to the case
L̃ ∩ M̃ = 0, in the latter case FL̂,M̂ is nothing but the Fourier transform between the
dual vector spaces L, M for the perfect pairing ω : L × M → 2R. Here L = L̃ ⊗R k,
M = M̃ ⊗R k. This completes the definition of (7.1).

7.7. For a k-point M̂ ∈ L̂(Ṽ ) let iM̂ : L̂(Ṽ ) → L̂(Ṽ ) × L̂(Ṽ ) × H be the map sending
L̂ to (L̂, M̂ , 0). Let

FM̂ : D HM̃ → D(L̂(Ṽ )) (7.9)

be the functor sending a complex K to i∗
M̂

(F ∗pr∗
3 K)[dimL(Ṽ )−dim H]. For any k-points

M̂, N̂ ∈ L̂(Ṽ ) the following diagram commutes:

D HM̃

FM̂ ��

FN̂,M̂ ������������ D(L̂(Ṽ ))

D HÑ

FN̂

��
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Lemma 7.8. The functor FN̂ is exact for the perverse t-structures.

Proof. Let Ṽ
∼−→ M̃ ⊕ M̃∗ be a decomposition of Ṽ into an orthogonal sum of two free

Lagrangian submodules. Recall the open subscheme U(M̃) = {L̃ ∈ L(Ṽ ) | L̃ ∩ M̃ =
0} ⊂ L(Ṽ ), it identifies naturally with Sym!2(M̃). It suffices to show that for any above
decomposition the composition

HM̃

FM̂−−→ D(L̂(Ṽ )) → D(U(M̃)) (7.10)

is exact, where the second arrow is the restriction under the canonical section U(M̃) →
L̂(Ṽ ).

Let M = M̃ ⊗R k. The functor HM̃ → P(M∗) sending K to K̄ = (τM̃∗)∗K[−n − 2] is
an equivalence. Recall the map π̄ : M∗ → Sym∗2(M̃∗) from § 4.1. One checks that (7.10)
sends K̄ to Fourψ(π̄!K̄) ∈ P(Sym!2(M̃)). We are done. �

Definition 7.9. The non-ramified Weil category W (L̂(Ṽ )) is the essential image of the
functor (7.9). This is a full subcategory in P(L̂(Ṽ )) independent of the choice of a k-point
M̂ ∈ L̂(Ṽ ).

The group Ĝ acts naturally on L̂(Ṽ ), hence also on P(L̂(Ṽ )). This action preserves
the full subcategory W (L̂(Ṽ )).

7.8. Let pr : C̄ → L̂(Ṽ ) be the vector bundle whose fibre at L̂ is L, where L = L̃ ⊗R k.
Let actl : C̄×H → L̂(Ṽ )×H be the map sending (L̂, h, x ∈ L) to (L̂, τL̃(x)h). A perverse
sheaf K ∈ P(L̂(Ṽ ) × H) is actl-equivariant if it is equipped with an isomorphism

act∗
l K

∼−→ pr∗ K

satisfying the usual associativity property, and whose restriction to the unit section is
the identity.

Definition 7.10. The Weil category W (Ṽ ) is the category of pairs (K, σ), where K ∈
P(L̂(Ṽ ) × H) is actl-equivariant and (Z(H), Lψ)-equivariant, and

σ : F ∗ pr∗
23 K

∼−→ pr∗
13 K

is an isomorphism. Here pr13, pr23 : L̂(Ṽ )×L̂(Ṽ )×H → L̂(Ṽ )×H are the corresponding
projections. It is required that σ is compatible with the associativity constraint and the
unit section constraint of F .

The group Ĝ acts on L̂(Ṽ ) × H sending (g ∈ Ĝ, L̂, h) to (gL̂, gh). This action extends
to an action of Ĝ on the category W (Ṽ ). One has a natural functor W (Ṽ ) → W (L̂(Ṽ )),
we do not know if this is an equivalence.
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Appendix A. Generalities on H-gerbs

A.1. The notion of a group stack on an arbitrary site is essentially given in [5], where
it is called a gr-champ. Here is its algebro-geometric version. Let S be a scheme, G
be an algebraic S-stack. Call it a group stack over S if we are given an action map
ν : G ×S G → G, a unit section i : S → G over S, and the associativity 2-morphism
α : ν ◦ (ν × id) → ν ◦ (id×ν) making the following diagram 2-commutative

G ×S G ×S G ν×id ��

id ×ν

��

G ×S G

ν

��
G ×S G ν �� G

The morphism α should satisfy the following pentagon axiom. For a scheme T and T -
points C1, C2, C3, C4 ∈ G the following diagram commutes:

((C1C2)C3)C4
α×id ��

α

��

(C1(C2C3))C4

α

��
(C1C2)(C3C4)

α �� C1(C2(C3C4)) C1((C2C3)C4)
id ×α��

We should also be given 2-morphisms τl : ν ◦ (i× id) → id and τr : ν ◦ (id×i) → id making
the following diagrams 2-commutative

G i×id ��

id
		��

��
��

��
�� G ×S G

ν

��

G id ×i ��

id
		��

��
��

��
�� G ×S G

ν

��
G G

Writing O for the unit object of G, the restrictions τl, τr : OO → O should coincide.
Further, the morphisms α, τl, τr should be compatible, namely, for a scheme T and
T -points C1, C2 ∈ G the diagrams commute

C1(OC2)

τl

��

(C1O)C2
α��

τr

����������

C1C2

O(C1C2)

τl

��

(OC1)C2
α��

τl

����������

C1C2

C1(C2O)

τr

��

(C1C2)O
α��

τl

����������

C1C2

where O is the unit section of G. Finally, we require that for any scheme T and any T -point
C ∈ G, writing GT for the category fibre of G over T , the functors G ×S T → G ×S T ,
D �→ CD and G ×S T → G ×S T , D �→ DC are isomorphisms of T -stacks. (We do not
explicitly choose a quasi-inverse under multiplication, as we are interested only in actions
of G.)
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A.2.

A.2.1. The notion of a torsor over a group stack is defined in [5, Definition 6.1]. Let us
formulate its version for algebraic stacks.

Let S be a scheme, G be a group stack over S, write ν : G ×S G → G for the product
morphism, let i : S → G be the unity morphism.

Let Y be an S-scheme and Ŷ → Y be an algebraic stack over Y . An action of G
on Ŷ over Y is a data of an action map m : G ×S Ŷ → Ŷ over Y , and a 2-morphism
µ : m ◦ (ν × id) → m ◦ (id×m) making the following diagram 2-commutative

G ×S G ×S Ŷ
ν×id ��

id ×m

��

G ×S Ŷ

m

��
G ×S Ŷ

m �� Ŷ

(A.1)

The 2-morphism µ should satisfy the pentagon axiom. Namely, for any test scheme T

and T -points C1, C2, C3 ∈ G, D ∈ Ŷ the following diagram commutes:

((C1C2)C3)D ��

µ

��

(C1(C2C3))D

µ

��
(C1C2)(C3D)

µ �� C1(C2(C3D)) C1((C2C3)D)
µ��

where the top horizontal arrow is the associativity constraint for the group stack G. We
further should be given a 2-morphism λ : m◦ (i× id) ∼−→ id making the following diagram
2-commutative

Ŷ
i×id ��

id

����
��

��
��

�� G ×S Ŷ

m

��
Ŷ

The morphisms µ and λ should be compatible, namely, for a test scheme T and T -points
C ∈ G, D ∈ Ŷ the following diagrams commute:

C(OD)

λ

��

(CO)D
µ��

τr
������������

CD

O(CD)

λ

��

(OC)D
µ��

τl
������������

CD

where O is the unit object of G, and τl, τr are parts of data for the group stack G.
A G-torsor over an S-scheme Y is a data of an algebraic stack Ŷ → Y over Y , an action

of G on Ŷ over Y such that two additional conditions hold. First, m × pr2 : G ×S Ŷ →
Ŷ ×Y Ŷ should be an isomorphism. Second, after localization in fppf topology in Y there
should exist an isomorphism Ŷ

∼−→ Y ×S G such that the action map becomes isomorphic
to the left translations on G.
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Now let Ŷ and Ŷ ′ be two G-torsors over Y . A morphism of such G-torsors is a pair (f, h),
where f : Ŷ → Ŷ ′ is a morphism over Y , and h : m ◦ (id×f) → f ◦ m is a 2-morphism
making the following diagram 2-commutative

G ×S Ŷ
id ×f ��

m

��

G ×S Ŷ ′

m

��
Ŷ

f �� Ŷ ′

Besides, µ, µ′ and h should be compatible, namely, for a test scheme T and T -points
C1, C2 ∈ G, D ∈ Ŷ the following diagram commutes:

(C1C2)f(D)
µ′

��

h

��

C1(C2f(D)) h �� C1(f(C2D))

h

��
f((C1C2)D)

f(µ) �� f(C1(C2D))

Given two morphisms (f1, h1) and (f2, h2) from Ŷ to Ŷ ′, a natural transformation
from (f1, h1) to (f2, h2) is a 2-morphism φ : f1 → f2 such that φ is compatible with the
actions of G on Ŷ and Ŷ ′, namely, for a test scheme T and T -points C ∈ G, D ∈ Ŷ the
following diagram commutes:

Cf1(D)
h1 ��

φ

��

f1(CD)

φ

��
Cf2(D)

h2 �� f2(CD)

A.2.2. Now assume that H is a commutative group scheme over S and G is the S-stack
B(H), the classifying stack. Recall that for a morphism of schemes S′ → S, the S′-points
of B(H) is the category of H ×S S′-torsors on S′. Then B(H) is a commutative group
stack over S.

For this particular G the notion of a G-torsor becomes nothing but a H-gerb over Y .
The definition simplifies considerably as follows [6, Definition 2.9, p. 49]. An H-gerb∗ over
Y is a stack Ŷ → Y together with a 2-morphism ρ : pr2 → pr2, where pr2 : H ×S Ŷ → Ŷ

is the projection. It is subject to the following condition. For a scheme T and a T -point
D ∈ Ŷ write AutD|T for the sheaf of groups on T of automorphisms of D. It is required
that for any S-scheme T the map ρ : H|T → AutD|T is an isomorphism of sheaves of
groups on T (in fppf topology).

Given an H-gerb Ŷ → Y , a T -point D ∈ Ŷ yields an isomorphism Ŷ ×S T
∼−→

B(H)×S T , then the action map m : B(H)×S (Ŷ ×S T ) → Ŷ ×S T becomes the morphism

B(H) ×S B(H) ×S T → B(H) ×S T

sending (F1, F2, t) to (F1 ⊗ F2, t). Here Fi are H-torsors over T .
∗ In [6] it is called an abelian H-gerb.
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Given two H-gerbs Ŷ and Ŷ ′ over Y , a morphism of H-gerbs is a 1-morphism f : Ŷ →
Ŷ ′ such that for any scheme T , any T -points D ∈ Ŷ , σ ∈ H we have f(ρŶ (σ)) = ρŶ ′(σ).
We strengthen that there is no need to provide in addition a 2-morphism h as in § A.2.1
(it is constructed uniquely out of the other data).

A.3. Assume in addition that G is a group scheme over S, and G acts on an S-scheme
Y over S. The H-gerb Ŷ → Y then gives rise to a group stack Ĝ over G defined as follows.
For an S-scheme T the T -points of Ĝ is the category of pairs (g, f), where g ∈ G(T ) and

f : g∗(Ŷ ×S T ) ∼−→ Ŷ ×S T

is an isomorphism of H-gerbs over Y ×S T . A morphism from (g1, f1) to (g2, f2) exists
only under the condition g1 = g2 and it is a natural transformation from f1 to f2.

The product morphism Ĝ ×S Ĝ → Ĝ sends a T -point (g1, f1), (g2, f2) to the T -point
(g1g2, f), where f is the composition

g∗
2g∗

1(Ŷ ×S T )
g∗
2f1−−−→ g∗

2(Ŷ ×S T )
f2−→ Ŷ ×S T.

Assume that the element of H2(Y, H) corresponding to Ŷ is stable under G, so that
Ĝ → G is surjective. Assume also the following condition.

(∗) For any geometric point s ∈ S any H-torsor on Y ×S s is trivial.

Then Ĝ is algebraic and fits into an exact sequence of group stacks over k

1 → B(H) → Ĝ → G → 1.

Besides, Ĝ acts naturally on Ŷ , and the projection Ŷ → Y is equivariant with respect to
the homomorphism Ĝ → G. The action map Ĝ ×S Ŷ → Ŷ sends a T -point (g, f) ∈ Ĝ(T ),
D ∈ Ŷ (T ) to p(f−1D), where p is given by the diagram, whose square is Cartesian

Ŷ ×S T
f−1

��



											 g∗(Ŷ ×S T )
p ��

��

Ŷ ×S T

��
Y ×S T

g �� Y ×S T

A.4. Let G be an algebraic group stack over S. Assume that Ŷ is an algebraic stack
over S, and G acts on Ŷ over S. Assume that for any scheme T and T -points g ∈ G,
y ∈ Ŷ the natural map AutGT

(g) → AutŶT
(gy) is injective. Here GT is the category fibre

of G over T , similarly for ŶT . According to [8, § 2.4.4], in this case one might define the
stack quotient Ŷ /G, which is a priori a 2-stack, it turns out to be representable by a
1-stack (we do not claim anything about algebraicity of the latter).

Assume that G is smooth of finite type over S. Let K be an �-adic perverse sheaf on Ŷ

(here � is invertible on S). Say that K is G-equivariant if we are given an isomorphism

ξ : m∗K
∼−→ pr∗

2 K
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of shifted perverse sheaves for the maps m, pr2 : G ×S Ŷ → Ŷ , where m is the action
map. It is subject to the following conditions (in the notation of § A.2.1). The diagram
of morphisms (of shifted perverse sheaves on G ×S G ×S Ŷ ) induced by (A.1) should be
commutative

(ν × id)∗m∗K
(ν×id)∗ξ ��

µ∗

��

pr∗
3 K

∼ �� pr∗
23 pr∗

2 K

(id×m)∗m∗K
(id ×m)∗ξ �� (id×m)∗ pr∗

2 K
∼ �� pr∗

23 m∗K

pr∗
23 ξ

��

This means that for a scheme T and T -points C1, C2 ∈ G, D ∈ Ŷ the following diagram
commutes:

K(C1C2)D
ξ ��

µ∗

��

KD

KC1(C2D)
ξ �� KC1D

ξ

��

where K with a subscript denotes the corresponding ∗-restriction.
We used the following. Given two stacks Y, Z and an �-adic complex K on Y, the

inverse image of K is a functor

{the category of 1-morphisms Z → Y}
→ {the derived category of �-adic sheaves on Z}.

Further, for any T -point D ∈ Ŷ , writing O for the unit section of G, the diagram of
�-adic complexes on T should commute

KOD
λ∗

��

ξ

���������� KD

KD

Appendix B. Comparison with the local field case

B.1. In this section we show that the Weil representation considered in § 2 is obtained
by some reduction from the Weil representation over the non-Archimedean local field of
characteristic zero (and residual characteristic two).

Let F be a finite unramified extension of Q2, O ⊂ F be the ring of integers and k be
the residue field of O. Set R = O/4O, so R is the ring of Witt vectors of length two
over k. Let q be the number of elements of k.

Let W be an F -vector space of dimension 2n with symplectic form 〈· , ·〉 : W ×W → F .
Write H(W ) for the Heisenberg group W ×̃ F with operation

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + 1
2 〈w1, w2〉).

The symbol ×̃ will refer to the above product.
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As above, l �= 2. Fix an additive character χ0 : Q2 → Q̄∗
� whose conductor is Z2.

Assume that the restriction χ0 : 1
4Z2/Z2 → Q̄∗

� is the character ψ : Z/4Z → Q̄∗
� we fixed

in § 1. Let χ : F → Q̄∗
� be given by χ(z) = χ0(tr z), here tr : F → Q2 is the trace.

A subgroup in A ⊂ W is closed if and only if Z2A ⊂ A (see [17, p. 32]). For a closed
subgroup A ⊂ W let A⊥ = {w ∈ W | 〈w, a〉 ∈ O for all a ∈ A}. Say that a O-lattice
M ⊂ W is a symplectic lattice if and only if M⊥ = M .

For a closed subgroup A ⊂ W with A⊥ = A let Ā = A×̃F ⊂ H(W ), this is a subgroup.
The group A×̃( 1

2O/O) is abelian. The whole difficulty comes from the fact that there
are no natural way to extend the character χ from F to Ā.

Let M ⊂ W be a symplectic lattice. Consider the group (M/2M)×̃( 1
2O/O), it is

abelian (and naturally has a structure of a commutative unipotent algebraic group
over k). Let φ : M/2M → 1

2O/O be a quadratic form such that

φ(m1 + m2) − φ(m1) − φ(m2) = 1
2 〈m1, m2〉

for all mi ∈ M/2M . It yields a splitting of the exact sequence of abelian groups

0 → 1
2O/O → (M/2M)×̃( 1

2O/O) → M/2M → 0

given by m �→ (m, φ(m)). Once such φ is chosen, we get a unique character χφ : M̄ → Q̄∗
�

extending χ. Namely, for (m, z) ∈ M×̃F we set χφ(m, z) = χ(φ(m) + z).
Then we get a model of the Weil representation of H(W )

HM,φ = {f : H(W ) → Q̄� | f(wh) = χφ(w)f(h), w ∈ M̄ ;
there is an open subgroup M1 ⊂ W such that f(h(w, 0)) = f(h),

w ∈ M1, h ∈ H(W )}.

Let G(F ) = Sp(W )(F ) and G(O) be the stabilizer of M in G(F ). The group G(F ) acts
on H(W ) by automorphisms, namely g ∈ G(F ) sends (w, z) to (gw, z). Write ρ : H(W ) →
Aut(HM,φ) for the action by right translations. The model HM,φ yields the metaplectic
extension

1 → Q̄∗
� → G̃(F ) → G(F ) → 1, (B.1)

where

G̃(F ) = {(g, ξ) | g ∈ G(F ), ξ ∈ Aut(HM,φ); ρ(gh) ◦ ξ = ξ ◦ ρ(h) for h ∈ H(W )}.

Let Gφ(O) be the group of those g ∈ G(O) whose image in Sp(M/2M) preserves φ.
Then for all g ∈ Gφ(O), h ∈ M̄ we have χφ(gh) = χφ(h). It follows that Gφ(O) acts on
HM,φ, namely g ∈ Gφ(O) sends f ∈ HM,φ to gf given by (gf)(h) = f(g−1h), h ∈ H(W ).
This is a splitting of (B.1) over Gφ(O).

The space HM,φ has a distinguished vector vM , which is extension by zero under
M̄ ↪→ H(W ) of the function χφ : M̄ → Q̄�. It also has a distinguished linear functional
eM : HM,φ → Q̄� sending f to f(0).

Remark B.1. For any φ as above there is a lattice 2M ⊂ N ⊂ M such that N/2M ⊂
M/2M is a Lagrangian, and φ vanishes identically on N/2M .
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B.2. If M1 ⊂ W is a O-lattice such that M1 ⊂ M⊥
1 then we get the induced symplectic

form 〈· , ·〉 on M⊥
1 /M1 with values in F/O. If moreover, M1 ⊂ M ⊂ M⊥

1 then M/M1 is
a Lagrangian in M⊥

1 /M1.

Lemma B.2. Let M1 ⊂ M be a O-lattice. The space

HM1
M,φ := {f ∈ HM,φ | f(h(w, 0)) = f(h) for all w ∈ M1}

is as follows.

(1) If φ vanishes on M1/(M1 + 2M) ⊂ M/2M then HM1
M,φ identifies (via extension by

zero) with the space

{f : M⊥
1 ×̃F → Q̄� | f(wh) = χφ(w)f(h), w ∈ M̄}.

The latter space is

{f : M⊥
1 → Q̄� | f(w + y) = χ(φ(w) + 1

2 〈y, w〉)f(y), for all w ∈ M, y ∈ M⊥
1 }.

(2) We have HM
M,φ = 0.

Proof. (1) Assume that f ∈ HM1
M,φ does not vanish on (w, 0) ∈ H(W ). Then for any

m1 ∈ M1 we have f(w, 0) = f((w, 0)(m1, 0)) = f((m1, 〈w, m1〉)(w, 0)) = χ(φ(m1) +
〈w, m1〉)f(w, 0). So, for any m1 ∈ M1 we have χ(φ(m1) + 〈w, m1〉) = 1.

(2) This is easy. �

Let 2M ⊂ N ⊂ M be a O-lattice such that N/2M ⊂ M/2M is Lagrangian, and φ

vanishes on N/2M . Note that N⊥ = 1
2N and dimQ̄�

HN
M,φ = qn. The action of N⊥×̃F

on HM,φ preserves the subspace HN
M,φ. The symplectic form

〈· , ·〉 : N⊥ × N⊥ → 1
2O

is non-degenerate, and N⊥×̃ 1
4O ⊂ N⊥×̃F is a subgroup. Besides,

N×̃O ⊂ N⊥×̃ 1
4O

is a normal subgroup, and the quotient will be denoted H(N⊥/N), it acts naturally on
HN

M,φ. We have an exact sequence of groups

1 → 1
4O/O → H(N⊥/N) → N⊥/N → 1.

Its push-forward under 1
4O/O → 1

4O/ 1
2O admits a splitting. Let M̄N be the image of

M×̃ 1
4O in H(N⊥/N). Then χφ yields a character still denoted χφ : M̄N → Q̄∗

� , and HN
M,φ

identifies with the representation of H(N⊥/N) in

{f : H(N⊥/N) → Q̄� | f(wh) = χφ(w)f(h) for all w ∈ M̄N , h ∈ H(N⊥/N)} (B.2)
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acting in the latter space by right translations. In this way HN
M,φ becomes the Schrödinger

model of the oscillator representation of H(N⊥/N) for the enhanced Lagrangian M/N ⊂
N⊥/N . The enhanced structure τ : M/N → H(N⊥/N) is as follows. First, we have a
natural surjective homomorphism

δ : N⊥×̃( 1
4O/O) → H(N⊥/N),

then for m ∈ M we have τ(m mod N) = δ(m, −φ(m)).
Now let GN ⊂ G(F ) be the stabilizer of N . Let G̃N be its preimage in G̃(F ). Since

GN preserves N × {0} ⊂ H(W ), it follows that G̃N acting on HM,φ preserves HN
M,φ.

The group GN acts naturally on N⊥ ×̃ 1
4O, and the action of GN on H(N⊥/N) factors

through an action of Sp(N⊥/2N). Set V = N⊥/N and Ṽ = N⊥/2N .
One gets the ‘finite’ metaplectic extension 1 → Q̄∗

� → G̃Ṽ → Sp(Ṽ ) → 1, where

G̃Ṽ = {(g, ξ0) | g ∈ Sp(Ṽ ), ξ0 ∈ Aut(HN
M,φ); ρ0(gh)◦ξ0 = ξ0 ◦ρ0(h) for h ∈ H(N⊥/N)}.

Here ρ0 is the action of H(N⊥/N) by right translations in (B.2), and ξ0 is an automor-
phism of the corresponding Q̄�-vector space.

Let GN,1 be the kernel of GN → Sp(Ṽ ). Then GN,1 ⊂ Gφ(O), and the composition

GN,1 ↪→ Gφ(O) ↪→ G̃(F )

realizes GN,1 as a normal subgroup in G̃N . This normal subgroup acts trivially on
H(N⊥/N), hence a morphism of exact sequences

1 �� Q̄∗
�

�� G̃Ṽ
�� Sp(Ṽ ) �� 1

1 �� Q̄∗
�

��

id

��

G̃N
��

��

GN
��

��

1

yielding an isomorphism (G̃N )/GN,1
∼−→ G̃Ṽ .
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